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Abstract—We study the robust link scheduling problem (RLSP)
based on a physical interference model with errors in channel
state information. The objective of RLSP is to find a robust min-
imum length schedule using spatial time division multiple access.
We compare two approaches to RLSP, one using channel gain
estimates and the other using location information. In bothcases,
we formulate the RLSP as a binary integer program and solve
it by a classical column generation technique. Our comparison
reveals that both approaches yield similar performances, but with
different overhead.

I. I NTRODUCTION

Location-aware applications have gained prominence in
recent years due to rapid advancements in positioning sys-
tems. Most wireless devices have the capability to know
their geographic location based on systems such as global
positioning system (GPS) [1], cellular-based positioning[2],
and ultra-wide bandwidth (UWB) positioning [3]. Moreover,
wireless devices in next-generation communication systems
are expected to obtain location information with a very high
level of accuracy, anywhere and anytime. Location information
will play a key role in improving the communication capabil-
ities of wireless applications at various layers of the protocol
stack. Location information has been exploited in a varietyof
wireless applications in the literature, such as cognitiveradio
[4], relay selection and handover [5], and link rate adaptation
[6]. In the network layer [7] demonstrates the use of position
information for geographic routing. Location informationhas
been used for scheduling in [8], [9] at the medium access
control (MAC) layer.

Scheduling is a classical problem in the MAC layer and
has been studied extensively. In traditional link scheduling,
average channel gains are generally used to schedule links.
A popular approach to link scheduling is spatial time divi-
sion multiple access (STDMA) [10], which is a collision-
free scheme in which links are allocated time slots, and
concurrent transmissions are allowed as long as they do not
cause significant mutual interference [11]. The objective in
STDMA link scheduling is to find the minimum number of
time slots required to schedule all the links in the network.A
mathematical programming formulation was introduced in [12]
and modeled as a binary integer programming (BIP) problem,
which was solved efficiently with column generation. The
work in [13] extended [12] torobust scheduling, considering
the stochastic nature of the links due to log-normal shadow-
ing. Robust link scheduling was applied in [14] for vertical
spectrum sharing in STDMA networks with traffic demand
uncertainty. However, the framework in [12]–[14] is purely

based on channel gains of the links in the network, leading to
hidden node problems [15, Chapter 4]. Moreover, uncertainties
that arise due to estimation of the channel gains (e.g., weak
channels are harder to estimate than strong channels) were not
considered.

In this paper, we study the centralized robust link scheduling
problem, where channel state information is obtained either
from beaconing with channel estimation (referred to a gain
based scheduling, GBS) or from a positioning system (referred
to as location based scheduling, LBS). We show that GBS and
LBS have similar performance and exhibit similar behavior
in terms of robustness to estimation errors. GBS is mainly
limited by hidden node problems and poor scalability (in the
worst case quadratic in the number of nodes). LBS has better
scalability (linear in the number of nodes), does not suffer
from hidden node problems, but is limited by mismatch due
to shadowing.

Notation: |E| denotes the cardinality of a setE; vectors are
written in bold (e.g.,x), with 1 being the vector of all ones;
x � y means thatxi ≤ yi, ∀i.

II. SYSTEM MODEL

We consider a wireless network ofN nodes, represented by
a communication graphG = (V,E) consisting of a setV of
vertices (nodes) and a given setE ⊆ V × V representing the
the links between nodes, which are to be scheduled. Links
will be scheduled when their signal-to-noise ratio (SNR) is
sufficiently high, i.e.,(i, j) ∈ E if SNRij(gij) ≥ γ, in which
SNRij(gij) = gijP/W , wheregij is the channel gain between
nodesi andj, P is the fixed power transmitted by nodei, W
is the noise power at the receiver, andγ is the target SNR
requirement. The channel gain is modeled to comprise path
loss and fadinggij = 10−PL(dij)/10 10Z/10, whereZ is log-
normal shadowing,Z ∼ N (0, σ2

z ), dij is the distance between
the nodesi and j, and the path loss is given byPL(dij) =
PL(d0) + 10 η log10(dij/d0), in which η > 0 is the path loss
exponent andPL(d0) is the line-of-sight path loss at reference
distanced0.

Assuming a given STDMA schedule, where a subsetS =
STX × SRX ⊆ E of links are selected during a given time
slot, each concurrent transmission must satisfy the signal-to-
interference-plus-noise ratio (SINR) requirement

gijP
∑

m∈STX\{i}

gmjP +W
≥ γ, ∀(i, j) ∈ S. (1)



In a real system, the actual channel gainsgij are generally
not available, and instead the scheduler resorts to channel
estimates to derive STDMA schedules. Due to the mismatch
between assumed channel gain and actual channel gains, link
outages will occur. Outages can be reduced by employing
robust link scheduling.

III. ROBUST L INK SCHEDULING

In this section, we provide the mathematical formulation of
the robust link scheduling problem (RLSP) [13].

A. RLSP as an Integer Linear Program

We introducexijt ∈ {0, 1}, with xijt = 1 if time slot t is
assigned to link(i, j) ∈ E, and yt ∈ {0, 1}, whereyt = 1
indicates that time slott is used. LetT be a feasible set of
T time slots,1 i.e., T = {1, 2, 3, . . . , T }. Following [13], the
RLSP can be written as follows

minimize yT1 (2a)

subject to
∑

(i,j)∈E

xijt ≤ yt |E| (2b)

∑

t∈T

xijt = 1 (2c)

SINRij(g̃,x) ≥ γ (2d)

g− � g̃ � g+ (2e)
∑

j:(i,j)∈E

xijt +
∑

k:(k,i)∈E

xkit ≤ 1 (2f)

xijt ∈ {0, 1}, yt ∈ {0, 1}, (2g)

whereg− and g+ are vectors of pessimistic and optimistic
channel gains respectively, which will be discussed in Section
IV, and

SINRij(g̃,x) =
g̃ijxijtP + (1− xijt)Mij
∑

(m 6=i,n) g̃mjxmntP +W
, (3)

where we tacitly assume that̃gij = 0, when a link is not
available to the scheduler. The scalarMij is introduced to
enable a BIP formulation2 of the RLSP.

We note the following: (2a) aims to minimize the total
number of time slots required to schedule all the links inE;
(2b) specifies that the number of links scheduled in one slot
should not be more than the total number of links|E|; (2c)
states that every link must be assigned a slot in the schedule;
(2d) is the SINR requirement for successful transmission;
(2e) states that the channel gains lie between3 pessimistic
and optimistic values; (2f) states that a node cannot transmit
and receive at the same time; and (2g) imposes the integer
requirements on the optimization variables.

Observe that links for which SNRij(g
−
ij) < γ are not

feasible, so problem (2) is generally infeasible. These links

1As an example of a feasible set,T = |E|. To improve the convergence
of the column generation method, we initialized RLSP with a basic feasible
solution based on a heuristic mentioned in [12] .

2The constraint (2d) can be satisfied when link(i, j) is not assigned a time
slot t (i.e., xijt = 0) by choosingMij sufficiently large. For example [12]

Mij = γ
(

∑

(m6=i,n) g̃mjP +W
)

.
3Observe that, equivalently, pessimistic gain values are used for transmitting

link and optimistic gains are considered for interfering links in (2d).

can be removed from (2) to obtain a feasible problem and
scheduled in a pure TDMA fashion. We will denote the
number of removed links bytT. Note that due to hidden node
problems, only a subset of channel gains are accounted in (2d)
and (3).

We solved the RLSP using a column generation method by
optimization packageCVX [16] with mixed integer program-
ming support fromMOSEK [17].

B. Performance Measures

Let y∗ andx∗ be a solution to the RLSP, and the optimal
value betS = (y∗)

T
1. The length of the schedule istT + tS,

which we normalize with the number of links, so that

tnorm = E

{

tT + tS
|E|

}

, (4)

is the expected normalized number of time slots, where the ex-
pectation is over shadowing realizations and position/channel
estimates. As the actual channel gains are not known, certain
scheduled links may not meet the SINR condition. We collect
these links in a setL. The outage probability is defined as

Pout = p (SINRij(g,x
∗) < γ) (5)

= E

{ |L|
|E|

}

. (6)

Observe that (5) depends on the actual channel gainsg. Note
also that with complete (i.e., the channel gain is availablefor
every pair of nodes) and exact (i.e.,g− = g+ = g) channel
gain information,Pout = 0.

To capture the trade-off between schedule length and outage,
we further introduce the normalized effective schedule length,
which assumes that links in outage will be scheduled in TDMA
fashion as

teff = E

{

tT + tS
|E| +

|L|
|E|

}

(7)

= tnorm + Pout. (8)

IV. PESSIMISTIC AND OPTIMISTIC CHANNEL GAINS

A. General Approach and Motivation

In this section, we describe two ways to obtain pessimistic
(g−) and optimistic (g+) channel gain values. The first ap-
proach is based on direct channel estimation using beaconing
signals, leads to thegain based scheduler (GBS). Provided
enough beaconing resources are available, GBS can rely on
accurate channel information, but has two drawbacks: (i) cer-
tain links may be too weak to estimate, thus leading to hidden
node problems; (ii) for a network withN nodes,O

(

N2
)

channel gains may need to be estimated, which is prohibitive
for large-scale networks. To mitigate these problems, our
second approach to the RLSP is based on position information
and leads to thelocation based scheduler (LBS). Here, the
scheduler collects the locations of all the nodes, which scales
asO(N), and computesg− andg+ for every pair of nodes.

To have a consistent way to compare LBS and GBS, we
introduce a robustness parameterq ∈ [0, 1], such that

p(g−ij ≤ gij ≤ g+ij |observation) = q, (9)



where the “observation” may be either a channel estimate or
the positions of nodesi and j, as well as any available side
information. Whenq = 0, there is no robustness and we revert
to a traditional non-robust STDMA scheduler; whenq = 1,
all links in (2d) become infeasible, hence will be scheduled
in TDMA, which is maximally robust.

B. Robustness to Channel Estimation Uncertainty

We consider estimating a single link(i, j) and drop the
subscripts for legibility. We assume nodes use training signals
s of Ntr unit-energy symbols to aid channel estimation.
Channel estimation is only possible for links for which the
SNR exceeds the so-called sensing thresholdγsense ≤ γ.
The vector of received samples isr = h s + w, where h
is the scalar complex flat fading channel such thatg = |h|2,
andw ∼ CN (0,W ). Assuming no a priori channel informa-
tion, the maximum likelihood estimate ofh is computed as
ĥ = (sHs)−1sH r, wherep(ĥ|h) = CN (h,W/Ntr) [18]. If
we setĝ = |ĥ|2, we find thatĝ has a non-central chi-squared
distribution with two degrees of freedom [19]

p(ĝ|g) = Ntr

W
exp

(

− g + ĝ

W/Ntr

)

I0

( √
gĝ

1
2W/Ntr

)

, ĝ > 0,

(10)
whereI0 (·) is the zeroth order modified Bessel function of
the first kind. Assuming a uniform a priori distributionp(g),
p(g|ĝ) ∝ p(ĝ|g), we can findg− andg+ as solutions to

∫ g+

g−

p(g|ĝ) dg = q. (11)

The posterior distributionp(g|ĝ) turns out to be asymmetric,
so it may not always be possible to find the conservative gains
to be symmetric around the estimated gain value. However, we
can find them asymmetrically around̂g (i.e., g− ≤ ĝ ≤ g+)
by numerically evaluating the integral (11).

C. Robustness to Position Estimation Uncertainty

Using positioning systems, each node can localize itself
with an accuracy ofσpos, expressed in meters. Letd be
the true distance between two nodes andd̂ be its estimate.
Assuming a Gaussian error [20] on the estimated distance,
p(d̂|d) = N (d, σ2

d), whereσd = 2 σpos. Under a uniform a
priori distribution, the posterior distribution is still Gaussian
and is represented as

p(d|d̂) = 1
√

2πσ2
d

exp

(

−1

2

(d− d̂)2

σ2
d

)

, (12)

and the pessimisticd− and optimisticd+ distance values are
found as the solutions to

∫ d+

d−

p(d|d̂) dd = q. (13)

In this case the posterior distribution is Gaussian and sym-
metric, so it is possible to find conservative values that are
symmetric around the estimate.

The pessimistic and optimistic channel gains which are
needed for RLSP can be derived from the optimistic and
pessimistic distances respectively, through the simple path
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Figure 1. Random network topology with30 nodes and38 bidirectional links
(marked in red). The grey shaded links correspond to the links that can be
sensed based on a thresholdγsense = 0dB.

Table I
SIMULATION PARAMETERS

Parameter Value

η 2.5
P 10 W
γ 10 dB

γsense -6.5 dB
d0 1 m

Parameter Value

Ntr 5, 200, 3000 symbols
σpos 0.5 m, 5 m, 50 m
q [0, 0.1, . . . , 0.9]
W -70 dBm
σz 2

loss model.4 The pessimistic channel gain is theng− =
10−PL(d+)/10 and the optimistic channel gain isg+ =
10−PL(d−)/10.

V. RESULTS AND DISCUSSION

In this section, we show results on normalized minimum
schedule lengthtnorm, outage probabilityPout, and normalized
effective schedule lengthteff of the GBS and LBS.

A. Simulation Setup

We consider a random network with 30 nodes and 38 links
in a square area of 1250 m× 1250 m as shown in Fig 1. The
simulation parameters used to obtain the numerical resultsare
given in Table I. For each value ofq, 50 realizations of the
shadowing channel are obtained and for every realization, 50
Monte Carlo experiments are performed to calculatetnorm and
Pout. The number of training symbolsNtr ∈ {3000, 200, 5}
in GBS are chosen so that the channel estimation performance
ranges from good over medium to poor. The position uncer-
taintiesσpos ∈ {0.5m, 5m, 50m} used in LBS correspond to
uncertainties attained by UWB, GPS, and cellular positioning
systems respectively.

B. Discussion

Impact of Sensing Threshold: We first quantify the behavior
of performance metricstnorm, teff , and Pout with actual
channel gains as a function of sensing thresholdγsense for

4More sophisticated models including shadowing can also be considered
[13].
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Figure 2. Schedule length, effective schedule length, and outage probability
with actual channel gains for GBS as a function of the sensingthreshold
γsense.

GBS (see Fig. 2). If the sensing thresholdγsense is decreased,
then tnorm will increase due to the additional information
of more interfering links. In turn, this increase intnorm
translates in a decrease inPout, as the scheduler becomes
more aware of the entire network. It can be observed in Fig. 2
for γsense ≤ −14.5 dB, the network becomes fully connected,
thus teff = tnorm andPout → 0. Conversely, asγsense → γ,
Pout rapidly increases, due to the limited knowledge about
interfering links available to the scheduler. In the remainder
of this section, we setγsense to −6.5 dB, corresponding to
Pout ≈ 0.1.

Schedule Length: Fig. 3 showstnorm for both GBS and LBS
as a function ofq. It can be observed thattnorm with actual
channel gains in GBS is lower thantnorm with actual dis-
tances of LBS. GBS has limited knowledge of the interfering
links based on sensing thresholdγsense, so it underestimates
interference and thus needs fewer slots to schedule the links.
Moreover tnorm is independent ofq, because there is no
robustness when the actual values are known.

Now consider the case when there is uncertainty, say
Ntr = 200 for GBS. It can be seen from Fig. 3 thattnorm
increases with larger value ofq, since an increase inq leads
to a decrease ing−ij , so that more links will not satisfy
SNRij(g

−
ij) ≥ γ. These links are scheduled in TDMA, hence

tT increases. At the same time,tS will also increase due to the
use of conservative channel gains in the SINR constraint. By
similar arguments,tnorm for LBS will also increase withq, for
any case of uncertainty valueσpos. Finally, all the schedules
will converge to a TDMA schedule whenq = 1.

Let us now analyze the behavior oftnorm across different
levels of uncertainty (i.e., different values ofNtr for GBS or of
σpos for LBS). Note that the shape of the posterior distribution
p(d|d̂) (12) orp(g|ĝ) (10) is narrow with low uncertainty and
broad with high uncertainty. Hence, for a particular value of
q, the pessimistic value decreases and the optimistic value
increases quickly with higher uncertainty in the estimate.As a
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Figure 3. Normalized minimum length schedule for GBS (solid) and LBS
(dashed) as a function of the robustness parameterq.
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Figure 4. Outage performance of for GBS (solid) and LBS (dashed) as a
function of the robustness parameterq.

result tnorm is larger when the uncertainty in the estimates is
higher. This can be easily noticed in Fig. 3, where, for example
for LBS, tnorm with σpos = 50m is always larger than with
σpos = 5m, for any value ofq.

Outage: Fig. 4 shows the outage performancePout for both
schedulers. Note that GBS, which generally has lowertnorm
than LBS leads to more outages due to hidden node problems.
These outages can be mitigated by reducingγsense at a cost of
higher receiver sensitivity. In LBS outages occur even when
there is no position uncertainty, due to the mismatch between
the assumed channel gain (without shadowing) and actual
channel gain (with shadowing). Any additional mismatch (e.g.,
between the actual and assumed path loss coefficientη) will
cause additional outages.

With position uncertainty or channel estimation uncertainty,
outages decrease whenq increases. The reason is that we are
more conservative and allocate more time slots to schedule
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function of the robustness parameterq.

links, so outages are less likely to occur. For any value of
q, the outagePout is larger with higher uncertainty, because
the schedule is generated with values quite different from the
actual values. The links that satisfy the SINR constraint when
the schedule is made may not satisfy it with actual values.
As q increases, schedulers working with higher uncertainties
will see a faster drop inPout (resulting in cross-over points in
Fig. 4, e.g., beyondq ≈ 0.4 LBS with σpos has the smallest
outage), at a cost in terms of the schedule length.

Effective Schedule Length: Fig. 5 shows, as a function ofq,
the normalized effective schedule lengthteff , which describes
the trade-off between schedule length (as provided by the LBS
or GBS) and the corresponding outages. We observe that for
GBS (resp. LBS),teff is around 17% (resp. 12%) larger than
tnorm when using the actual channel gains (resp. distances). In
the presence of uncertainty an increase inq leads to an initial
reduction inteff due to a reduction in outages. Further increase
in q lead to an increase inteff , due to the dominating effect of
an excessively long schedule. For example, in GBS, it can be
noticed that there is an optimal robustness parameterq ≈ 0.2
for Ntr = 5 and q ≈ 0.7 for Ntr = 200. Interestingly, GBS
tends to favor large values ofq, while LBS prefers low values
of q, indicating the LBS is inherently more robust. While
overall, LBS is outperformed by GBS, the gap between the
two will shrink whenγsense is increased. In particular, from
Fig. 2, we can see that forγsense ≈ −4 dB, GBS and LBS
will lead to similar teff .

VI. CONCLUSIONS

We studied the benefits and drawbacks of robust link
scheduling based on channel estimates or on position es-
timates. We have demonstrated that link scheduling using
channel gains suffered significant outage due to its limited
sensing capability of interfering links, even when robustness is
considered in the schedule. Such hidden node problems can be
mitigated using location-based scheduling. Moreover, position
information scales only linearly with number of nodes, where

as channel state information scales quadratically. However, the
performance of location-based scheduling is limited by the
amount of shadowing in the channel.

The location-based scheduler performance can be improved
by taking into consideration the uncertainty of shadowing.
Furthermore, the performance can be enhanced when there
is an availability of partial channel state information, which
can be exploited using spatial correlation models.
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