
54

Designing a Practical Data Filter Cache to Improve Both Energy
Efficiency and Performance

ALEN BARDIZBANYAN, Chalmers University of Technology
MAGNUS SJÄLANDER and DAVID WHALLEY, Florida State University
PER LARSSON-EDEFORS, Chalmers University of Technology

Conventional Data Filter Cache (DFC) designs improve processor energy efficiency, but degrade performance.
Furthermore, the single-cycle line transfer suggested in prior studies adversely affects Level-1 Data Cache
(L1 DC) area and energy efficiency. We propose a practical DFC that is accessed early in the pipeline and
transfers a line over multiple cycles. Our DFC design improves performance and eliminates a substantial
fraction of L1 DC accesses for loads, L1 DC tag checks on stores, and data translation lookaside buffer
accesses for both loads and stores. Our evaluation shows that the proposed DFC can reduce the data access
energy by 42.5% and improve execution time by 4.2%.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Cache Memories

General Terms: Energy efficiency, Performance Improvement, Data Cache Design

Additional Key Words and Phrases: Speculation, filter cache

ACM Reference Format:
Bardizbanyan, A., Själander, M., Whalley, D., and Larsson-Edefors, P. 2013. Designing a practical data filter
cache to improve both energy efficiency and performance. ACM Trans. Architec. Code Optim. 10, 4, Article 54
(December 2013), 25 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555310

1. INTRODUCTION

The performance demanded for computing continues to escalate as computer systems
become more pervasive. As a result, the electricity cost and the environmental impact
for computing infrastructure are increasing at an alarming rate. Energy efficiency
is of critical importance today for both embedded and general-purpose computing
[Hennessy and Patterson 2011]. Clearly it is vital that mobile devices efficiently run
their increasingly complex applications as these devices are depending on power sup-
plies with limited capacity. For general-purpose processors, clock rates and per-core
performance are now constrained by thermal limitations. Energy-efficient solutions
may allow more of the processor power budget to be spent on performance improve-
ments [Huang et al. 2011]. Thus, the design solutions we pursue must be able to
reconcile high energy efficiency with high performance.

This work is supported by the National Science Foundation, under grant CNS-0964413 and grant CCR-
0915926, and by the Swedish Research Council, under grant 2009-4566.
Author’s addresses: A. Bardizbanyan (corresponding author) and Per Larsson-Edefors, Computer Sci-
ence and Engineering Dept., Chalmers University of Technology, 412 96 Gothenburg, Sweden; email:
alenb@chalmers.se; M. Själander and D. Whalley, Computer Science Dept., Florida State University, Talla-
hassee, FL 32306-4530, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART54 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555310

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:2 A. Bardizbanyan et al.

Recent studies show that servicing data accesses through a Level-1 Data Cache (L1
DC) and a Data Translation Lookaside Buffer (DTLB) account for up to 25% of the
total power of an embedded processor [Dally et al. 2008; Hameed et al. 2010]. One
technique for reducing processor energy dissipation is the use of filter caches that are
tiny caches that are accessed before the L1 caches [Kin et al. 1997, 2000]. Since a filter
cache is a smaller structure than the L1 DC, there is less capacitance to switch on an
access. Thus, accessing a Data Filter Cache (DFC) instead of the L1 DC reduces energy
usage. However, filter caches are generally considered impractical by performance-
driven processor manufacturers as they typically incur an execution time penalty for
each filter cache miss. Furthermore, prior filter cache designs that propose to transfer
an entire cache line between the L1 DC and the DFC in a single cycle cause an increase
in both the area of the L1 DC and the energy to access it.

While several different techniques associated with the L1 DC have been proposed
to either reduce the data access energy dissipation or improve processor performance
[Inoue et al. 1999; Zhang et al. 2005; Powell et al. 2001; Nicolaescu et al. 2006; Austin
et al. 1995], we propose a practical DFC design that makes the processor both more
energy efficient and faster. This article makes the following contributions: First, we
describe practical techniques for accessing a small DFC early in an in-order pipeline
that both avoid the DFC miss penalty and can improve performance by eliminating
load hazards on DFC hits. Second, we recognize that filling a DFC line in a single
cycle has a negative impact on L1 DC area and power, and we describe an approach
for transferring a cache line from the L1 DC to the DFC over multiple cycles without
incurring any execution time overhead. Third, we demonstrate that our DFC design
not only eliminates many L1 DC and DTLB accesses when data is accessed from the
DFC, but that it also eliminates a substantial fraction of the L1 DC tag checks and
DTLB accesses when storing data to the L1 DC. Finally, we provide a more detailed
DFC implementation study as compared to prior filter cache research and show that
using a standard-cell DFC can be a practical approach to realizing an efficient DFC.

The remainder of this article is organized as follows: First, we review a typical design
of an L1 DC. Second, we describe our proposed DFC design and also show that DTLB
accesses can be eliminated on DFC load hits, discuss an approach for accessing the
DFC earlier in the pipeline, describe a technique for efficiently transferring an entire
line between the L1 DC and the DFC over multiple cycles, and present techniques
for making the majority of stores to the L1 DC more efficient. Third, we outline our
evaluation framework and present the results of our DFC design. Finally, we review
related work on improving data access efficiency and summarize our future work and
conclusions for the article.

2. BACKGROUND ON L1 DC DESIGN

Memory operations are commonly accomplished by first performing an address calcula-
tion that consists of adding an offset to a base address (displacement addressing mode).
The calculated address is then used to access the L1 DC. The address calculation is
often computed by an Address Generation Unit (AGU) that is placed before the L1 DC
in the pipeline. This approach is illustrated for a segment of the pipeline in Figure 1,
where the address calculation is performed in the address generation (ADDR-GEN)
stage before the L1 DC access (L1 DC-ACCESS) stage.

The calculated address can be divided into three parts. The line offset is used to
identify the word/half-word/byte to be accessed within a cache line, the line index is
used to index into the tag and data arrays, and the tag is used to verify if the specified
memory item resides in the cache.

An L1 DC access starts with reading out the tag(s) (and data for loads in performance-
oriented cache designs). The line index is therefore on the critical path, as it is used to

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:3

Fig. 1. Segment of a pipeline where address generation is performed in the stage before the L1 DC access.

Fig. 2. Overview of a virtually-indexed physically-tagged four-way set-associative data cache.

index into the tag (and data) arrays. Furthermore, as most memories are synchronous,
it is not possible to modify the address before the memories are accessed within a single
pipeline stage. To avoid additional delays, the line index is commonly part of the page
offset and therefore is not translated from the virtual address space.

The entire tag or at least part of the tag is commonly translated to the physical
address space as virtually tagged caches cause synonyms and aliasing problems or are
required to be flushed on a context switch [Cekleov and Dubois 1997]. The virtual-
to-physical translation is performed by a Data Translation Lookaside Buffer (DTLB)
that translates a Virtual Page Number (VPN) to a Physical Page Number (PPN). The
DTLB access can be performed in parallel with the access to the tag array(s), which
significantly shortens the critical path. The translated tag is then compared with the
tag(s) read from the tag array(s) to determine if the specified memory item resides in
the cache.

Figure 2 shows a four-way set-associative cache where the size of each way is equal
to the page size, which results in the tag being the same size as the VPN. The cache
is Virtually Indexed and Physically Tagged (VIPT) as discussed earlier. To limit the
impact of load hazards, the tag and data arrays are accessed in parallel on load op-
erations. The correct data is then selected by the way-select logic, based on the way
select (hit) signal from the tag comparisons. In contrast, store operations are per-
formed across multiple cycles, as the tag comparisons need to be completed before the
store to the correct data array can be performed. Load operations are, therefore, per-
formed in less time than store operations at the cost of accessing all the data arrays in
parallel.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:4 A. Bardizbanyan et al.

Fig. 3. Information associated with a DFC line.

3. A PRACTICAL DFC DESIGN

In this section, we describe our proposed design for an energy-efficient DFC that also
provides a performance improvement. Some principles of the DFC in this work have
been previously presented [Bardizbanyan et al. 2013b]; however, that preliminary
study targets a very limited number of DFC configurations, does not address other
issues related to the practical DFC implementation, and does not provide any energy
evaluation.

Our DFC design utilizes virtual tags, employs a write-through policy, accesses the
DFC early in the pipeline, supports efficient filling of DFC lines, and allows for more
efficient stores to the L1 DC. Figure 3 shows the components of a DFC line in our
design. The filled bit (F) indicates if the line has been filled. The Page Protection bits
(PP) are copied from the DTLB upon allocating the DFC line. We also identify, for each
DFC line, the L1 DC way in which the corresponding L1 DC line is stored.

3.1. Utilizing a Virtually Tagged DFC

Our proposed DFC is accessed using complete virtual addresses, which implies storing
virtual tags in the DFC. There are two main advantages of using virtual tags for a DFC.
First, the data access energy is reduced as DTLB lookups are not required for DFC
accesses. Second, the DTLB is removed from the critical path when accessing the DFC,
which is useful for accessing the DFC in parallel with the memory address generation,
as described in Section 3.3.

Using virtual caches leads to some potential problems, all of which are cheaper to
address in a small DFC, as opposed to a much larger L1 DC:

(1) Multiple different virtual addresses can map to the same physical address. These
duplicate addresses, referred to as synonyms, can cause problems after stores as
the processor needs to avoid having different values associated with the same
location. This problem does not appear on Direct-Mapped (DM) caches because two
synonym cache lines will always evict each other in a direct-mapped cache due to
the lines having the same line index. Since we also will evaluate Fully Associative
(FA) DFCs, we propose a method in order to handle the synonym problem for these
DFCs, in which the problem cannot be inherently avoided. Our fully associative
DFC design uniquely identifies for each DFC line the L1 DC line that contains
the same memory block of data. The L1 DC way associated with each DFC line is
explicitly retained, as shown in Figure 3. Note that the L1 DC index need not be
explicitly stored, as it is equivalent to the Least Significant Bits (LSBs) of the DFC
tag because the L1 DC is virtually indexed. Furthermore, all DFC lines also reside
in the L1 DC. Thus, when a DFC line is replaced, the L1 DC index and way for the
other DFC lines are compared to the replacement line’s L1 DC index and way and
a synonym DFC line is invalidated if it exists. Note that this check is only required
on DFC line replacements and the small number of DFC lines limits the overhead
of using such an approach.

(2) A single virtual address may map to multiple physical locations in different virtual
address spaces, which are referred to as homonyms. This homonym problem can be
resolved by simply invalidating all the cache lines in the DFC on context switches,
which is possible because we employ a write-through policy for the DFC that always

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:5

keeps the L1 DC up to date with the latest data. Hence, the invalidation can
happen in a single cycle. The overhead of invalidating the cache lines in the DFC
is negligible because the DFC is small, context switches are infrequent, and it
is highly likely that all cache lines in the DFC would be evicted anyway before
switching back to the same application. To handle interrupts, the DFC can simply
be disabled and service all accesses from the L1 DC. Though the DFC is disabled,
it needs to be kept up to date with writes, which can be done using the same
information for detecting synonyms as previously described. On a write, the index
and way are checked for all the cache lines in the DFC, and if a match is found,
then the data in the DFC is updated.

(3) The DTLB contains information regarding page protection. This protection infor-
mation from the DTLB can be copied to the DFC when a DFC line is replaced. The
overhead of storing this information is insignificant due to the small number of
DFC lines.

(4) To support multiprocessor cache coherency, the DFC is strictly inclusive with re-
spect to the L1 DC. When an L1 DC cache line is evicted due to the replacement on a
cache miss or due to a cache coherency request, the index and way of the cache line
are checked against those stored in the DFC. If a match is found, the cache line in
the DFC is also evicted. No modifications are required of existing cache coherency
protocols, which makes the DFC compatible with any multiprocessor configuration.

3.2. Employing a DFC Write-Through Policy

We propose a DFC that uses a write-through policy, which ensures that the L1 DC is
always consistent with the DFC and has the latest up-to-date data. Using this policy
simplifies the use of a DFC because if the DFC cannot be accessed, then the L1 DC can
instead service the request. The use of a write-through policy requires that the L1 DC
is accessed for every store instruction. However, stores are less frequent than loads, so
if we can optimize the loads, the overall design may be improved. Furthermore, a DFC
can be used to more efficiently perform the majority of the writes to the L1 DC. The tag
check can be avoided by storing in the DFC the L1 DC way that the cache line resides
in (see Section 3.5).

There are also disadvantages of using a DFC write-back policy. A DFC write-back
policy would cause a DFC miss penalty when a dirty line is replaced because it would
take several cycles to write back the dirty line before the desired line in the L1 DC
can be accessed. As mentioned earlier, we propose to store the L1 DC way in the DFC
to optimize store energy. A write-back policy would, therefore, only save energy for
the case where there are more writes to the cache line before the line is evicted from
the DFC than the number of writes required to write back the dirty line. Otherwise, the
energy expenditure will increase. As described in the previous section, the proposed
DFC is virtually tagged. If a write-back policy would be employed, then all dirty lines
in the DFC would have to be written back on a context switch, which would incur high
overheads. A DFC write-back policy would also complicate DFC line evictions due to
L1 DC line evictions. An evicted dirty DFC line would have to be read from the DFC
instead of simply invalidating it. Likewise, multiprocessor cache coherency would be
more complicated.

A DFC write-through policy has less impact on performance, it is less complex to
implement (which might improve timing), and it has the potential to achieve most (or
even more) of the store energy benefits of a write-back policy. In contrast, a write-back
policy would only reduce the store energy for the case where there are a large number
of writes to a line before it is evicted. Thus, we have chosen to only evaluate the DFC
with a write-through policy.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:6 A. Bardizbanyan et al.

Fig. 4. Address calculation for MIPS-like instruction set.

3.3. Accessing the DFC Early in the Pipeline

If the DFC can be accessed earlier in the pipeline than the L1 DC, then a DFC can be
used with no performance penalty. Assume that a DFC can be accessed in the address
generation stage and that a write-through policy is utilized between the DFC and L1
DC. If there is a DFC miss, then the DFC miss penalty can be avoided because the
L1 DC can be accessed directly in the pipeline stage after performing the address
generation. If there is a DFC hit, then performance is potentially improved by avoiding
load hazards normally associated with L1 DC hits. The performance penalty of a DFC
can also be avoided if only the tags of the DFC are accessed early, since the miss will
be detected earlier [Duong et al. 2012]. But in order to improve the execution time, the
data also needs to be accessed early.

In order to do the tag comparison in the DFC, the line index and the tag values
of the memory address are needed. For a conventional address calculation scheme
(see Figure 4 for a MIPS-like address calculation), where an offset is added to a base
address, it has been shown that for most of the address calculations the line index and
the tag portion of the base address do not change since most of the address offsets are
narrower than or the same size as the line offset [Austin et al. 1995]. Thus, since carries
are not frequently generated from the line offset to the line index during the address
calculation addition, the line index and the remaining Most Significant Bits (MSBs)
often remain unaffected. This property of the address generation can be exploited by
speculatively comparing tags earlier in the pipeline.

We propose to speculatively access the DFC in the address generation stage when
the value of the offset does not exceed what can be represented in the line offset of the
address. We perform speculative accesses only for load operations, since load misses are
more likely to stall the pipeline due to data dependencies. If a processor configuration
cannot hide the latencies related to stores, then speculation can also be used for the
store operations.

Figure 5 shows how a filter cache can be speculatively accessed in the same pipeline
stage that the memory address is generated. The figure shows conceptually how a
successful speculative access can be verified by comparing the base tag and index with
the computed tag and index of the memory address. In reality, it is enough to verify
that the offset portion of the address is smaller than the line size and that during the
address calculation there is no carry out from the line offset. This assures that the
tag and index of the base address has not changed, as shown in Figure 6. Our timing
evaluation (see Section 5.2) shows that it is possible to access the DFC in a single cycle.

The speculation is attempted for the bitwidth range of negative five bits to positive
four bits. The analysis for selecting this range is described in prior work [Bardizbanyan
et al. 2013a]. For the given bitwidth range, we found that a speculative DFC access was

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:7

Fig. 5. Speculative data filter cache access.

Fig. 6. Technique for detecting if the tag and index are not modified. The AGU is for illustrative purposes
shown as two separate adders.

attempted for 73.8% of the load operations and that the speculation success rate (no
carry out) for these accesses was 97% for our benchmark suite. Thus, 71.9% of all loads
achieve a successful speculative access to the DFC. When a successful speculative DFC
access does not occur, either because the offset was too large or because speculation
was not successful (carry out), then there are two remaining alternatives: (1) The L1
DC is directly accessed in the following stage to avoid any additional delays. (2) The
DFC is accessed in the following stage, which can provide energy benefits when there
is a DFC hit and a one-cycle miss penalty when there is a DFC miss. Thus, these
two alternatives present us with a tradeoff between improving energy efficiency and
degrading performance. Note, however, that both alternatives give better performance
than the conventional approach of always accessing the DFC in the L1 DC access stage.

3.4. Supporting Efficient Filling of DFC Lines

Since a DFC requires reading an entire line from the L1 DC when a DFC line is
replaced, a relevant issue is how to read the entire line in an efficient manner. Prior
filter cache studies have either explicitly stated or implied that a filter cache line can be
filled in a single cycle [Kin et al. 1997, 2000; Tang et al. 2001; Hines et al. 2007, 2009;
Duong et al. 2012]. Such an approach is not a viable implementation solution when
integrating a filter cache with an L1 cache. First, reading an entire line in a single cycle
would require a redesign of the L1 DC, which in turn could require a redesign of the
whole memory hierarchy. Reading a larger bitwidth from the relatively small SRAM

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:8 A. Bardizbanyan et al.

Table I. Normalized Area and Energy Overheads for Wide Access
4kB SRAM Blocks

SRAM Block Read Energy Total Line
[rows × columns] Area per Access Fetch Energy

128 × 256b 1.91 4.15 1.43
256 × 128b 1.30 2.87 1.26
1024 × 32b 1.00 1.00 1.00

blocks that are used in L1 caches can have a significant area overhead. Since L1 caches
occupy a significant portion of a processor core, increasing the area of these structures
is very undesirable. In addition to the area problem, reading wider bitwidths increases
the wire count and creates congestion, which deteriorates the layout efficiency. Second,
L1 caches need to be fast structures to improve processor performance and a larger
cache area due to wide data ports can have a negative impact on the L1 cache access
time. Third, a fast set-associative L1 cache, in which a large number of bits are read
in one cycle, will have a significant energy access overhead. The L1 DC should still be
optimized with respect to the access of individual data items due to the relatively high
DFC miss rate and the use of a DFC write-through policy.

Table I shows the area and energy overhead of using two 65nm SRAM blocks that
provide wider access bitwidths than the reference case of a single 32b word. The energy
dissipation is given for one line fetch operation (assuming a 32B line size) that is
normalized to the SRAM block 1024x32b, in which a single word can be read in each
cycle. Assuming a 16kB L1 DC that is four-way set associative, four tag accesses are
required before the line can be fetched. Completing the line fill then takes one, two, and
eight cycle(s) for the 128×256b, 256×128b, and 1024×32b SRAM memory, respectively.

The column count clearly has a stronger influence on overall area and energy than
the row count has. This is due to the replication of double bitlines, bitline conditioning
circuits, multiplexing, and so forth, which is more resource demanding than adding
rows that entails expanding the address decoder and adding single wordlines. Thus,
for the same SRAM block size, area and energy per access are lower for a tall and
narrow memory, than for a short and wide one. Thus, an L1 DC in which a single 32b
word can be read in a cycle is preferred for both area and energy efficiency. For example,
the trial layout of an ARM Cortex-A5 processor has L1 DC SRAM blocks in which only
a single word can be read in one cycle [Halfhill 2009]. Since a significant fraction of the
data memory references still access the L1 DC even when a DFC is present, the DFC
implementation needs to adapt to the L1 DC configuration, not the other way around.

One of the main focuses in this research is to design a data filter cache that does not
require any modifications to the L1 data cache, which is designed for area and energy
efficiency. A DFC based on standard cells will have at least one read and one write
port because latches or flip-flops are used. During line fill operations, we use a critical-
word-first fill strategy that starts from the word that causes the miss [Hennessy and
Patterson 2011]. This strategy is appropriate, since the word that is missed in the DFC
will be first accessed from the L1 DC and the fetched word will be forwarded to the
pipeline and written to the DFC. During the line fill operation, the DFC read port is
not occupied, hence load operations that hit in the filter cache can still be serviced.
Bits are associated with the fill operation, indicating which words in the DFC line have
been filled, in case this line is referenced by a load instruction before the fill operation
has completed. Subsequent load operations that miss in the filter cache during the line
fill operation are diverted to the L1 DC and no DFC allocation is permitted, since a
DFC line fill operation is already being performed. In addition, when a load is diverted
to the L1 DC, the line fill operation is stopped for that cycle in order to service the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:9

current load operation. This approach allows the DFC to be filled without affecting
the area and energy efficiency of the L1 DC and without causing any execution time
penalty. Note that our DFC design uses a write-through policy, which ensures that the
L1 DC always has up-to-date data and avoids the execution time penalty associated
with writing back a dirty line over multiple cycles.

3.5. Making L1 DC Writes More Efficient

All store instructions cause writes to be attempted to both the DFC and the L1 DC, since
a write-through policy is used in our design. The DFC is strictly inclusive, so all of the
DFC lines are also resident in the L1 DC. For each DFC line, we also store information
indicating the L1 DC way where the DFC line resides. Thus, on DFC store hits, there
is no need to either perform an L1 DC tag check or to access the DTLB since the L1 DC
is virtually indexed. Only the write operation to the data memory is performed on the
L1 DC. A similar technique is used to save energy in level-2 caches, in which the L1
DC is write-through [Dai and Wang 2013]. However, using this technique for an L1 DC
requires much more space since an L1 DC contains many more lines than a DFC. In
addition, a store to the L1 DC is accomplished in one less cycle when the store is a DFC
hit, since an L1 DC tag check is not performed. Performing an L1 DC store in one cycle
can eliminate a structural hazard when an L1 DC load immediately follows the store.
Thus, our design significantly reduces the cost of using a DFC write-through policy.

A write-allocate policy means that a line is allocated and fetched on a store miss. A
no-write-allocate policy indicates that a line is not allocated in the cache on a store miss,
and the store is done to the next level in the memory hierarchy. Typically, no-write-
allocate is used with write-through as the value is going to be written to the next level
of the memory hierarchy anyway and the miss rate can be reduced by not allocating
a line that may never be read. When using a DFC, there is a tradeoff between using
a no-write-allocate and a write-allocate policy. A no-write-allocate DFC policy reduces
the line fetch operations from the L1 DC due to store misses not causing any allocation,
but the L1 DC store energy increases due to each store miss requires a DTLB access
and L1 DC tag checks to be performed. Using write-allocate with write-through will
increase the ratio of DFC store hits, which can reduce the L1 DC store energy, as
previously explained in this section. A detailed evaluation of both write-allocate and
no-write-allocate policies is presented in the results section.

3.6. Supporting Multiprocessor Systems

The DFC is easily integrated into existing multiprocessor systems and does not require
any modifications of existing cache coherency protocols. The DFC has a write-through
policy that ensures that the data in the DFC and L1 DC are always consistent. The
L1 DC is also strictly inclusive of the cache lines in the DFC. Whenever a cache line is
evicted from the L1 DC due to a L1 DC miss or a cache coherency request, the way and
index of the evicted line are compared to those stored in the DFC. If a match is found,
that line is evicted from the DFC by clearing the valid bit (the V field in Figure 3).

In a fully associative DFC the least significant bits of the tag represent the index of
the virtually tagged L1 DC and the conventional tag comparison logic can be used to
detect matching indexes by simply ignoring the comparison of the most significant bits.
The L1 DC way is stored with each DFC cache line when a new cache line is written to
the DFC (the L1 DC Way field in Figure 3). A new line is only written to the DFC when
a DFC miss has occurred. When a miss occurs, a conventional access to the L1 DC is
performed. The hit signals from the L1 tag comparison indicate in which L1 DC way the
data resides and this L1 DC way information is stored in the DFC. Thus, the only mod-
ification needed in the L1 DC is to be able to read the hit signals. As L1 DC cache lines
are rarely evicted, this additional check in the DFC imposes an insignificant overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:10 A. Bardizbanyan et al.

Table II. MiBench Benchmarks

Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan
Consumer JPEG, Lame, TIFF
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Rijndael, SHA, PGP
Telecomm ADPCM, CRC32, FFT, GSM

Table III. Processor Configuration

Load Latency 1 cycle
BPB, BTB Bimodal, 128 entries
Branch Penalty 2 cycles
Integer & FP ALUs, MULDIV 1
Fetch, Decode, Issue Width 1
DFC 128B–512B (FA,DM)

32B line, 1 cycle hit
L1 DC & L1 IC 16kB, 4-way assoc, 32B line,

1 cycle hit
L2 Unified 64kB, 8-way assoc, 32B line,

12 cycle hit
DTLB & ITLB 16-entry fully assoc, 1 cycle hit
Memory Latency 120 cycles

4. EVALUATION FRAMEWORK

In this section, we present the tools, the benchmarks, and the methods used for the
evaluation.

4.1. Benchmarks

We use 20 different benchmarks (see Table II) from six different categories in the
MiBench benchmark suite [Guthaus et al. 2001]. All the benchmarks are compiled
with VPO using the large dataset option [Benitez and Davidson 1988].

4.2. Simulator

We use the SimpleScalar simulator with the PISA instruction set to model a five-
stage in-order processor [Austin et al. 2002]. The processor configuration is presented
in Table III. In order to calculate the energy values, we backannotate energy values
obtained from layout; for details see the next section.

4.3. Layout and Energy Values

Figure 7 shows the layout of two different five-stage in-order processors with 16kB
four-way associative L1 instruction and data caches. Figure 7(a) shows a processor
that uses a 128B DFC, while the DFC in Figure 7(b) is 256B. The SRAM blocks and the
standard cells are laid out in a way similar to the trial layout of the Cortex-A5 processor
[Halfhill 2009]. As described in Section 3.4, we use 32b wide SRAM blocks to reduce L1
DC area and energy. The DFCs are implemented using standard-cell flip-flops, which is
the reason that they take up a relatively larger area per stored bit than the L1 caches
that store the data in area-efficient SRAMs.

It is difficult to evaluate innovative implementations using approximative energy
estimators, like Wattch and CACTI, so we use layout implementations to ensure that
the energy values are accurate for the different processor components. All energy

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:11

Fig. 7. Processor layout in which the DFC is highlighted in white to show its impact in terms of area.

values are derived from RC-based netlists that are extracted from placed and routed
layouts such as the ones in Figure 7. All components except the DTLB are integrated
and verified inside the processor layout. While the DTLB is implemented separately
to facilitate overall verification of overall processor function, the DTLB is placed and
routed as a component embedded in its proper context, for example, as a component
driving tag comparators.

The processor designs are synthesized in Synopsys Design Compiler using a
commercial 65nm Low-Power (LP) CMOS process technology with standard cells and
SRAM blocks. The layout work is done in Cadence Encounter. The placed and routed
layout implementations meet a 400MHz clock rate, assuming the worst-case process
corner, a supply voltage of 1.1V, and 125◦C. The layouts are functionally verified using
small benchmarks from the EEMBC benchmark suite [Embedded Microprocessor
Benchmark Consortium 2013]. Synopsys PrimeTime PX Power Analysis is used to
obtain power and energy values from the RC-extracted netlists. These power and
energy values are collected assuming the nominal process corner, 1.2V, and 25◦C.

The L1 DC consists of four 1024x32b SRAM blocks for data and three 128×32b
SRAM blocks for tags. Three 32b SRAM blocks are sufficient for storing the tags, since
four tags, with 21 bits each, including valid bit, can be concatenated. The DTLB is
a 16-entry fully associative structure built from standard cells. It is a very common
configuration to have a first-level fully associative DTLB with few entries and a second-
level DTLB with less associativity and more entries. Since the bulk of the accesses are
captured by the fully associative structure, we only evaluate the first-level DTLB.

The total energy is calculated by taking, for all processor components, each compo-
nent’s energy per operation (obtained from layout) and multiplying this value by the
total number of operations for this component (obtained from SimpleScalar). Before
presenting the energy per operation, we first describe the events that take place in our
DFC-enabled processor.

Table IV shows the various DFC events and the components of the DFC, DTLB, and
L1 DC that are accessed for each of these events. DTLB and L1 DC misses happen
much less frequently and are not depicted in this table. Furthermore, the inclusion of a
DFC does not typically change the total number of DTLB or L1 DC misses. Therefore,
DTLB and L1 DC misses are not accounted for in our evaluation.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:12 A. Bardizbanyan et al.

Table IV. Components Accessed for Each DFC Event

DFC L1 DC
Read Tags Read Data Write Write Read Tag Read Data Write Read

DFC Event All Ways All Ways Tag Data DTLB All Ways All Ways Data Data

Spec. Failure X X
Load Hit X X

Miss (No Fill) X X X X X
Miss (Fill) X X X 8X X X X 7X
Spec. Failure X

Store Hit X X X
Miss (No Fill) X X X X
Miss (Fill) X X 8X X X X 8X

DFC Speculation Failure implies that an access to the DFC was attempted but
that the tag and/or index was modified during the address calculation. For loads, all
tags and data for all ways within a set are accessed, while for stores, only the tags for
all ways within a set are accessed.

DFC Hit implies that the speculative access to the DFC was successful and that the
cache line resides in the DFC. For loads, all tags and data for all ways within a set are
accessed, while for stores, only the tags for all ways within a set are accessed. As the
DFC implements a write-through policy, the store also causes the data to be written to
the L1 DC. The DFC stores the way of the associated L1 DC line, so no DTLB access
or tag checks are required to write the data to the L1 DC.

DFC Miss (No fill) implies that the sought data does not reside in the DFC and
that a no-write-allocate policy is implemented or that another cache line is currently
being filled, which prevents a second cache line to be filled on a DFC load miss. For
loads, a conventional access is attempted that accesses all tags and data for all ways
within a set. The L1 DC is then accessed and for performance reasons all tags and
data for all ways within a set of the L1 DC are accessed. This ensures that the sought
data word is provided with as few stall cycles as possible. For stores, a conventional
access is attempted that accesses all tags for all ways within a set. The data item
is then written to the L1 DC, which requires a DTLB access, all tags for all ways
within a set of the L1 DC to be read, and the data to be written to a single way of the
L1 DC.

DFC Miss (Fill) implies that the sought data does not reside in the DFC and that
a load miss or a write miss with a write-allocate policy implementation occurs. In
addition to the events performed for a DFC miss with no fill, the cache line is read
from the L1 DC and written to the DFC. For loads, the first data word is provided by
the parallel access to the tags and data that is performed to reduce the amount of stall
cycles. The remaining seven data words of the cache line are then read sequentially
from a single way of the L1 DC. For stores, the conventional store of the data to the
L1 DC is performed first and afterwards the eight words of the cache line are read
sequentially from a single way of the L1 DC. For both loads and stores, the tag and
eight data words of the cache line are written to the DFC.

Table V shows the energy required for accessing the components of the DFC for the
various configurations. In this table, the tag and data read energy of the DFC are not
separated. This leads to a pessimistic energy evaluation, since the total energy of data
and tag is used for some events, for example, for store misses, instead of only tag energy.

Table VI shows the energy used for accessing the various components of the L1
DC and the DTLB. Similar to the DFC, loads are more expensive than stores due
to the need to read all data on each load to minimize the access time. It should be

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:13

Table V. Energy for Different DFC Components

FA DM
DFC Component 128B 256B 512B 128B 256B 512B

Read Data & Tag - All Ways 13.0pJ 29.5pJ 61.5pJ 10.5pJ 22.4pJ 48.0pJ
Write Tag 0.7pJ 1.5pJ 4.0pJ 0.7pJ 1.5pJ 4.0pJ
Write Data 3.4pJ 6.4pJ 18.0pJ 3.4pJ 6.4pJ 18.0pJ

Table VI. Energy for Different L1 DC Components
and the DTLB

Component Energy

Read Tags - All Ways 57.3pJ
Read Data - All Ways 112.7pJ
Write Data 33.9pJ
Read Data 28.2pJ
DTLB (16 entries, fully associative) 17.5pJ

noted that the energy dissipation of the separate components is shown. For example, to
calculate the energy of a regular load operation from the L1 DC, the energy of reading
tags from all ways should be added to the energy of reading data from all ways. To
calculate the energy of a line fetch operation on a DFC load operation miss, the energy
of making seven single data reads should be added to the energy of a regular load
operation. Because on a line fetch operation the first word is fetched as a regular load,
and the remaining words in the line are read from a single data SRAM as the tag
match operation has already occurred and the way information is known. If a line fetch
operation is initiated by a store miss in the DFC, then the energy is the cost of reading
all the tags and eight single data reads. The reason is that the data in the first cycle
is not critical hence it is possible to wait until after the tag match is made. The idle
L1 DC energy is neglected, since the leakage power of the LP process technology is
insignificant. Since miss events for the L1 DC are not very frequent, we assume the L1
DC miss energy is insignificant. In doing this simplification, we introduce an error of
around 4% on the total L1 DC energy.

The store energy in a fast set-associative cache is substantially smaller compared to
the load energy. The reason is that store operations only enable the data way in which
there is a tag match. Load operations, on the other hand, enable all data ways and the
correct word is selected using a final multiplexer driven by the tag hit signals, as de-
picted in Figure 2. This approach ensures the shortest delay. Due to data dependencies
between load operations and consecutive operations (load hazards), load operations are
typically performed as fast as possible.

5. RESULTS

In this section, we first evaluate the energy and performance benefits of the proposed
DFC for the in-order five-stage pipeline that we implemented in hardware and that
is described in Section 4.3. We then describe a more aggressive processor configura-
tion with a two-cycle load latency and use this configuration to evaluate timing and
performance improvements of the proposed technique.

5.1. Energy and Performance Evaluation

Figure 8 shows how successful a speculative access to the DFC is across the bench-
mark suite. As shown, the speculation, on average, is successful 71.9% of the time.
Speculation is attempted but fails for 1.9% of the load accesses. For the remaining
26.2% of the load accesses, the offset portion of the address is greater than or equal to

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:14 A. Bardizbanyan et al.

Fig. 8. Statistics for speculative access to the DFC.

Fig. 9. L1 DC and fully associative DFC miss rates.

the line size, which causes speculation to not be attempted. These results show that
speculatively accessing the DFC is worthwhile as almost three-fourths of the memory
references for load operations can obtain the appropriate address, enabling the DFC
to be accessed in the same cycle that the address is generated.

Figure 9 shows the L1 DC and fully associative DFC miss rates for the MiBench
applications. The average miss rate for the L1 DC is 0.6%. The benchmarks are sorted
by decreasing L1 DC miss rate. The figure clearly shows that there is no correlation

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:15

Fig. 10. Unified L2 cache miss rate (L2 misses / (L1 DC accesses + L1 IC accesses)).

Fig. 11. Miss rates and store misses for no-write-allocate DFC configurations assuming an ideal one-cycle
line fetch operation.

between the L1 DC miss rate and the DFC miss rates. The DFC miss rates are under
the assumption that the line fetch operation takes one cycle. As described in Section 3.4,
an L1 DC would not be designed for reading and writing an entire line in a single cycle
unless the processor can benefit from it. But using the miss rate for one cycle line fetch
operation gives good insights to the trends in DFC design.

Figure 10 shows the unified L2 cache miss rates for MiBench applications. This miss
rate is calculated by the following formula:

L2 cache miss rate = (L2 misses/(L1 DC accesses + L1 IC accesses)) (1)

On average, the unified L2 cache miss rate is 0.1%. Figure 11 shows the average miss
rates for different DFC sizes, organizations, and write policies under the assumption
of one-cycle line-fetch operation. In addition, average store misses are shown for DFCs

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:16 A. Bardizbanyan et al.

Fig. 12. Frequency of various DFC events. Two write policies are evaluated: no-write-allocate (nWA) and
write-allocate (WA). The evaluated cache organizations are either fully associative (FA) or direct mapped
(DM), of sizes 128B (4-entry), 256B (8-entry), or 512B (16-entry).

with the no-write-allocate policy. As shown in Figure 11(a), fully associative DFC con-
figurations have better miss rates compared to direct-mapped DFC configurations. The
no-write-allocate policy reduces the miss rate due to store operations not causing a
line allocation, which reduces the contention in the DFC. The no-write-allocate policy
is more effective on direct-mapped DFC configurations, since there are more conflicts
in a direct-mapped DFC. But in the no-write-allocate policy there are many store op-
erations that miss in the DFC due to the line not being allocated on a store miss. The
ratio of stores that are missed in the DFC for the no-write-allocate policy is shown in
Figure 11(b).

When the practical line fill approach is employed for the DFC, as described in
Section 3.4, the miss rate cannot be used directly for evaluation because there are
many other events happening. For example, some misses will not cause a line fetch
because a miss happens while another line fetch operation is ongoing in which the
miss operation will access the L1 DC instead of starting a line fetch operation. Hence,
the results for a practical DFC implementation are given in terms of events, which
cover all different activities that can occur in a this implementation. Figure 12 shows
how frequent various DFC events are for different DFC sizes, organizations, and write
policies. The main differences between the write policies are that the no-write-allocate
policy has (1) no stores that cause line fills and (2) fewer store hits. As the size of the
DFC increases, the ratio of hits (both loads and stores) increases. As expected, the total
misses for a fully associative DFC is approximately the same as that of a direct-mapped
DFC twice that size. As a result, given the same DFC size, a fully associative DFC can
be more efficient than a direct-mapped one.

Figure 13 shows how frequently the various memory hierarchy components are ac-
cessed. As shown, the DFC tags are accessed on every DFC event. The number of DFC
writes is large due to each word written during a line fill is separately counted. Note
that most of the DFC writes are overlapping with instructions that do not perform any

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:17

Fig. 13. Frequency of accesses to various components in the memory hierarchy.

data accesses. The number of DTLB accesses is higher for the no-write-allocate policy,
since the number of DFC store misses is greater and each miss causes a DTLB access.
Figure 12 shows that these missed stores are significant. Figure 13 also shows that the
L1 DC line read operations are fewer for the no-write-allocate policy as compared to the
write-allocate policy. This is expected because no store operations cause a line fetch for
the no-write-allocate policy. This is even more apparent for direct-mapped caches be-
cause of their high miss rates. However, as the DFC size increases, the advantage of the
no-write-allocate policy becomes smaller. The advantage of the no-write-allocate policy
is smaller for the fully associative DFC, because the miss rate is relatively lower. It
should be noted that the speculation failure events are not included in Figures 12 or 13.

Figure 14 shows the data access (DFC, L1 DC, and DTLB) energy usage for each con-
figuration, where the baseline is an L1 DC and DTLB without a DFC. The breakdown
is shown as the component list given in Section 4.3. A 256B fully associative DFC that
uses the write-allocate policy can save 42.5% of the data access energy. This includes
the overhead of speculation failures. The no-write-allocate policy saves more energy for
direct-mapped caches, as expected. However, since the miss rate is relatively low for
fully associative DFCs, as the DFC size increases, the overhead caused by the relatively
higher number of store misses makes this approach less energy-efficient compared to
the write-allocate policy. In addition, the DTLB energy dissipation is higher in the no-
write-allocate policy due to the high number of store misses. Note that the best energy
savings are for a DFC size of 256B for both direct-mapped and fully associative DFCs.
It should also be noted that the area overhead is becoming significant for the 512B
DFCs, since the implementations are based on standard cells. Furthermore, a fully
associative, 512B DFC might be challenging to implement while meeting strict timing
requirements and, therefore, might not be a realistic design choice. We have included
the fully associative, 512B DFC in the results only to show the trends when the DFC
size increases.

Figure 15 shows the same data access energy as Figure 14, but the breakdown is
in terms of L1 DC, DFC, and DTLB energy. As the DFC size increases, the energy

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:18 A. Bardizbanyan et al.

Fig. 14. Data access energy for different DFC configurations with event breakdown.

Fig. 15. Data access energy for different DFC configurations with unit breakdown.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:19

Fig. 16. Data access energy for 256B fully associative write-allocate DFC with unit breakdown.

Fig. 17. Normalized execution time for different DFC configurations.

expenditure of the L1 DC and DTLB decreases due to a reduced DFC miss rate, but the
energy dissipation of the DFC increases as the structure is becoming larger. Figure 16
shows the data access energy savings for each benchmark with the most energy efficient
DFC configuration of 256B fully associative DFC with write-allocate policy. The energy
savings are greater for benchmarks that have a high DFC hit rate. For instance, the
energy for pgp is reduced by 73.5%. The energy dissipation is not increased for any of
the benchmarks, even for those with high DFC miss rates.

Figure 17 shows processor performance results for the different DFC configurations,
as compared to a processor with no DFC. Conventional implies a DFC implementation
in which the DFC is accessed in a separate stage after the address generation stage.
This causes a performance overhead due to frequent DFC misses. The speculative access
execution time is improved due to DFC hits accessing data earlier in the pipeline. The
performance benefit is thus affected by the hit rate for DFC loads. Increasing the size of

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:20 A. Bardizbanyan et al.

Fig. 18. Three-stage L1 DC access.

the DFC, using a fully associative DFC organization, and using a write-allocate policy
all provide better performance as each option increases the ratio of DFC load hits. The
256B write-allocate DFC, which provides a 42.5% energy reduction, provides a 4.2%
execution time improvement when the speculative access scheme is used.

5.2. Timing and Extended Performance Evaluation

The processor configuration used for the performance evaluation in the previous sec-
tion is the same configuration as for the hardware implementation that is used for
the energy evaluation. In this section, we evaluate timing and performance using
a more aggressive processor configuration that has a load latency of two cycles in-
stead of only a single cycle. A two-cycle load latency is common in contemporary
state-of-the-art in-order processors[Halfhill 2009; Williamson n.d.; MIPS Technologies
2009].

Figure 18 illustrates a three-stage L1 DC pipeline that has a two-cycle load latency.
In the address generation stage, the memory address is generated. In the second stage,
the DTLB and the SRAMs for tag and data are accessed. The tag comparison can occur
in this stage or in the third stage. Since the access times of the synchronous SRAMs
can be considerably lower than their cycle times, it might be possible to do the tag
comparison in this stage. During the third stage, the way selection is performed and
the data are formatted if it is a half-word or byte-level operation. Finally, the data
value is forwarded to the corresponding units in the pipeline.

Introducing a DFC into a three-stage L1 DC pipeline reduces the load latency by
one cycle. The DFC is accessed during the address generation stage, the same way as
shown in Figure 5. On a DFC hit, there is no need to access the SRAMs and DTLB of
the L1 DC. The SRAM access stage can, therefore, be bypassed and the data from the
DFC can be directly forwarded to the final stage of data formatting. Since the DFC is
much smaller and is likely to have a faster access time than an L1 DC, some processor
configurations may access both the DFC and do the data formatting in the address
generation stage. However, the results we present assume that the load latency is
reduced by only one instead of two cycles.

Timing Evaluation. We evaluate timing for the eight-entry fully associative DFC
since (1) the critical path is much longer compared to a direct-mapped DFC and (2) the
eight-entry fully associative DFC is the most energy-efficient DFC configuration. We
assume a common L1 DC configuration of 16kB size and four-way set associativity. This
data cache uses four multi-VT 4kB SRAMs (1024wx32b-mux8), in which the cycle time
is 1.2ns, while the access time is 0.85ns. These timing values are the final timing values
for a placed and routed SRAM macro. This means that if the cycle time of the processor
is limited by the data SRAMs it will be 1.2ns. The DFC is built using a multi-VT design
flow, whereas the SRAM cells and the flip-flops of the DFC are built using high-VT
transistors. The remaining logic is a mix of standard-VT and low-VT cells. The same

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:21

Table VII. Aggressive Processor Configuration

Load Latency 1–2 cycles
BPB, BTB gshare L2:1024, 256 entries
Branch Penalty 7 cycles
Integer & FP ALUs, MULDIV 1
Fetch, Decode, Issue Width 1
DFC 128B-512B (FA, DM)

32B line, 1 cycle hit
L1 DC & L1 IC 16kB, 4-way assoc, 32B line,

2 cycle hit
L2 Unified 64kB, 8-way assoc, 32B line,

12 cycle hit
DTLB & ITLB 16-entry fully assoc, 1 cycle hit
Memory Latency 120 cycles

Fig. 19. Normalized execution time for different DFC configurations.

output load is used for the SRAMs in the L1 DC and the DFC. The timing path for
accessing the eight-entry fully associative DFC is 0.78ns after synthesis. The timing
will degrade after the DFC has been placed and routed. Assume the delay increases
to 1ns after place and route, an increase of 28%, which is a reasonable assumption for
an advanced process technology. This delay is still much lower than the critical path of
1.2ns for the L1 DC. Hence, it is possible to access the DFC in a single stage. The data
that is output from the L1 DC SRAM needs to go through a way-select multiplexor,
whereas the data item from the DFC is directly available. In addition, the maximum
frequency will be defined by the cycle time of the SRAM and not the access time.

Performance Evaluation. For the performance evaluation, we not only increased the
load latency but also increased the branch penalty, from two cycles to seven cycles,
to represent a processor with a deeper pipeline. The more aggressive configuration is
presented in Table VII.

Figure 19 shows the performance of the processor with an aggressive configuration
(Table VII). The execution time is shown with both one-cycle and two-cycle load latency
to show the impact of different load pipeline latencies. The execution time is normalized
to a processor without DFC and a L1 DC with one-cycle and two-cycle load latencies,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:22 A. Bardizbanyan et al.

respectively. In an aggressive processor pipeline, it is expected that the load pipeline
will have a two-cycle latency. As the load latency is increased to two cycles, the execution
time increases due to more data dependencies with load instructions. This has two
consequences: First, the execution time overhead of the conventional DFC reduces
slightly with a two-cycle load latency since the miss count of the DFC does not change,
but the overall execution time increases. Second, the execution time benefit of our
proposed DFC increases with a two-cycle load latency. The reason is that with a longer
load latency there are more data dependencies that the proposed DFC can help resolve.
A 256B fully associative DFC can improve the execution time by 4.6% on a processor
with a two-cycle load latency. Hence, the DFC becomes more beneficial as the depth of
the load pipeline increases.

6. RELATED WORK

A multiple line buffer approach has been proposed in order to reduce L1 cache energy
usage [Ghose and Kamble 1999], but without affecting the cycle time, which was a
drawback in the first line buffer study [Su and Despain 1995]. In the multiple line
buffer approach, a parallel check is performed using the tag and line index to verify if
the current access resides in the line buffers. When there is a hit in the line buffers,
the discharge of the bitlines is avoided, hence energy is saved. The placement of the
cache lines inside the line buffers is handled in a fully associative manner in order to
keep the reuse of data as high as possible. One of the disadvantages of this approach is
that it requires a customized SRAM implementation in order to disable the discharge
signal when appropriate. In addition, the guarantee mechanism requires to have a line
buffer for each way of the cache for every entry (line index). Given a line index, there
is no significant locality between the lines that are residing on different ways. Hence,
many of the line buffers become wasteful.

The original filter cache proposal places both an Instruction Filter Cache (IFC) and
a DFC between the CPU and the L1 cache [Kin et al. 1997, 2000]. This proposed
organization can potentially reduce energy usage at the expense of an execution time
penalty of one cycle on each filter cache miss. It appears that their design also assumes
a one cycle fill of an entire filter cache line, which can negatively impact both the area of
the L1 cache and the power to access these caches. We believe this performance penalty
and negative impact on L1 DC area and power has prevented filter caches from being
adopted by processor manufacturers.

Duong et al. [2012] propose to use a fully associative DFC in order to reduce the
energy dissipation of an L1 DC. Their DFC tag comparison is performed in the execute
stage after the address generation, in order to prevent the DFC miss penalty. They do
not mention using virtual tags, but instead just state that the DFC tag comparison
is possible in the execute stage due to the small DFC size and the slow clock rate of
an embedded processor. Unlike our DFC design, their approach provides no execution
time benefit. It also appears their evaluation was performed assuming that entire DFC
cache lines can be filled or written back in a single cycle. In addition, they assume
that the L1 DC has separate read and write ports, which will significantly increase the
area of the L1 DC SRAMs. Unless there is an important benefit due to the processor
configuration, an L1 DC will typically have a single shared read/write port for area
efficiency. This issue will have an important impact on their proposed writeback filter
cache design.

Austin et al. [1995] propose to use fast address calculation to access the entire L1
DC earlier in the pipeline, to reduce execution time by resolving the data dependencies
earlier. While this technique improves performance, it increases the L1 DC energy
since the whole cache needs to be accessed again on speculation failures.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:23

Nicolaescu et al. [2006] propose to use a 16-entry fully associative table to store the
way information of the last accessed lines. The table is accessed in the stage before
the data cache access, with a fast address calculation scheme based on Alpha 21264. If
there is a match in the table, only one data cache way is accessed. The addition of the
16-entry fully associative circuit, which has a complexity of a DTLB structure, incurs
a significant area and power overhead, which will cancel out some of this technique’s
energy benefits. This technique can only reduce the energy dissipation of the L1 DC,
while the DFC proposed in this work improves the execution time considerably in
addition to reducing the overall data access energy.

There have also been some techniques proposed to avoid DTLB accesses. Block buffer-
ing has been used to detect recent TLB translations by performing comparisons with
the virtual address as soon as it is generated [Lee et al. 2005; Chang and Lan 2007].
Opportunistic virtual caching is a technique to allow some blocks in the L1 caches to
be cached with virtual addresses by changing the operating system to indicate which
pages can use virtual caching [Basu et al. 2012]. Our DFC design is more effective
at reducing data access energy usage, as our approach not only avoids most DTLB
accesses but also avoids most L1 DC accesses as well.

7. FUTURE WORK

A lazy fill write-allocate policy could be employed to further improve the energy effi-
ciency as compared to the traditional write-allocate policy. On a store miss, the line can
be allocated by only writing the tag. This way a store miss does not cause a line fetch.
If a load happens for a line which is only allocated and not filled, then the bytes of the
line that have not yet been written are fetched from the L1 DC. This lazy fill technique
may avoid fetching many words from the L1 DC into a DFC line when cache lines are
partly or entirely written first.

For multithreaded processors that periodically switch between a set of threads, a
DFC per thread can be employed, as each DFC has a relatively small area footprint.
This not only avoids any issues regarding the use of virtually tagged DFCs, but
it also reduces contention as each thread has its own private DFC. Multithreaded
processors tend to require a highly associative L1 DC to avoid contention between
the threads, which makes each L1 DC access more costly in terms of energy. The
DFC eliminates a large portion of the L1 DC accesses. It might, therefore, be
beneficial to increase the associativity to reduce contention even further, as long as
timing requirements can be met. Employing multiple DFCs would require a cache
coherency mechanism to be implemented to keep shared data coherent across the
DFCs.

Out-of-order processors have a more complex load-store pipeline. Commonly the ad-
dress generation is followed by a load buffer to support speculative load operations. The
use of address speculation and a DFC to access data earlier has the potential to reduce
both energy and execution time for out-of-order processors. However, further evalu-
ations are required to determine how the DFC would interact with the conventional
behavior of an out-of-order load-store pipeline.

8. CONCLUSIONS

We have described how to design and implement data filter caches (DFCs) that are
practical in the sense that they not only improve processor energy efficiency, but they
also improve processor performance and comply well with rational cell-based imple-
mentation flows. Our evaluations show that, for example, a 256B fully associative DFC
can provide an overall 42.5% energy reduction for data accesses at the same time as the
execution time is improved by 4.2% using speculative DFC accesses. Our energy eval-
uations have been based on constant clock rates. Thus, the reduction in execution time

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

54:24 A. Bardizbanyan et al.

can offer further energy saving opportunities at the processor level, but this depends
on the processor configuration. For low-power systems, there are mainly opportunities
to reduce energy in the clock network, while for high-performance systems, leakage
energy reductions are possible.

REFERENCES

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system modeling.
Computer 35, 2, 59–67.

AUSTIN, T. M., PNEVMATIKATOS, D. N., AND SOHI, G. S. 1995. Streamlining data cache access with fast address
calculation. In Proceedings of the International Symposium on Computer Architecture. ACM, New York,
NY, 369–380.

BARDIZBANYAN, A., SJÄLANDER, M., WHALLEY, D., AND LARSSON-EDEFORS, P. 2013a. Speculative tag access for re-
duced energy dissipation in set-associative L1 data caches. In Proceedings of the International Conference
on Computer Design. IEEE Computer Society, Washington, DC, 302–308.

BARDIZBANYAN, A., SJÄLANDER, M., WHALLEY, D., AND LARSSON-EDEFORS, P. 2013b. Towards a performance and
energy-efficient data filter cache. In Proceedings of the Workshop on Optimizations for DSPs and Em-
bedded Systems. ACM, New York, NY, 21–28.

BASU, A., HILL, M., AND SWIFT, M. 2012. Reducing memory reference energy with opportunistic virtual
caching. In Proceedings of the International Symposium on Computer Architecture. ACM, New York, NY,
297–308.

BENITEZ, M. E. AND DAVIDSON, J. W. 1988. A portable global optimizer and linker. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM, New York, NY,
329–338.

CEKLEOV, M. AND DUBOIS, M. 1997. Virtual-address caches. Part 1: Problems and solutions in uniprocessors.
IEEE Micro 17, 5, 64–71.

CHANG, Y. AND LAN, M. 2007. Two new techniques integrated for energy-efficient TLB design. IEEE Trans.
Very Large Scale Integrated Systems 15, 1, 13–23.

DAI, J. AND WANG, L. 2013. An energy-efficient L2 cache architecture using way tag information under write-
through policy. IEEE Trans. Very Large Scale Integration (VLSI) Systems 21, 1, 102–112.

DALLY, W. J., BALFOUR, J., BLACK-SHAFFER, D., CHEN, J., HARTING, R. C., PARIKH, V., PARK, J., AND SHEFFIELD, D.
2008. Efficient embedded computing. IEEE Computer 41, 7, 27–32.

DUONG, N., KIM, T., ZHAO, D., AND VEIDENBAUM, A. 2012. Revisiting level-0 caches in embedded processors.
In Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems. ACM, New York, NY, 171–180.

EMBEDDED MICROPROCESSOR BENCHMARK CONSORTIUM. 2013. [Online]. Available: http://www.eembc.org.
GHOSE, K. AND KAMBLE, M. 1999. Reducing power in superscalar processor caches using subbanking, multiple

line buffers and bit-line segmentation. In Proceedings of the International Symposium on Low Power
Design. ACM, New York, NY, 70–75.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001. Mibench: A free,
commercially representative embedded benchmark suite. In Proceedings of the International Workshop
on Workload Characterization. IEEE Computer Society, Washington, DC, 3–14.

HALFHILL, T. R. 2009. ARM’s Midsize Multiprocessor. Technical Report. Microprocessor Report.
HAMEED, R., QADEER, W., WACHS, M., AZIZI, O., SOLOMATNIKOV, A., LEE, B. C., RICHARDSON, S., KOZYRAKIS, C., AND

HOROWITZ, M. 2010. Understanding sources of inefficiency in general-purpose chips. In Proceedings of
the International Symposium on Computer Architecture. ACM, New York, NY, 37–47.

HENNESSY, J. AND PATTERSON, D. 2011. Computer Architecture: A Quantitative Approach 5th Ed. Morgan
Kaufmann, San Francisco.

HINES, S., GAVIN, P., PERESS, Y., WHALLEY, D., AND TYSON, G. 2009. Guaranteeing instruction fetch behavior with
a lookahead instruction fetch engine (LIFE). In Proceedings of the Conference on Languages, Compilers,
and Tools for Embedded Systems. ACM, New York, NY, 119–128.

HINES, S., WHALLEY, D., AND TYSON, G. 2007. Guaranteeing hits to improve the efficiency of a small instruction
cache. In Proceedings of the Internatinal Symposium on Microarchitecture. ACM, New York, NY, 433–
444.

HUANG, W., RAJAMANI, K., STAN, M. R., AND SKADRON, K. 2011. Scaling with design constraints: Predicting the
future of big chips. IEEE Micro 31, 4, 16–29.

INOUE, K., ISHIHARA, T., AND MURAKAMI, K. 1999. Way-predicting set-associative cache for high performance
and low energy consumption. In Proceedings of the International Symposium on Low Power Electronics
and Design. ACM, New York, NY, 273–275.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance 54:25

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. H. 1997. The filter cache: An energy efficient memory structure. In
Proceedings of the International Symposium on Microarchitecture. IEEE Computer Society, Washington,
DC, 184–193.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. H. 2000. Filtering memory references to increase energy efficiency.
IEEE Trans. Computers 49, 1, 1–15.

LEE, J. H., WEEMS, C., AND KIM, S.-D. 2005. Selective block buffering TLB system for embedded processors.
IEE Proceedings on Computers and Digital Techniques 152, 4, 507–516.

MIPS Technologies 2009. MIPS R© 1004KTM Coherent Processing System Datasheet. MIPS Technologies.
NICOLAESCU, D., SALAMAT, B., VEIDENBAUM, A., AND VALERO, M. 2006. Fast speculative address generation and

way caching for reducing L1 data cache energy. In Proceedings of the International Conference on Com-
puter Design. IEEE Computer Society, Washington, DC, 101–107.

POWELL, M. D., AGARWAL, A., VIJAYKUMAR, T. N., FALSAFI, B., AND ROY, K. 2001. Reducing set-associative cache
energy via way-prediction and selective direct-mapping. In Proceedings of the 34th Annual ACM/IEEE
International Symposium on Microarchitecture. ACM, New York, NY, 54–65.

SU, C. AND DESPAIN, A. 1995. Cache design tradeoffs for power and performance optimization. In Proceedings
of the International Symposium on Low Power Design. ACM, New York, NY, 63–68.

TANG, W., GUPTA, R., AND NICOLAU, A. 2001. Design of a predictive filter cache for energy savings in high
performance processor architectures. In Proceedings of the International Conference on Computer Design.
IEEE Computer Society, Washington, DC, 68–73.

WILLIAMSON, D. N.D. ARM Cortex A8: A High Performance Processor for Low Power Applications. ARM.
ZHANG, C., VAHID, F., YANG, J., AND NAJJAR, W. 2005. A way-halting cache for low-energy high-performance

systems. ACM Trans. Archit. Code Optim. 2, 1, 34–54.

Received June 2013; revised September 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 54, Publication date: December 2013.

