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Abstract—This paper investigates the problem of clock syn- respectto Nodel. Nonetheless, in practical wireless networks,
chronization of nodes in a wireless sensor network based on various de|ay5 have effects on the time Stamp exchange.proce
the two-way timing message exchange mechanism with an un-qyre which will complicate the clock synchronization. Sae

known deterministic transmission delay and random exponetial del b dinto tw ts: fixed del d d
transmission delays. Without knowing the fixed delay, a nove €lays can be grouped into two parts: lixed delays and random

synchronization scheme is proposed for the linear clock mael, delays. According to different applications and justifioas,
which works well in both symmetric and asymmetric links. In  the random delays are modeled as random variables with
the proposed algorithm, the clock skew and offset are estintad  different probability density functions (pdfs) (e.g., Gaian,

by directly utilizing mean square error as the metric to be  gyn5nential, Gamma and so forth). As pointed out in [2] [3],
optimized. This consideration results in significant perfeomance . . o
improvements compared to the existing synchronization métods, In many cases, a s_lnglg-server M/M/1 queue can fittingly rep-
especially for a small number of observations and large statard ~ resent the cumulative link delay between two nodes, where th

deviation of the random delays. random delays are independent and exponentially distribut
Index Terms—Wireless sensor network, clock synchronization,

clock skew, exponential random delays. ) ) )
Secondly, the imperfect oscillators will cause the cloaks t

. INTRODUCTION run at different frequencies. If we only adjust the clockseff

Recently, wireless sensor networks (WSNs) have emerg@v& not the skew, the_ synchrpnized statu_s can be maintained
as an interesting and important research area. As WSNsston&i€rely for a short time period. To achieve more accurate
of many small scale devices and all the devices run their ognchronization as well as reduce the re-synchronizatien i
clocks, clock synchronization becomes critical for effitie V@l (Which could bring energy savings), both offset and
applications of WSNs. skew adjustment should be taken into account. To deal with

Existing studies on clock synchronization mainly focullliS Problem, authors in [4] and [5] propose joint maximum
on the protocol design. However, the clock synchronizatidff€linood (ML) estimation for symmetric Gaussian and ex-
problem is inherently related to parameter estimation. TiR@Nential random delays, respectively. More recentlyhait

performance of synchronization can be improved by adoptitiif @ssumption on the distribution of delays, a synchraioza
a statistical signal processing framework [1]. method is presented in [6] to handle asymmetric links as.well

Here we consider a simple network comprised by two nodes,
A and B, with imperfect clocks. The nodes exchange a numberin this paper, under the assumption of exponential ran-
of time stamps over a channel with random delays, and tHem delays and unknown fixed delays, we propose a novel
data collected at Nod® is used to estimate the clock valuesynchronization algorithm for the widely used linear clock
of Node A. Note that even though this paper considers thelationship model. By directly utilizing mean square erro
synchronization between a pair of nodes, extension to mktwo(MSE) as the metric to be optimized, the proposed scheme
wide synchronization can be directly achieved by the combimproves the precision of offset and skew estimation, and th
nation of building a hierarchical structure and synchriomgz the corresponding synchronization performance, espeéaal
two nodes with adjacent levels. small number of observations or random delays with large

In practice, the challenges of clock synchronization astandard deviation. Last but not least, in the proposedsehe
mainly twofold. Firstly, in the absence of delay during théhe main computational workload lies in the simple bisettio
transmission between NodB and Node A, Node B will step, which guarantees its moderate complexity and fdiagibi
immediately know the relative clock value difference within practice.

This work has been supported in part by SAFER-Vehicle anfigi@afety ] )
Centre, Project A19. Part of this work has been performedénftamework Notation: Uppercase letters stand for random variables, and

of the FP7 project ICT-317669 METIS, which is partly funded the EU.  the corresponding lowercase letters indicate their ratiins.
The authors would like to acknowledge the contributionsheidirt colleagues

in METIS, although the views expressed are those of the aittwod do not Furthermore, boldface letters deS|gnate row vectors. Rgr a
necessarily represent the project. vectora, a; denotes theé-th element ofa.



Fixed delay: 4
Node A 7, Variable delay: x,, y,

be the clock value of Nod& when it sends the first message,
ie., to = t171.

Based on (1) and Fig. 1, the clock valueg at andt, ; at
Node A can be expressed as

t27i = tl,i +Oé(t1,i — to) +ﬁ+d+l‘“ i=1,2,..., N, (3)

tai =ta;+alts,—to)+p—d—y;,, i=1,2,..,N, (4)

t, ;’,”) ‘" NodeB 1, where d denotes the fixed delay;; and y; represent the
realizations of random delays in the transmissions fromeNod
Figure 1. Two-way timing message exchange between nétasd A. B to NodeA and from NodeA to NodeB, respectively. These
delays are in reference to Nodgs clock. Here{X;} , and
{Y;}N., are modeled as independent exponentially distributed
Il. SYSTEM MODEL random variables with mean values (or standard deviation)
A. Clock Value Relationship Model _)\X and \y, respectively. It is not necessary that = Ay, _
i.e., our system model covers both symmetric and asymmetric
Assume Node3 (with clock valuel 5) needs to synchronize |inks. Moreover, we can assume that the element§-ofind
to NodeA (with clock valuet ). The clock value relationship T, j.e., the random vectors whose outcomes tarand ts,
between the two nodes is represented as are independent random variables as long as the interval of
different rounds is long enough compareditg and\y-. Now
ta=tp+altz —to) + 5, (3) the task is to estimat{gx, 8} fgr the g?/en model (3) and (4),
wherea denotes the relative skew, afidndicates the relative and then synchronize Nod@’s clock to NodeA’s via (2).
offset at clockB’s time t,, respectively. We mode{a, 5}
as unknown deterministic parameters. Even though there arl. PRoPOSEDCLOCK SYNCHRONIZATION ALGORITHM
only two nodes in our model, the synchronization scheme
could be used for the network-side synchronization, whereln the class of unbiased estimators, the minimum variance
{a, 8} varies among different pairs of nodes. Thereby, whembiased (MVU) estimator has the smallest variance. When
the synchronization algorithm is designed between two sod#here is only clock offset, [8] derives the MVU estimator for
it should also work well for other pairs in the network. Thughe clock offset. On the other hand, when the clock skew xist
the worst case consideration in the algorithm design is maxe well, the joint MVU estimator of clock offset and skew has
reasonable to guarantee the synchronization between any twt been found so far. Instead, [5] presents the ML estimator
nodes in the entire network. Fortunately, in practice, adiog ~ for this joint estimation. The ML estimation has nice prdjeer
to the prior knowledge of clock qualities, which could berfdu in the presence of a large number of observations (i.e.,-unbi
in the specifications, we can have some range constraintsasedness, asymptotic efficiency and consistence) [9].itexe
a, i.e., |a| < L,. Based on the estimation éfv, 3}, Node B less, a more desirable estimator is the one with lower MSE,

can estimate Nodel’s clock value as which is a direct measure of estimation error. Furthermore,
. R . from the perspective of energy saving and fast convergence,
ta=tp+a(ts —to) + . (2)  the methodology that can achieve synchronization at theepri
of low number of observations is more valuable. Therefore,
B. Time Stamp Exchange Model in this paper, we formulate an alternative scheme consigeri

MSE criterion for exponentially distributed random delays
Which decreases MSE of the parameter estimation compared
to existing synchronization methods, especially for sméll
or large\x and \y.

For the models in (3) and (4), and under the assumption
of independence ofT,;} and{T3,} for i = 1,2,..., N, the

Fig. 1 shows a mechanism of a two-way timing messa
exchange [7] between Node and NodeA, where the timing
messages are assumed to be exchargdimes. In thei-th
round of exchange, Nod® records its current clock value
as the time stamp; ; and sends a message to Nodeat
the same time. Nodel records its clock valueg,; at the dfs pr, (ta: o, B) andpr. (ts: a, 3) are given b
reception of that message. Then Nadlesends at; ; another pAiSpr, (f2; @, AERE g y
message containing ; andts; to Node B. Finally, NodeB )

g ; , . p1,(t2; @, B)
records its clock value as,; when receiving the message. N
Note thatt; ; andt,; are the time stamps provided by Node _ 1 ox 1
B’s clock, while ¢, ; andts; are the time stamps recorded n AN P
by Node A’s clock. Therefore, aftetV rounds of message N
exchanges, Nodé has the access to a set of time stamps 'Hu(tz,i —t1;—altL —to) — B — d), (5)
=1

{tu,to,ta,ta} = {[t0.a] iy, (b2l iy B3]y [Ea] iy ). Letio

W Z(tm —t1i—ofti; —to) — B —d)
T =1



and 2) when estimatingy, introduce linear bias for to decrease
pr.(tss o, B) MSE by utilizing the availabld.,,;
To 03 T 3) when estimatings, use the MVU estimator since we do

N
1 1 i
— 7 X {_ Z@M it + alta; —to) + B — d)} not have prior knowledge aboyt
Yy

Ay = Firstly, supposé is known andx is estimated. Considering
N the pdfin (5), we can find a sufficient statistic f@asT'(t2) =
T wltas — tsi + alta; —to) + 8 — d), (6) minicro {% based on the NFF theorem [9].
i=1 Furthermore, according to the RBLS theorem [9], the MVU
respectively, where:(-) denotes the unit step function. estimator of«x is calculated as (see Appendix A)

In the proposed algorithm, we estimdte, 5} for the mod- o d A
els in (3) and (4) separately, and then average the resties. Ta;; = min { 2i —ti—fB— } — X ,
estimators based on (3) and (4) are denoteddy, 31} and i€{2,...N} t1i = to SNt — to)
{aa, BQ}, respectively. Due to the similarity of the estimation , . (8)
procedures for (3) and (4), only the derivations for the niod@"d the variance ofiy is

in (3) will be presented. ) A2
Since the given pdf in (5) cannot be factorized to find a Tow = T ¢ 3 9)
sufficient statistic based on the Neyman-Fisher Factaoizat (Zizz(tu - to))

(NFF) theorem [9] and the Rao-Blackwell-Lehmann-Schefe ) ,
(RBLS) theorem [9], it is not easy to deduce the joint MyUT1ence . is derived as
estimator for{a, 8}. Meanwhile, since our final aim is to . 2 9 2 9
minimize MSE rather than variance, if possible, we woule lik Ml = SIS T \o{@ﬁ{(l o5, + e }

to construct biased estimators instead of the MVU estintator MSE(é1)

further decreg;e the MSE. Asy, 8} are deterministic param- min {(1 + 77)20(%% + 022}

eters, the minimum mean square error (MMSE) estimation n

of {a, B} will in general depend on the unknowfw, 5} —03, (10)
themselves and therefore not realizable. Moreover, tolgynp a};w + L2’

the analysis, we may restrict attention to the estimatoth wi

linear bias [10]. In other words, under the assumption that twhere the second equality follows becauet+ 7)?0f,  +
MVU estimatoré;y for o and the associated varianeg, , n*a? is monotonically increasing ifv|, and the last equality

as well as the MVU estimatof,, for 3 and the associated 'om the optimality criterion for differentiable functisn11,

varianceo? = are available, we will try to find the biasedPP- 623]. Correspondingly,

estimatorsiy = (1 4 7,)d1u and 51 = (1 + 1) S, where G = (1+70) day = L?
naGiy and ngfy will determine the biases. At the same e M) 410 = L2402,
time, as mentioned in Section IlI, the estimation {ef, 5} ) o

is supposed to achieve the synchronization of any pair in tR&€Sides, MSE ) is calculated as

entire network, and there will always be limitations impwse 12 2 ) 2
2 & 2
N <U n ) a.dlu + <U v ) a

au. (11)

on a (Ja] < L,). Due to aforementioned reasons, we define MSE(d;) =

our problem as a minimax optimization problem, which is 2o T La 30T L2
formulated as ) 2 ) 2
| {MSE([A B ])} <o) dhu () 2
7;31723 \‘ﬂlgafa AL - UO%lu + L?l a UO%lu + Lg‘ “
i . : : L2 i
=min max {MSE(G1)} +min {MSE(3)}. (7)  _ o, < o, = MSEldu), (12)

@1y

The optimum of problem (7) does not depend @ifwe will )

prove this later). On the other hand, this optimum is a funrcti Which shows that MSEv, ) < MSE(auy) for all af < La.

of 3, which means we can not find a linear biased estimatorOn the other hand, assume is known and we want to

/3 which gives lower MSE tham,, for all possibles. These €stimates. The componentnin,, MSE(5,) of problem (7)

phenomena come from the fact that only the range constrafiPends on the actual value, which means that the lack of

on « is available but not that ofi. According to the foregoing constraint ongs limits the further improvement of the linear

analysis, we can make use of three guidelines for acquiriRsed estimator compared to the MVU estimator. In this case

{64, Bl}; we can simply setjg = 0 and thus3; = j1y. Using a similar
1) estimaten and 3 separately, i.e., estimate one parametépproach as in the derivation éfiy in Appendix A, j3; is

when assuming the other one is known, and then plug tHerived as

results into each other in a certain sequence which will be, . . Ax

explained later; B =P =min{ts; —t1; — altr; —to)} —d - — (13)



to; —t1,; —min, {ta; —t1,; — &1(t1; —to)} +
t1: —to

Ax
sz'vzg(tli —to)

L? X
= i - 15
o L% + 0% ie{I2r,l.l.I.1,N} (15)

Ay

L? ta; —ts; —ming {ta; —t3,; + do(ta; —t Y
o= — ~ min 4, 3, —ming {t4; —t3; 4+ do(ta; —to)} + 5 . Ay (16)
L + UOQU ' (t4’i - to) Zi:l (t4i - tO)
with \2 perfectly known. Because of the averaging in (21), therepis n
MSE(S) = Uglu - N_)g (14) need to knowd for the estimation of3.

Furthermore, the main complexity of the proposed method is
From (8), (11), and (13), we observe that the estimatoifs the bisection step when estimating which will terminate

@, and p; are functions of each other. By plugging theafter exact[log,(2L,/€)] iterations for the given interval

expression ofs; into that of @, the non-linear equation (15) [—L,,, L] and precision tolerance[11]. Through simulation

for &, is obtained, shown on top of next page. Note that evaluations in Section IV, we could find that the number of

is independent of the fixed delay. In our experience, the iterations is usually less thar0 for reasonable values df,,

bisection method [11] is an efficient scheme to solve (15) fahde. This observation guarantees the acceptable complexity

&1. In the next stepgy is put back into (13), and; can be and feasibility of the proposed synchronization algoritim

calculated directly. This concludes the estimation{ef 5} practice.

for the model (3). The complete procedures of the proposed synchronization
The above procedure can also be applied to the modelséheme are summarized in Algorithm 1.

(4) and the associated pgf, (ts; o, 8) in (6). The results are

shown in equation (16) (on top of this page) for estimating
and equations (1A—(20) as follows
2
) a?, (17)

2 2
) o2+ (700‘%
2U . +L2
A
=, (18)

— i34+ Oé(t4,i — to)} +d+ N

+ L2

0‘2U

MSE(as) = ( ; Lo

B =

and

— m_in {t4,i
3

Ay

MSE(By) = %, = 3.

Bzu (19)

where
2 Ay

T2t — t0)?

(20)

Gou T

Finally, we can average the results from models (3) and (4

and obtain{a, 5} as

G t+dy 5 Br + Bo
2 ’ 2

The root mean square error (RMSE){.‘&,B} are, assuming

independent estimates,

(21)

d:

Algorithm 1 Proposed Clock Synchronization Algorithm

1: Node B collects time stamp$ty i, t2.i, t3.:, t4.i by through the
two-way tlmlng message exchange mechamsm in Fig. 1.

2: Calculate{aalu, aQU} from (9) and (20).

3: Utilize a bisection method to acquire the estimataisand as
based on equations (15) and (16), respectively.

4: Derive 81 and 32 by plugging & and éa» into (13) and (18),
respectively. . .

5: Averaged; andaz, as well ass; and 2 via (21) to obtain the
final estimateq &, 5}.

6: Node B estimates Noded s clock value through (2).

IV. SIMULATION RESULTS

In this section, simulation results are presented to coenpar
tPfe performance of the proposed clock synchronization-algo
rithm to the following schemed) Least SquareL(S) estimator

in [13]; 2) ML estimator for exponential delays [53) the
scheme described in [6]. The evaluations also include the
MVU estimator ¢y or Sy) for one parameter assuming the
other one is perfectly knowrild-MVUE), i.e.,

A A A A RMS =0.5,/ , 25
RMSE(d) — \/MSE(al) 1— MSE(OéQ) + B(al)f(QQ)’ (22) E(O[U) Ga1u + UazU ( )
RMSE(By) = 0.5, /o s cr (26)
RMSE(B) = \/MSE(ﬂl) * MSE(BQ), (23) Likewise, the theoretical RMSE (22) and (23) are contained
4 as well, which represent the performance of the proposed
whereB(-) represents the bias of the estimator, and method for one single parametetd(Pro). Additionally, as
_ 2 ) given in [12], we set two different skews = 10~5 and
B(ay) = %a B(asg) = %a (24) o =10"%, as well asL, = 2 x 10~* [12] in the experiments.
T aa T Besides, the interval between the two-way timing messages i

Note that all MSE calculations in Section Il are for one $ing assumed to be arourtidls. Also, we choose the fixed delay
parameter and under the condition that the other paranwteas d = 0.001s, and the offset a8 = 0.002s. Finally, in all
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Figure 2. RMSE of the skewa{ estimation versus the standard deviationFigure 4. RMSE of the skewn( estimation versugv for asymmetric links,
of the random delays\(x or Ay) for symmetric links, witha = 10~% and  with & = 10~%, Ax = 0.001 and Ay = 0.005. The number of bisection
N = 6. The number of bisection iterations s iterations is6.
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Figure 3. RMSE of the offsetd) estimation versus the standard deviatiorFigure 5. BLY'SE of offset£) estimation versusV for asymmetric links,
of the random delays\(x or Ay-) for symmetric links, withae = 10~5 and ~ With o = 107%, Ax = 0.001 and Ay = 0.005.
N =6.

is revealed from Fig. 2 that the RMSE of the proposed method

simulations, we consider RMSE of the parameter estimatafs not monotonically increase with increasgg (or \y).
as the performance metric. This is reasonable since the proposed algorithm, where both

Fig. 2 describes the RMSE of the skew estimation versusand 5 are estimated, is an extension d-Pro. Note that
the standard deviation of the random delays for symmettiee interesting 'non-monotonic’ observation is also found
links. Firstly, wheng is available, the theoretical RMSEY [14]. On the other hand, even thoughs available inld-Pro,
of 1d-Pro is smaller than RMSEY{,) of 1d-MVUE. This it still could happen that the proposed scheme bédt®ro
phenomenon coincides with the proof in (12). Furthermort the sense that neither of them is optimal with regard to the
by following the calculation in (22), it could be deducedtthaRMSE of o estimation.
RMSE(®) is not a monotonic function with respect A (or Fig. 3 illustrates the RMSE of the offset estimation under
Ay), as shown in Fig. 2. Additionally, whesis also unknown, the same parameter settings as in Fig. 2. Not surprisingly, w
the proposed algorithm obviously improves the accuracy ofknowna, the theoretical RMSH) of 1d-Pro overlaps with the
estimation compared to the existing synchronization scdsnemRMSE(BU) of 1d-MVUE since they are identical. Moreover,
especially when the random delays have relatively large- staas demonstrated in this figure, the proposed scheme exhibits
dard deviation. This result guarantees the robustnesseof #uperior performance tbS ML and the method in [6] with
proposed one to different levels of random delays. Besitlesrespect to5 estimation.



In the environment of asymmetric link delays, the resulés afor all «. This implies f(-) = 0 a.e. (almost everywhere).
illustrated in Fig. 4 to evaluate the RMSE of skew estimatiodenceT'(t2) is complete [9].
against the number of observations. Since the minimax &lea i Furthermore, based on the RBLS theorem [9], since

utilized to further decrease the MSE in the estimation othe
RMSE{) of 1d-Prois better than the RMSE()) of 1d-MVUE
as plotted in Fig. 4. Additionally, as shown in Fig. 4, the im-

Ax

- 30
iy (t — to) 0

E{T(tg) -

}:a,

provement of the proposed algorithm is significant comparggh pmvU estimator of is therefore calculated as (8).

to other synchronization schemes, especially at the region
of low observation numbers. This advantage means that the
proposed method can achieve relatively high synchromimati [1]
precision at the price of less energy consumption. Furtbezm
Fig. 5 presents the corresponding results for the estimatio
the clock offsets. It is again verified that the proposed scheme
outperformsLS, ML and the method in [6].

V. CONCLUSION [3]

In this paper, a clock synchronization scheme is proposeqd
in the presence of exponentially distributed random dedengs
unknown fixed delays. Through exploiting the prior knowledg
about the range constraint on the clock skew, the estimatigg
of skew is performed by optimizing an MSE related mini-
max problem. Besides, the clock offset is estimated by tzf%
MVU estimator. The proposed algorithm exhibits improve
performance compared with previously proposed scheme]
particularly when the number of observations is limited org
the standard deviation of random delays is large. Moreover,
the acceptable complexity is guaranteed by the simplicity o
the bisection method. [9]

APPENDIXA [10]

PROOF OF THEMVU ESTIMATOR &1y IN (8)
For estimatingx, the given pdf in (5) can be factorized asyyq)

pr,(t2; @, )

[12]
N
N (tai—t1i—B—d
_@exp{zz_l(z’ _)\; P )}U(tz,l—to—ﬂ—d) [13]
h(t2) [14]
0 X
- exp {_E ;(tl,i to)} u (T(t2) — o), (27) n15]
g(T(12),)
where
_ . by —ti—B—d
L e e d

is the sufficient statistic forv according to the NFF theorem
[9].

Now we will show that this sufficient statistiE(t2) is com-
plete. Here we introduce a random variable= 7'(T2) — .
Through the order statistic property [15], it is known that
follows an exponential distribution with mean valug =
Ax/ (N, (t1:—t0)). Suppose that for atk E{f(T(T2))}
0, i.e.,, E{f(' + o)} = 0, which is equivalent to

/+Oof( +a)ie ~ I lay =0
. v A Xp Ar Y=

(29)
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