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Abstract—This paper investigates the problem of clock syn-
chronization of nodes in a wireless sensor network based on
the two-way timing message exchange mechanism with an un-
known deterministic transmission delay and random exponential
transmission delays. Without knowing the fixed delay, a novel
synchronization scheme is proposed for the linear clock model,
which works well in both symmetric and asymmetric links. In
the proposed algorithm, the clock skew and offset are estimated
by directly utilizing mean square error as the metric to be
optimized. This consideration results in significant performance
improvements compared to the existing synchronization methods,
especially for a small number of observations and large standard
deviation of the random delays.

Index Terms—Wireless sensor network, clock synchronization,
clock skew, exponential random delays.

I. I NTRODUCTION

Recently, wireless sensor networks (WSNs) have emerged
as an interesting and important research area. As WSNs consist
of many small scale devices and all the devices run their own
clocks, clock synchronization becomes critical for efficient
applications of WSNs.

Existing studies on clock synchronization mainly focus
on the protocol design. However, the clock synchronization
problem is inherently related to parameter estimation. The
performance of synchronization can be improved by adopting
a statistical signal processing framework [1].

Here we consider a simple network comprised by two nodes,
A andB, with imperfect clocks. The nodes exchange a number
of time stamps over a channel with random delays, and the
data collected at NodeB is used to estimate the clock values
of Node A. Note that even though this paper considers the
synchronization between a pair of nodes, extension to network-
wide synchronization can be directly achieved by the combi-
nation of building a hierarchical structure and synchronizing
two nodes with adjacent levels.

In practice, the challenges of clock synchronization are
mainly twofold. Firstly, in the absence of delay during the
transmission between NodeB and NodeA, Node B will
immediately know the relative clock value difference with
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necessarily represent the project.

respect to NodeA. Nonetheless, in practical wireless networks,
various delays have effects on the time stamp exchange proce-
dure, which will complicate the clock synchronization. These
delays can be grouped into two parts: fixed delays and random
delays. According to different applications and justifications,
the random delays are modeled as random variables with
different probability density functions (pdfs) (e.g., Gaussian,
exponential, Gamma and so forth). As pointed out in [2] [3],
in many cases, a single-server M/M/1 queue can fittingly rep-
resent the cumulative link delay between two nodes, where the
random delays are independent and exponentially distributed.

Secondly, the imperfect oscillators will cause the clocks to
run at different frequencies. If we only adjust the clock offset
but not the skew, the synchronized status can be maintained
merely for a short time period. To achieve more accurate
synchronization as well as reduce the re-synchronization in-
terval (which could bring energy savings), both offset and
skew adjustment should be taken into account. To deal with
this problem, authors in [4] and [5] propose joint maximum
likelihood (ML) estimation for symmetric Gaussian and ex-
ponential random delays, respectively. More recently, without
the assumption on the distribution of delays, a synchronization
method is presented in [6] to handle asymmetric links as well.

In this paper, under the assumption of exponential ran-
dom delays and unknown fixed delays, we propose a novel
synchronization algorithm for the widely used linear clock
relationship model. By directly utilizing mean square error
(MSE) as the metric to be optimized, the proposed scheme
improves the precision of offset and skew estimation, and thus
the corresponding synchronization performance, especially for
small number of observations or random delays with large
standard deviation. Last but not least, in the proposed scheme,
the main computational workload lies in the simple bisection
step, which guarantees its moderate complexity and feasibility
in practice.

Notation: Uppercase letters stand for random variables, and
the corresponding lowercase letters indicate their realizations.
Furthermore, boldface letters designate row vectors. For any
vectora, ai denotes thei-th element ofa.
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Figure 1. Two-way timing message exchange between nodesB andA.

II. SYSTEM MODEL

A. Clock Value Relationship Model

Assume NodeB (with clock valuetB) needs to synchronize
to NodeA (with clock valuetA). The clock value relationship
between the two nodes is represented as

tA = tB + α(tB − t0) + β, (1)

whereα denotes the relative skew, andβ indicates the relative
offset at clockB’s time t0, respectively. We model{α, β}
as unknown deterministic parameters. Even though there are
only two nodes in our model, the synchronization scheme
could be used for the network-side synchronization, where
{α, β} varies among different pairs of nodes. Thereby, when
the synchronization algorithm is designed between two nodes,
it should also work well for other pairs in the network. Thus
the worst case consideration in the algorithm design is more
reasonable to guarantee the synchronization between any two
nodes in the entire network. Fortunately, in practice, according
to the prior knowledge of clock qualities, which could be found
in the specifications, we can have some range constraints on
α, i.e., |α| ≤ Lα. Based on the estimation of{α, β}, NodeB
can estimate NodeA’s clock value as

t̂A , tB + α̂(tB − t0) + β̂. (2)

B. Time Stamp Exchange Model

Fig. 1 shows a mechanism of a two-way timing message
exchange [7] between NodeB and NodeA, where the timing
messages are assumed to be exchangedN times. In thei-th
round of exchange, NodeB records its current clock value
as the time stampt1,i and sends a message to NodeA at
the same time. NodeA records its clock valuet2,i at the
reception of that message. Then NodeA sends att3,i another
message containingt2,i and t3,i to NodeB. Finally, NodeB
records its clock value ast4,i when receiving the message.
Note thatt1,i and t4,i are the time stamps provided by Node
B’s clock, while t2,i and t3,i are the time stamps recorded
by NodeA’s clock. Therefore, afterN rounds of message
exchanges, NodeB has the access to a set of time stamps
{t1, t2, t3, t4} = {[t1,i]

N
i=1, [t2,i]

N
i=1, [t3,i]

N
i=1, [t4,i]

N
i=1}. Let t0

be the clock value of NodeB when it sends the first message,
i.e., t0 = t1,1.

Based on (1) and Fig. 1, the clock values att1,i andt4,i at
NodeA can be expressed as

t2,i = t1,i + α(t1,i − t0) + β + d+ xi, i = 1, 2, ..., N, (3)

t3,i = t4,i + α(t4,i − t0) + β − d− yi, i = 1, 2, ..., N, (4)

where d denotes the fixed delay,xi and yi represent the
realizations of random delays in the transmissions from Node
B to NodeA and from NodeA to NodeB, respectively. These
delays are in reference to NodeA’s clock. Here{Xi}

N
i=1 and

{Yi}
N
i=1 are modeled as independent exponentially distributed

random variables with mean values (or standard deviation)
λX andλY , respectively. It is not necessary thatλX = λY ,
i.e., our system model covers both symmetric and asymmetric
links. Moreover, we can assume that the elements ofT2 and
T3, i.e., the random vectors whose outcomes aret2 and t3,
are independent random variables as long as the interval of
different rounds is long enough compared toλX andλY . Now
the task is to estimate{α, β} for the given model (3) and (4),
and then synchronize NodeB’s clock to NodeA’s via (2).

III. PROPOSEDCLOCK SYNCHRONIZATION ALGORITHM

In the class of unbiased estimators, the minimum variance
unbiased (MVU) estimator has the smallest variance. When
there is only clock offset, [8] derives the MVU estimator for
the clock offset. On the other hand, when the clock skew exists
as well, the joint MVU estimator of clock offset and skew has
not been found so far. Instead, [5] presents the ML estimator
for this joint estimation. The ML estimation has nice properties
in the presence of a large number of observations (i.e., unbi-
asedness, asymptotic efficiency and consistence) [9]. Neverthe-
less, a more desirable estimator is the one with lower MSE,
which is a direct measure of estimation error. Furthermore,
from the perspective of energy saving and fast convergence,
the methodology that can achieve synchronization at the price
of low number of observations is more valuable. Therefore,
in this paper, we formulate an alternative scheme considering
MSE criterion for exponentially distributed random delays,
which decreases MSE of the parameter estimation compared
to existing synchronization methods, especially for smallN
or largeλX andλY .

For the models in (3) and (4), and under the assumption
of independence of{T2,i} and{T3,i} for i = 1, 2, ..., N , the
pdfs pT2

(t2;α, β) andpT3
(t3;α, β) are given by

pT2
(t2;α, β)

=
1

λN
x

exp

{

−
1

λx

N∑

i=1

(t2,i − t1,i − α(t1,i − t0)− β − d)

}

·

N∏

i=1

u(t2,i − t1,i − α(t1,i − t0)− β − d), (5)



and

pT3
(t3;α, β)

=
1

λN
y

exp

{

−
1

λy

N∑

i=1

(t4,i − t3,i + α(t4,i − t0) + β − d)

}

·
N∏

i=1

u(t4,i − t3,i + α(t4,i − t0) + β − d), (6)

respectively, whereu(·) denotes the unit step function.
In the proposed algorithm, we estimate{α, β} for the mod-

els in (3) and (4) separately, and then average the results. The
estimators based on (3) and (4) are denoted by{α̂1, β̂1} and
{α̂2, β̂2}, respectively. Due to the similarity of the estimation
procedures for (3) and (4), only the derivations for the model
in (3) will be presented.

Since the given pdf in (5) cannot be factorized to find a
sufficient statistic based on the Neyman-Fisher Factorization
(NFF) theorem [9] and the Rao-Blackwell-Lehmann-Schefe
(RBLS) theorem [9], it is not easy to deduce the joint MVU
estimator for{α, β}. Meanwhile, since our final aim is to
minimize MSE rather than variance, if possible, we would like
to construct biased estimators instead of the MVU estimatorto
further decrease the MSE. As{α, β} are deterministic param-
eters, the minimum mean square error (MMSE) estimation
of {α, β} will in general depend on the unknown{α, β}
themselves and therefore not realizable. Moreover, to simplify
the analysis, we may restrict attention to the estimators with
linear bias [10]. In other words, under the assumption that the
MVU estimator α̂1U for α and the associated varianceσ2

α̂1U
,

as well as the MVU estimator̂β1U for β and the associated
varianceσ2

β̂1U
are available, we will try to find the biased

estimatorsα̂1 = (1 + ηα)α̂1U and β̂1 = (1 + ηβ)β̂1U, where
ηαα̂1U and ηβ β̂1U will determine the biases. At the same
time, as mentioned in Section II, the estimation of{α, β}
is supposed to achieve the synchronization of any pair in the
entire network, and there will always be limitations imposed
on α (|α| ≤ Lα). Due to aforementioned reasons, we define
our problem as a minimax optimization problem, which is
formulated as

min
ηα,ηβ

max
|α|≤Lα

{

MSE([α̂1, β̂1])
}

= min
ηα

max
|α|≤Lα

{

MSE(α̂1)
}

+min
ηβ

{

MSE(β̂1)
}

. (7)

The optimum of problem (7) does not depend onα (we will
prove this later). On the other hand, this optimum is a function
of β, which means we can not find a linear biased estimator
β̂1 which gives lower MSE than̂β1U for all possibleβ. These
phenomena come from the fact that only the range constraint
onα is available but not that onβ. According to the foregoing
analysis, we can make use of three guidelines for acquiring
{α̂1, β̂1}:

1) estimateα andβ separately, i.e., estimate one parameter
when assuming the other one is known, and then plug the
results into each other in a certain sequence which will be
explained later;

2) when estimatingα, introduce linear bias for to decrease
MSE by utilizing the availableLα;

3) when estimatingβ, use the MVU estimator since we do
not have prior knowledge aboutβ.

Firstly, supposeβ is known andα is estimated. Considering
the pdf in (5), we can find a sufficient statistic forα asT (t2) =
mini∈{2,...,N}

{
t2,i−t1,i−β−d

t1,i−t0

}

based on the NFF theorem [9].
Furthermore, according to the RBLS theorem [9], the MVU
estimator ofα is calculated as (see Appendix A)

α̂1U = min
i∈{2,...,N}

{
t2,i − t1,i − β − d

t1,i − t0

}

−
λX

∑N
i=2(t1,i − t0)

,

(8)
and the variance of̂α1U is

σ2
α̂1U

=
λ2
X

(
∑N

i=2(t1,i − t0)
)2 . (9)

Hence,ηα is derived as

ηα = argmin
η

max
|α|≤Lα

{

(1 + η)2σ2
α̂1U

+ η2α2

︸ ︷︷ ︸

MSE(α̂1)

}

= min
η

{
(1 + η)2σ2

α̂1U
+ η2L2

α

}

=
−σ2

α̂1U

σ2
α̂1U

+ L2
α

, (10)

where the second equality follows because(1 + η)2σ2
α̂1U

+
η2α2 is monotonically increasing in|α|, and the last equality
from the optimality criterion for differentiable functions [11,
pp. 623]. Correspondingly,

α̂1 = (1 + ηα) α̂1U =
L2
α

L2
α + σ2

α̂1U

α̂1U. (11)

Besides, MSE(α̂1) is calculated as

MSE(α̂1) =

(

L2
α

σ2
α̂1U

+ L2
α

)2

σ2
α̂1U

+

(

σ2
α̂1U

σ2
α̂1U

+ L2
α

)2

α2

≤

(

L2
α

σ2
α̂1U

+ L2
α

)2

σ2
α̂1U

+

(

σ2
α̂1U

σ2
α̂1U

+ L2
α

)2

L2
α

=
L2
α

L2
α + σ2

α̂1U

σ2
α̂1U

≤ σ2
α̂1U

= MSE(α̂1U), (12)

which shows that MSE(α̂1) ≤ MSE(α̂1U) for all |α| ≤ Lα.
On the other hand, assumeα is known and we want to

estimateβ. The componentminηβ
MSE(β̂1) of problem (7)

depends on the actualβ value, which means that the lack of
constraint onβ limits the further improvement of the linear
biased estimator compared to the MVU estimator. In this case,
we can simply setηβ = 0 and thusβ̂1 = β̂1U. Using a similar
approach as in the derivation of̂α1U in Appendix A, β̂1 is
derived as

β̂1 = β̂1U = min
i

{t2,i − t1,i − α(t1,i − t0)} − d−
λX

N
(13)



α̂1 =
L2
α

L2
α + σ2

α̂1U

{

min
i∈{2,...,N}

{

t2,i − t1,i −mini {t2,i − t1,i − α̂1(t1,i − t0)}+
λX

N

t1,i − t0

}

−
λX

∑N
i=2(t1i − t0)

}

(15)

α̂2 =
L2
α

L2
α + σ2

α̂2U

{

−min
i

{

t4,i − t3,i −mini {t4,i − t3,i + α̂2(t4,i − t0)}+
λY

N

(t4,i − t0)

}

+
λY

∑N
i=1(t4i − t0)

}

(16)

with

MSE(β̂1) = σ2
β̂1U

=
λ2
X

N2
. (14)

From (8), (11), and (13), we observe that the estimators
α̂1 and β̂1 are functions of each other. By plugging the
expression of̂β1 into that of α̂1, the non-linear equation (15)
for α̂1 is obtained, shown on top of next page. Note thatα̂1

is independent of the fixed delayd. In our experience, the
bisection method [11] is an efficient scheme to solve (15) for
α̂1. In the next step,̂α1 is put back into (13), and̂β1 can be
calculated directly. This concludes the estimation of{α, β}
for the model (3).

The above procedure can also be applied to the model in
(4) and the associated pdfpT3

(t3;α, β) in (6). The results are
shown in equation (16) (on top of this page) for estimatingα̂2

and equations (17)−−(20) as follows

MSE(α̂2) =

(

L2
α

σ2
α̂2U

+ L2
α

)2

σ2
α̂2U

+

(

σ2
α̂2U

σ2
α̂2U

+ L2
α

)2

α2, (17)

β̂2 = −min
i

{t4,i − t3,i + α(t4,i − t0)} + d+
λY

N
, (18)

and

MSE(β̂2) = σ2
β̂2U

=
λ2
Y

N2
, (19)

where
σ2
α̂2U

=
λY

(
∑N

i=1(t4,i − t0))2
. (20)

Finally, we can average the results from models (3) and (4),
and obtain{α̂, β̂} as

α̂ =
α̂1 + α̂2

2
, β̂ =

β̂1 + β̂2

2
. (21)

The root mean square error (RMSE) of{α̂, β̂} are, assuming
independent estimates,

RMSE(α̂) =

√

MSE(α̂1) + MSE(α̂2)

4
+

B(α̂1)B(α̂2)

2
, (22)

RMSE(β̂) =

√

MSE(β̂1) + MSE(β̂2)

4
, (23)

whereB(·) represents the bias of the estimator, and

B(α̂1) =
−σ2

α̂1U

σ2
α̂1U

+ L2
α

α, B(α̂2) =
−σ2

α̂2U

σ2
α̂2U

+ L2
α

α. (24)

Note that all MSE calculations in Section III are for one single
parameter and under the condition that the other parameter is

perfectly known. Because of the averaging in (21), there is no
need to knowd for the estimation ofβ.

Furthermore, the main complexity of the proposed method is
in the bisection step when estimatingα, which will terminate
after exactdlog2(2Lα/ε)e iterations for the given interval
[−Lα, Lα] and precision toleranceε [11]. Through simulation
evaluations in Section IV, we could find that the number of
iterations is usually less than10 for reasonable values ofLα

andε. This observation guarantees the acceptable complexity
and feasibility of the proposed synchronization algorithmin
practice.

The complete procedures of the proposed synchronization
scheme are summarized in Algorithm 1.

Algorithm 1 Proposed Clock Synchronization Algorithm

1: NodeB collects time stamps{t1,i, t2,i, t3,i, t4,i}Ni=1 through the
two-way timing message exchange mechanism in Fig. 1.

2: Calculate{σ2

α̂1U
, σ2

α̂2U
} from (9) and (20).

3: Utilize a bisection method to acquire the estimatorsα̂1 and α̂2

based on equations (15) and (16), respectively.
4: Derive β̂1 and β̂2 by plugging α̂1 and α̂2 into (13) and (18),

respectively.
5: Averageα̂1 and α̂2, as well asβ̂1 and β̂2 via (21) to obtain the

final estimates{α̂, β̂}.
6: NodeB estimates NodeA ’s clock value through (2).

IV. SIMULATION RESULTS

In this section, simulation results are presented to compare
the performance of the proposed clock synchronization algo-
rithm to the following schemes:1) Least Square (LS) estimator
in [13]; 2) ML estimator for exponential delays [5];3) the
scheme described in [6]. The evaluations also include the
MVU estimator (̂αU or β̂U) for one parameter assuming the
other one is perfectly known (1d-MVUE), i.e.,

RMSE(α̂U) = 0.5
√

σ2
α̂1U

+ σ2
α̂2U

, (25)

RMSE(β̂U) = 0.5
√

σ2
β̂1U

+ σ2
β̂2U

. (26)

Likewise, the theoretical RMSE (22) and (23) are contained
as well, which represent the performance of the proposed
method for one single parameter (1d-Pro). Additionally, as
given in [12], we set two different skewsα = 10−5 and
α = 10−4, as well asLα = 2× 10−4 [12] in the experiments.
Besides, the interval between the two-way timing messages is
assumed to be around0.1s. Also, we choose the fixed delay
as d = 0.001s, and the offset asβ = 0.002s. Finally, in all
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Figure 2. RMSE of the skew (α) estimation versus the standard deviation
of the random delays (λX or λY ) for symmetric links, withα = 10

−5 and
N = 6. The number of bisection iterations is6.

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

λ
X
 (or λ

Y
 )

R
M

S
E

 

 

LS [13]
ML [5]
[6]
1d−MVUE (26)
1d−Pro (23)
Proposed (21)

Figure 3. RMSE of the offset (β) estimation versus the standard deviation
of the random delays (λX or λY ) for symmetric links, withα = 10

−5 and
N = 6.

simulations, we consider RMSE of the parameter estimators
as the performance metric.

Fig. 2 describes the RMSE of the skew estimation versus
the standard deviation of the random delays for symmetric
links. Firstly, whenβ is available, the theoretical RMSE(α̂)
of 1d-Pro is smaller than RMSE(̂αU) of 1d-MVUE. This
phenomenon coincides with the proof in (12). Furthermore,
by following the calculation in (22), it could be deduced that
RMSE(̂α) is not a monotonic function with respect toλX (or
λY ), as shown in Fig. 2. Additionally, whenβ is also unknown,
the proposed algorithm obviously improves the accuracy ofα
estimation compared to the existing synchronization schemes,
especially when the random delays have relatively large stan-
dard deviation. This result guarantees the robustness of the
proposed one to different levels of random delays. Besides,it
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Figure 4. RMSE of the skew (α) estimation versusN for asymmetric links,
with α = 10

−4, λX = 0.001 andλY = 0.005. The number of bisection
iterations is6.
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Figure 5. RMSE of offset (β) estimation versusN for asymmetric links,
with α = 10

−4, λX = 0.001 andλY = 0.005.

is revealed from Fig. 2 that the RMSE of the proposed method
do not monotonically increase with increasedλX (or λY ).
This is reasonable since the proposed algorithm, where both
α andβ are estimated, is an extension of1d-Pro. Note that
the interesting ’non-monotonic’ observation is also foundin
[14]. On the other hand, even thoughβ is available in1d-Pro,
it still could happen that the proposed scheme beats1d-Pro
in the sense that neither of them is optimal with regard to the
RMSE ofα estimation.

Fig. 3 illustrates the RMSE of the offset estimation under
the same parameter settings as in Fig. 2. Not surprisingly, with
knownα, the theoretical RMSE(̂β) of 1d-Pro overlaps with the
RMSE(β̂U) of 1d-MVUE since they are identical. Moreover,
as demonstrated in this figure, the proposed scheme exhibits
superior performance toLS, ML and the method in [6] with
respect toβ estimation.



In the environment of asymmetric link delays, the results are
illustrated in Fig. 4 to evaluate the RMSE of skew estimation
against the number of observations. Since the minimax idea is
utilized to further decrease the MSE in the estimation ofα, the
RMSE(β̂) of 1d-Pro is better than the RMSE(̂βU) of 1d-MVUE
as plotted in Fig. 4. Additionally, as shown in Fig. 4, the im-
provement of the proposed algorithm is significant compared
to other synchronization schemes, especially at the region
of low observation numbers. This advantage means that the
proposed method can achieve relatively high synchronization
precision at the price of less energy consumption. Furthermore,
Fig. 5 presents the corresponding results for the estimation of
the clock offsetβ. It is again verified that the proposed scheme
outperformsLS, ML and the method in [6].

V. CONCLUSION

In this paper, a clock synchronization scheme is proposed
in the presence of exponentially distributed random delaysand
unknown fixed delays. Through exploiting the prior knowledge
about the range constraint on the clock skew, the estimation
of skew is performed by optimizing an MSE related mini-
max problem. Besides, the clock offset is estimated by the
MVU estimator. The proposed algorithm exhibits improved
performance compared with previously proposed schemes,
particularly when the number of observations is limited or
the standard deviation of random delays is large. Moreover,
the acceptable complexity is guaranteed by the simplicity of
the bisection method.

APPENDIX A
PROOF OF THEMVU ESTIMATOR α̂1U IN (8)

For estimatingα, the given pdf in (5) can be factorized as,

pT2
(t2;α, β)

=
1

λN
X

exp

{∑N
i=1(t2,i − t1,i − β − d)

−λX

}

u (t2,1 − t0 − β − d)

︸ ︷︷ ︸

h(t2)

· exp

{

−
α

λX

N∑

i=1

(t1,i − t0)

}

u (T (t2)− α)

︸ ︷︷ ︸

g(T (t2),α)

, (27)

where

T (t2) = min
i∈{2,...,N}

{
t2,i − t1,i − β − d

t1,i − t0

}

. (28)

is the sufficient statistic forα according to the NFF theorem
[9].

Now we will show that this sufficient statisticT (t2) is com-
plete. Here we introduce a random variableΓ = T (T2) − α.
Through the order statistic property [15], it is known thatΓ
follows an exponential distribution with mean valueλΓ =
λX/(

∑N
i=2(t1i− t0)). Suppose that for allα E{f(T (T2))} =

0, i.e.,E{f(Γ + α)} = 0 , which is equivalent to
∫ +∞

0

f(γ + α)
1

λΓ
exp

{

−
γ

λΓ

}

dγ = 0 (29)

for all α. This implies f(·) = 0 a.e. (almost everywhere).
HenceT (t2) is complete [9].

Furthermore, based on the RBLS theorem [9], since

E

{

T (t2)−
λX

∑N
i=2(t1i − t0)

}

= α, (30)

the MVU estimator ofα is therefore calculated as (8).
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