
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Real-Time Shading and Accurate Shadows
Using GPGPU Techniques

Ola Olsson

Division of Computer Engineering
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

Real-Time Shading and Accurate Shadows Using GPGPU Techniques
OLA OLSSON
ISBN 978-91-7385-964-6

c©OLA OLSSON, 2014

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie Nr 3645
ISSN 0346-718X

Technical Report 104D
Department of Computer Science and Engineering

Research group: Computer Graphics
Division of Computer Engineering
Chalmers University of Technology and Gothenburg University
SE–412 96 Göteborg, Sweden
Phone: +46 (0)31–772 1000

Contact information:
Ola Olsson
Division of Computer Engineering
Department of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden

Phone: +46 (0)31–772 1678
Fax: +46 (0)31–772 3663
Email: ola.olsson@chalmers.se
URL: http://www.cse.chalmers.se/˜olaolss

Printed in Sweden
Chalmers Reproservice
Göteborg, Sweden 2014

Real-Time Shading and Accurate Shadows Using
GPGPU Techniques
OLA OLSSON
Division of Computer Engineering, Chalmers University of Technology

Abstract

Over the last 10-15 years, computer graphics hardware has evolved at a tremendous
pace, with an exponential growth in the number of transistors. This evolution has
transformed the Graphics Processing Unit (GPU) from an entirely fixed-function unit
into a highly parallel general-purpose architecture that can be programmed using high-
level programming languages. During this time, the computational power of the GPU has
continually outpaced that of CPUs, resulting in a considerable performance advantage.

As the GPU architecture and capabilities have evolved, so must the algorithms that
target these devices. Whereas previously the only road to real-time performance lay in
finding ways of mapping problems to the fixed-function hardware, today the bulk of
computational power is found in the general-purpose portions of the GPU.

The approach in this thesis utilizes this flexibility and power to explore novel and
more efficient algorithms that solve important real-time computer graphics problems by
targeting the general-purpose GPU-cores. The thesis focuses on two concrete problem
areas: many-light shading and accurate shadows. For both of these areas, new algorithms
are presented that overcome substantial bottlenecks in previous algorithms.

In the area of many-light shading, the thesis presents algorithms that enable a very
large number of lights to be shaded, effectively eliminating the number of lights as a
primary bottleneck. An efficient method for using virtual shadow maps for hundreds of
lights is also introduced, a previously unsolved problem.

For accurate shadows, an algorithm is presented that takes a novel approach to shadow
volumes and shows that this results in a robust, flexible, and highly efficient algorithm.
The new algorithm is shown to outperform previous work and provide much more
predictable performance with changing views.

The underlying problem that is solved in the different algorithms in this thesis is that
of intersecting the visible samples with bounding volumes representing light or shadow.
The solutions presented in this thesis demonstrate that this can be efficiently achieved
using groupings of view samples, combined with a hierarchical acceleration structure.
This problem is of a quite general nature, and the solutions derived in this thesis should
therefore be applicable to many related real-time rendering problems.

Keywords: rendering, shading, shadows, shadow volumes, transparency, virtual shadow-
maps, real time, GPU, GPGPU.

i

ii

Acknowledgments

My thanks and respect are first and foremost due to Ulf Assarsson, for being a great
PhD advisor, with timely feedback and a down to earth approach. I also wish to thank Ulf
for all his hard work in establishing the computer graphics research group at Chalmers,
and for providing me with the opportunity for these most rewarding six years. I’m very
grateful for having been part of this project and allowed to let my ideas run wild on the
fields of CG (in a manner of speaking).

Thanks are also due to the rest of the computer graphics group, who are also co-
authors on my papers, Erik Sintorn, and Markus Billeter and Viktor Kämpe, for being a
great team of people to work with. There are also many other people at Chalmers who
have made this a great and stimulating place to conduct my PhD studies, thank you all.

I would also like to thank my Masters Thesis advisor, Angela Wallenburg, and
examiner, Reiner Hähnle, for being very supportive in my ambition to become a PhD
student, initially by providing a confused undergraduate (that is, me) with a real research
challenge for my masters thesis project. This was my first experience with research,
and without this and their subsequent encouragement, it is not likely that I would have
started down this path.

Big thanks of course to my lovely wife Jaz, who has patiently put up with these years
of me delivering weird explanations of computer graphics algorithms and concepts (the
last of which involved peas, an ever increasing number of arms, and a keyhole). During
my time as a PhD student we also had our two children, Stella and Ruben, and STELLA
will be able to read her name right there! Thank you all for just being wonderful, and for
introducing a healthy dose of perspective into my life.

I also wish to express my gratitude to remaining family and friends, for always
showing interest and at least pretending to consider my absurd interests normal. It is hard
to imagine having to go through such an undertaking as this without this acceptance.

I also wish to thank enthusiastic people in the games industry, in particular Emil
Persson of Avalanche Studios. Emil has been a fantastic promoter of clustered shading in
the industry, and it has been my great pleasure to do presentations together. The people
in the Game Technology Brisbane Meetup group have also been inspiring and interested
in my work.

Finally, I wish to thank Per Stenström, my examiner, who has always been ready to
give constructive feedback. Not least importantly during the writing process leading to
this PhD thesis.

iii

iv

List of Appended Papers

This thesis is a summary of the following papers. References to the papers will be made
using the Roman numbers associated with the papers.

I Ola Olsson and Ulf Assarsson, “ Tiled Shading”, in Journal of graphics, GPU,
and game tools, Volume 15, Issue 4, Pages 235–251, 2011

II Ola Olsson, Markus Billeter, and Ulf Assarsson, “ Clustered Deferred and Forward
Shading”, in HPG ’12 Proceedings of the Conference on High Performance
Graphics, pp 87–96, June, 2012

III Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter and Ulf Assarsson, “
Efficient Virtual Shadow Maps for Many Lights”, in I3D ’14: Proceedings of the
2014 symposium on Interactive 3D graphics and games, to appear, March, 2014

IV Erik Sintorn, Ola Olsson and Ulf Assarsson, “ An Efficient Alias-free Shadow Algo-
rithm for Opaque and Transparent Objects using per-triangle Shadow Volumes”,
in ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH
Asia 2011, Volume 30, Issue 6, Article No. 153, December 2011

V Erik Sintorn, Viktor Kämpe, Ola Olsson and Ulf Assarsson, “ Per-Triangle Shadow
Volumes Using a View-Sample Cluster Hierarchy”, in I3D ’14: Proceedings of the
2014 symposium on Interactive 3D graphics and games, to appear, March, 2014

Other papers, by the same author, omitted in the thesis:

• Ola Olsson and Ulf Assarsson, “ Improved Ray Hierarchy Alias Free Shadows”,
in Technical Report 2011:09, Chalmers University of Technology, April 2011

• Markus Billeter, Ola Olsson and Ulf Assarsson , “ Efficient Stream Compaction
on Wide SIMD Many-Core Architectures ”, in Proceedings of the Conference on
High Performance Graphics 2009, August 1-3, 2009

v

vi

Contents

1 Real-Time Shading and Accurate Shadows Using GPGPU Techniques 1
1 Introduction . 1

1.1 Background . 2
1.2 Overall Objective and Problem Statements 5
1.3 Main contributions . 6
1.4 Thesis Structure . 7

2 Real-Time Many-Light Shading . 8
2.1 Paper I . 8
2.2 Paper II . 9
2.3 Paper III . 11

3 Real-Time Accurate Shadows . 12
3.1 Paper IV . 13
3.2 Paper V . 14

4 Discussion and Future Work . 15
Bibliography . 17

2 Paper I: Tiled Shading 21

3 Paper II: Clustered Deferred and Forward Shading 41

4 Paper III: Efficient Virtual Shadow Maps for Many Lights 53

5 Paper IV: An Efficient Alias-free Shadow Algorithm for Opaque and Trans-
parent Objects using per-triangle Shadow Volumes 63

6 Paper V: Per-Triangle Shadow Volumes Using a View-Sample Cluster Hi-
erarchy 75

vii

viii

Real-Time Shading and Accurate Shadows Using
GPGPU Techniques

1 Introduction

Computer Graphics (CG) has existed in some form for about as long as there has
been computers. In fact, it could be said to have existed even before computers, if we
consider the output of looms controlled by punched cards. In turn, these machines
inspired Charles Babbage into designing the first Turing-complete mechanical computer,
the Analytical Engine, in 1837. But let us return to the topic of this thesis, before it turns
into a historical novel.

Figure 1.1: Early graphics program-
ming using punched cards.

Computer Graphics as a field has been
developing since the early 1960s. Since
then, it has developed from a niche tool
for visualization and engineering into a
corner stone for the entertainment indus-
try with practically every released feature
film using it for some aspects of produc-
tion. CG is also an important tool for prod-
uct visualization. For example, nearly all
cars seen in advertising today are virtual.
Perhaps most obviously, computer games
as we know them could not exist without
graphics.

The field of computer graphics can be
broadly divided into two main areas: off-line algorithms, and real-time algorithms. Off-
line algorithms may take considerable time, sometimes hours, to produce an image.
The goal of these algorithms is to enable movie production and similar, where scene
complexity can be significant, image quality requirements are high, and no interactivity
is required in the final product. Real-time algorithms, on the other hand, are required to
produce a new image quickly, in the order of a few hundredths of a second. The most
important goal in this case is to achieve interactivity, as required for games and similar
applications. Image quality and scene complexity, while important, are thus secondary
concerns and are often traded for performance. This division between off line and real
time is not watertight, and considerable overlap exists. Nor is it fixed over time, as
hardware capabilities changes, generally enabling algorithms once considered off line to

1

be used in real-time settings.
Computer graphics hardware is a necessary ingredient in nearly all real-time algo-

rithms and has been developing alongside the field since the beginning. In that time,
we have seen the transition from specialized, custom-built hardware units, filling entire
office buildings, to the situation today, where graphics processing units (GPUs) can
be found, not only in virtually every desktop and laptop computer, but also in many
hand-held devices such as smart phones and tablets. The hardware has also become much
more general and flexible, enabling novel algorithms and applications to be executed on
the GPUs.

The focus of this thesis is to investigate real-time algorithms that attempt to utilize
the potential of modern GPU architectures. The modern GPU, by virtue of expanding
processing power and increased programmability, enables new approaches to core real-
time graphics problems. Previous solutions have largely been constrained by the need to
exploit the limited and fixed-function, but high performance, features of graphics chips.
While many real-time algorithms have been proposed over the years, this situation has
often favoured the brute-force approach. Now, however, with the rapid evolution of GPU
capabilities and supporting programming eco-system, we are at a transition point where
more advanced algorithms start to become more effective. This provides the context and
common theme for the algorithms in this thesis: they solve important real-time rendering
problems using software running on the general-purpose GPU processing cores.

1.1 Background

Real-time graphics, especially in games, has co-evolved with graphics hardware at
a break-neck pace for the last decade and a half. Advances in hardware capabilities
have enabled new algorithms and higher scene complexity. In turn, this has led to the
development of games with increasingly complex visuals, which then fuels demand
for better hardware. Driving this cycle is the consumer demand for better performing
GPUs, along with the requirements of the work stations needed to produce the ever more
complex content for the games and movie industries. Consequently, the performance of
GPUs has been increasing exponentially over this time period.

The enabling principle behind this exponential growth is enshrined in the so-called
Moore’s Law [31]. In short, this law stipulates that transistor counts in microprocessors
double every two years, owing to improved manufacturing process technology that
shrinks the size of each transistor correspondingly1. Figure 1.2 illustrates this trend
for around 15 years of CPU and GPU development. CPUs are following the expected
curve, but GPUs are on an even steeper trajectory, doubling roughly every 1.5 years.
In the logarithmic scale, the difference looks small, but in 2013 a high-end consumer
GPU contains four times as many transistors as a corresponding CPU, and the gap is
increasing.

An important reason behind this discrepancy is that the typical task a CPU is designed
to execute is sequential, where each step depends on the result of the previous steps.

1Interestingly, it has been proposed that the law is a self fulfilling prophecy, and is in fact what motivates
the industry to improve process technology [43].

2

221

223

225

227

229

231

233

235

1997 2002 2007 2012
Year

Transistor Counts, Log2

GPU

CPU

Moore+ GPU

Moore CPU

Figure 1.2: Logarithmic plot of transistor count scaling between 1997 and 2013 for
consumer GPUs and CPUs. For each year the data point is the processor with the
highest transistor count. Also shown are dashed lines, showing the development if
Moore’s Law had been strictly adhered to, and chip area had been fixed.

This is also the prevalent programming model exposed in main-stream programming
languages, and as a result, CPU applications struggle to move beyond a single core.
Thus, the extra available transistors are not easily translated into improved performance,
as increasingly complex logic is needed to attempt to discover independent instructions
and execute them in parallel. The typical GPU application has no such problem. For
real-time graphics, there is an abundance of independent problems ready to be solved.
In a modern game, any single frame might draw a few million triangles. This means
that a similar number of vertices must be transformed, each of which is independent of
the others. Each triangle, in turn, gives rise to a number of independent fragments that
require shading calculations. Thus, adding more computational units has a direct impact
on performance, as the many independent problems can simply be spread over the larger
number of units. Scaling with transistor density is therefore relatively straightforward for
GPU architectures, and the effectiveness is high, creating a stronger incentive to expand
the number of transistors in each generation. Additionally, as the parallelism is implicitly
inherent in the problem, and not explicitly expressed in a program, existing programs
(e.g. games) typically benefit directly from advances in hardware. This contrasts with
CPU applications that often need considerable re-design to benefit from additional cores.

The consequence, in terms of computational throughput, is illustrated in Figure 1.3.
The increase in performance roughly mirrors the growth in transistor count seen earlier,
with a large and growing advantage for the GPUs. For the CPU, the bulk of the perfor-
mance increase is due to increased core counts and wider Single Instruction Multiple
Data (SIMD) execution units, i.e. a very similar approach as for GPUs. While sequen-
tial programs see little benefit from this development, the techniques and algorithms
developed for GPUs are therefore well suited to utilize modern CPU architectures.

Memory bandwidth of a GPU is also much greater than that of a contemporary CPU
(in 2013 around six times greater). This is because the typical tasks in graphics can

3

20

21

22

23

24

25

26

27

2003 2005 2007 2009 2011 2013

Year

Relative Performance, Log2

GPU

CPU

GPU Bandwidth

Figure 1.3: Normalized growth trends of theoretical FLoating-point Operations Per
Second (FLOPS), for consumer CPUs and GPUs, and memory bandwidth for GPUs.
CPU memory bandwidth shows the same general growth trend as for GPUs, but lower.

make efficient use of a wide memory interface, which requires large coherent memory
transactions. However, the performance increase in this area is much slower than for
computational throughput (see Figure 1.3). Like for single-threaded performance, there
is no direct scaling effect from smaller process nodes. If anything, smaller chips make it
more difficult to place the pins that connect the processor to the memory modules on the
circuit board.

However, raw performance is not enough to enable general-purpose computing on
the GPU. Another equally important development has been the increase in capabilities
and flexibility. The first GPUs were entirely fixed function, which means that they could
be configured for a fixed set of options, and were therefore very difficult to use for
anything other than graphics. Since that time, they have evolved into something better
described as highly parallel general-purpose processors with additional special-purpose,
fixed-function hardware units. A modern GPU supports an instruction set that matches
that of a modern CPU. Another aspect of this is the memory model, which originally
was very restrictive on the GPU. Recent GPUs allow random access to memory and are
equipped with a cache hierarchy to speed up unaligned accesses. GPUs also has specific
fixed-function support for efficient gather operations, moving non-adjacent data into
adjacent threads, in the form of texture units.

This expanding performance advantage is the key motivation for the General Purpose
GPU (GPGPU) computing movement. The term GPGPU is used to describe algorithms
that perform non-graphics (general purpose) computations on the GPU, but can more
generally, as used in this thesis, be used to describe computations that do not require the
fixed-function graphics functionality present in the GPU. Early attempts were required to
use the graphics APIs to drive computations, which placed quite severe restrictions on the
kind of computations that could be performed. This also incurred a substantial overhead,
further limiting the achievable gains [34]. With the increased flexibility, GPGPU algo-
rithms can today be more directly implemented using high-level programming languages

4

such as CUDA C++, which is dialect of the C++ language, with extensions to support
parallel execution on the GPU. Several similar efforts exist, for example C++ AMP and
OpenCL.

1.2 Overall Objective and Problem Statements

The research in this thesis covers a time where the GPUs are quickly transitioning
to fully featured processors with tremendous power. A key aspect is the fact that the
proportion of computational power in the general-purpose portions of the GPU are
increasingly overshadowing the fixed-function hardware. Figure 1.4 illustrates this by
showing a more or less linear scaling for fill-rate or Raster Operations Pipeline (ROP)
throughput, which is the rate that pixels can be output to the render target with. In
the past, real-time graphics algorithms were required to leverage the fixed-function
hardware for the bulk of computations. In practice, this frequently meant problems were
reformulated to fit the rasterization pipeline, which offers very high performance but also
often made the algorithm less efficient. Today, more efficient algorithms are not only
possible, but to support efficient real-time graphics in a future where the fixed-function
hardware continues to diminish in importance, new algorithms are required.

0

5

10

15

20

25

30

35

40

45

2003 2005 2007 2009 2011 2013

Year

Billions of Pixels per Second

Fill Rate

Linear (Fill Rate)

Figure 1.4: ROP throughput scaling, for high-end NVIDIA GPUs.

The algorithms and solutions in this thesis are all building on this realization and
make use of the general-purpose capabilities of the GPU to solve important problems
in real-time graphics in a more efficient manner. The problems examined in this thesis
are focused on two separate visual aspects, shading using many lights and accurate
shadows. For both of these problems, there exists previous solutions that are constructed
specifically to exploit the fixed-function rasterization hardware. This made them able to
deliver real-time performance at a time when the flexibility of GPUs was very limited.
However, the same design choice created inherent limits to their efficiency, which are
overcome in this thesis.

5

While using the fixed-function hardware in the wrong way is inefficient, as is shown
in this thesis, it excels when used for the specific problem it is designed for. Thus,
this thesis does not advocate replacing the entire graphics pipeline with software, only
algorithms that can be made more efficient. For example, the fixed-function hardware
excels at rasterizing triangles, and does so with very high efficiency. Consequently, if an
algorithm requires triangles to be rasterized, it should use this capability. We should not
necessarily, however, attempt to map other problems to triangle rasterization.

In this thesis, the term efficiency is broadly used when referring to the number of
operations performed to achieve some task, and therefore this measure is independent of
implementation details. The term performance, on the other hand, is used to indicate
how fast an implementation completes the task. When discussing efficiency and per-
formance, there are two main bottlenecks that must be addressed: memory bandwidth
and computational throughput. Memory bandwidth performance is continually outpaced
by advances in computational throughput (Figure 1.3). Accordingly, algorithms that
trade some computational efficiency for large improvements in bandwidth are generally
preferable.

The first specific problem area is real-time many-light shading. In this application area,
lights are generally considered to have a finite range, beyond which the influence is zero.
While this fails to model some, especially specular, effects faithfully, it is nevertheless
accepted practice in games and similar applications, as it enables a high degree of control
over run-time performance. The key problem to be solved is to efficiently establish for
each sample, the set of lights affecting it. This is often referred to as light assignment
and becomes a challenge when there are many lights.

The second problem area is accurate shadows. The previous algorithms offering the
highest performance in this area are based on the shadow-volume algorithm [11]. The
fundamental idea is to find the polygonal volume enclosing the shadowed regions of the
scene and use this to determine what samples are in shadow. The key problem that must
be solved in this instance is to determine for each visible sample whether they are within
any shadow volume.

In both many-light shading and accurate shadow computation, the problem can be
formulated as intersecting the visible samples (the view samples) with some kind of
bounding volume. In the case of many-light shading, the volumes are bounding the
influence of the light, and for shadow computations, we consider the volumes enclosing
the part of the scene that is in shadow. This is the basic computational problem that is
solved in the papers encompassed in this thesis.

1.3 Main contributions

This thesis contributes several algorithms and improvements that supplant previous
fixed-function oriented algorithms for both many-light shading and accurate shadows,
and offer superior real-time performance. The algorithms leverage the general-purpose
capabilities of modern GPUs and are highly efficient. In each case, the algorithms
overcome a substantial bottleneck in the previous formulation.

At a basic level, this thesis demonstrates that using view-sample groupings is a simple,
yet powerful, tool for constructing efficient real-time algorithms. The algorithms in the

6

thesis all intersect the view-sample groupings with bounding volumes that represent light
or shadow, depending on the application. The papers show that this can be approached
using Bounding Volume Hierarchies (BVHs), either over the view-samples or volumes
that represent light or shadow, and demonstrates that this is possible in real-time for
complex scenarios. The presented algorithms apply this to many-light shading and
accurate shadows, but the technique has much more general applicability.

Many-Light Shading For many-light shading, this thesis demonstrates several impor-
tant improvements. The first is the elimination of the memory-bandwidth bottleneck,
that is present in previous solutions, and showing that this enables performance scaling
with GPU compute capability (Paper I). The new techniques are shown to be compatible
with forward shading, providing a path to many-light shading that avoids the problems
associated with deferred shading, for example enabling transparency and Multi Sample
Anti Aliasing (MSAA) (Paper I). Clustered Shading is introduced and shown to enable
substantially more robust performance with changing viewing conditions, as well as
being capable of supporting many thousands of lights with real-time performance –
essentially showing that the number of lights need not be a bottleneck (Paper II). It is
also demonstrated that the efficiency of using clusters is higher than 2D tiles (Paper II).
The final set of contributions for many-light shading demonstrates how shadows can be
efficiently supported, something previously not shown. The main contributions include
support for hundreds of shadow-casting lights within a controllable memory footprint,
while providing high and uniform quality (Paper III).

Accurate Shadows For accurate shadows, this thesis introduces a highly efficient and
flexible algorithm for shadow volumes, which utilizes the general-purpose programming
capabilities on the GPU. The algorithm represents the first substantially different ap-
proach to shadow volumes since the use of the stencil buffer was introduced in 1991 [21],
by reconsidering the use of the fixed-function hardware to rasterize shadow quads. The
new algorithm provides a robust solution, at the same time as supporting textured and
transparent shadow casters, with a small memory footprint (Paper IV). The technique is
then further improved and shown to consistently outperform traditional stencil-buffer
approaches (Paper V).

1.4 Thesis Structure

This introduction has provided the background against which this thesis is written and
given the overall objective and main contributions. The papers in the thesis focus on two
concrete problem areas; many-light shading and accurate shadows. In Section 2, papers
I to III, which focus on many-light shading, are given a more detailed summary of the
individual works. Next, in Section 3, the problem of accurate shadows is investigated,
and papers IV and V are summarized. After that, Section 4 concludes the overview part
with a discussion of the results and techniques presented in the thesis, along with some
thoughts on future work. Finally, there follows a chapter for each of the five papers that
represent the research carried out for this thesis.

7

2 Real-Time Many-Light Shading

Using many lights in real-time applications has been an important goal for many
years. The games industry in particular has strived to increase the number of lights to
provide enhanced visual quality and realism. Many lights can be used to enable dynamic
effects and also to visualize Global Illumination (GI) effects.

Traditional forward shading required a set of lights to be established before each draw
call was invoked to render some part of the geometry. This meant that the size and shape
of geometry batches directly affects how well the light assignment can be performed. For
example, an object with a long extent might be affected by a large number of lights, even
though the lights do not overlap, and thus need to be subdivided for efficient shading.
This is in direct conflict to the requirements of efficient rasterization, which requires
large batches of geometry.

A very successful method for circumventing this problem is deferred shading [41].
Decoupling of geometry and shading is achieved by first rasterizing all geometry into a
set of G-Buffers that, for each pixel, store all geometry attributes needed for shading,
such as position, color, and shading normal [36]. In a separate pass, all shading can then
be performed as operations on the G-Buffers, decoupling shading from the geometry.
This frees the rasterizer from needing to compute shading, and batch size can therefore
be selected optimally for this stage. The shading stage is also made simpler, as shading
for each light and light type can be executed independently. In addition, shading need
only be computed for visible samples, in contrast to forward shading where overdraw
may discard previously shaded pixels. For a single depth layer, deferred shading is
therefore very efficient.

Tebbs et. al. [41] introduced the term deferred shading in 1992, although the technique
had been used earlier under different names [13, 36]. With the availability of Multiple
Render Targets (MRT) and programmable shaders in commodity GPUs and APIs, such
as OpenGL 2.0 and Direct3D 9 [27, 30], the technique became increasingly popular in
the real-time community in the early 2000s [42, 16, 19, 37]. The concept of drawing the
bounding volumes of the lights as geometry was introduced at this time to ensure the
minimal number of samples are shaded. In combination with the use of the stencil buffer
to exclude samples outside the volume [4], this yielded a method with optimal efficiency
in the number of samples shaded.

The resulting process to perform many-light shading is to first rasterize the geometry
to the G-Buffers, and then for each light, rasterize the bounding geometry. The fragment
shader will then be executed for each sample covered by the screen-space projection of
the light, and can load the geometry attributes from the G-Buffers, compute shading for
the light, and add the result in an intermediate buffer.

2.1 Paper I

Problem As noted earlier, GPU compute performance increases much faster than
memory bandwidth. The deferred-shading technique, while flexible, very easily becomes
bandwidth limited. This is because for each sample that is affected by a light, the shader
must load the attributes from the G-Buffer, calculate light contributions from a single

8

light source, and then add the intermediate result to a buffer. Consequently, while
the method is optimal in the number of shaded samples, it is limited by the memory-
bandwidth performance. In addition, it is very difficult to support transparent geometry
with deferred shading, and rendering engines therefore typically resort to a forward
shading pass for the transparent geometry and, therefore, needed to maintain a completely
separate set of shaders, leading to inconsistent visual results and extra complexity.

In the games development community, a technique based on screen-space tiles has
been described to improve deferred shading performance [6, 3, 40, 25, 10]. However,
the available material consists of a handful of presentation slides, and little evaluation or
comparison is performed.

Methodology In Paper I, the starting point is the basic idea of using tiles to solve
the many-light problem for deferred shading, called tiled deferred shading. The paper
examines this technique and attempts to apply it to solve long standing problems in
deferred shading. To evaluate the algorithm, a complete implementation using CUDA
was created, running all computationally intensive stages on the GPU as a general-
purpose processor. The implementation was benchmarked on a set of scenes with several
hundred point lights added. Traditional deferred shading was also implemented with the
stencil optimization to enable a direct comparison. The paper also introduces a novel
generalization, applying the technique tiled shading to forward shading. To establish
the efficiency of the algorithms, we measure the number of lighting computations. This
measure describes the sum of the number of lights affecting each samples.

Contributions Paper I examines the use of screen-space tiles to solve the light as-
signment problem. It is shown that this eliminates the memory bandwidth bottleneck
associated with earlier solutions. Paper I also introduces a generalization that enables
many-light shading with forward shading, called tiled forward shading, greatly in-
creasing the flexibility of the technique and making it simple to support transparent
geometry and MSAA, which is very difficult with traditional deferred shading. The
paper contributes the first detailed description of the technique and a thorough perfor-
mance analysis, demonstrating that the memory bandwidth is indeed the bottleneck in
traditional deferred shading and showing that the performance of tiled deferred shading
scales with increased GPU compute capacity.

2.2 Paper II

Problem A fundamental problem with tiled shading is that the two-dimensional screen-
space tiles used for light assignment do not match the three-dimensional nature of the
scenes it is used to render. This mismatch gives rise to view dependencies that lead to
unpredictable performance, which essentially is uncontrollable at content authoring time.
In pathological views, the light culling efficiency degenerates to a pure screen-space
operation, and even in the case where just a few tiles are affected, the result is poor
load balancing in the shading computations. This problem increases when very many
lights are used, and in particular when transparent geometry is present. The ability to use

9

many lights is an important property, as it enables the application to global illumination
applications such as photon splatting [39] or manual approximations of such techniques.

Moreover, it is not clear whether using 3D groupings is the best option, given that the
scene geometry has several other dimensions that could be explored. For example, the
normal direction is implicated in the coherency of lighting calculations. Therefore, it is
desirable to explore yet higher-dimensional groupings of view samples.

A problem with this approach is embodied in the so-called curse of dimensionality,
which simply is a reminder that wherever high-dimensional data is considered, compu-
tational cost goes up. The problem at hand is no different, and it is therefore unclear
whether the increased cost of many more tiles may in fact be prohibitive.

Methodology To explore this problem space, Paper II introduces the concept of clus-
tered shading, where the term cluster is used to denote a tile with a higher dimensionality
than two, in order to differentiate from tiled shading. As the higher dimensionality means
that it is not practical to store the full grid, the paper explores several approaches to
efficiently determining the actual clusters containing samples. This is achieved through
an efficient sorting design, or alternatively using a structure similar to virtual page tables.
To solve the light assignment problem, and to support many lights, a light hierarchy was
designed, and for each cluster this hierarchy is queried.

The paper also makes use of the fact that since the cluster represents a much smaller
sub-division of the viewing volume, the implied bounding geometry can be used as a
proxy for the samples within, with much greater efficiency than 2D tiles. Therefore the
implementation supports both explicit and implicit bounding boxes and bounding cones
to explore this trade-off.

The rasterization stage, filling the G-Buffers, is implemented using the fixed-function
hardware, as is necessary for real-time performance with complex models. The clustered-
shading algorithm stages are implemented on the GPU using CUDA, including light-tree
construction and traversal. The implementation makes extensive use of C++ templates
to generate efficient specializations of the many different parameters explored.

Contributions The results show that compared to tiled shading, clustered shading
achieves higher efficiency and exhibits lower view dependence. The implementation
demonstrates that real-time performance is practically achievable, even for very large
numbers of lights (up to one million was tested). The overhead for three-dimensional
clusters is shown to be low, especially using implicit cluster bounds, even when there
are not many lights visible.

The normal-clustering, and the explicit bounds calculations, were found to introduce
additional overhead that was not recouped by improved shading performance. This is
because the efficiency of the base-line clustered shading with 3D clusters and implicit
bounds is already high. However, with improved implementations and GPU hardware,
these techniques may well prove valuable in the future, as the efficiency is improved.

Another key result is that clustered forward shading is shown to offer performance that
is comparable to the deferred variant. This makes it an important candidate for use with
transparency algorithms, for which clusters are especially suited as they perform light

10

assignment in 3D. Forward shading is also desirable as it enables the use of hardware
MSAA, which is very expensive using deferred shading.

2.3 Paper III

Problem In Paper I and Paper II, and also in previous and concurrent work [6, 3,
40, 25, 10, 18, 17], the effect of adding shadow calculations is not considered. This is
generally a result of the ubiquitous trade-off in real-time graphics between performance
and visual quality. It is also a highly complex problem area with numerous parameters
that will strongly affect performance and capabilities.

Shadows are, however, a highly desirable feature with important implications for
visual fidelity and usability. Without shadows, detail in the geometry is lost, in particular
when there are many lights. When using automatic or interactive light placement, correct
shadows ensure that light does not leak through walls unintentionally.

In the games industry, and real-time graphics community at large, using shadow maps
is the de facto standard. Shadow maps suffer from several kinds of aliasing artifacts, but
are popular because they can directly leverage the fixed-function hardware rasterizer and
offer predictable performance, while being insensitive to the types of geometry used.
For this reason, shadow maps need to be evaluated in the context of many lights, if
nothing else to provide a base-line benchmark against which to measure more advanced
algorithms.

Methodology To design a solution that uses shadow maps for many lights, there are
several important concerns. First, effective culling of shadow-casting geometry must be
considered. Secondly, the process must be memory efficient, while preferably achieving
uniform shadow quality.

The design attempts to meet the first goal by building on clustered shading. The
clusters represent a coarse approximation of the visible samples. This information allows
the system to establish what regions in each shadow map contain shadow receivers, and
therefore also provides a mechanism for detecting the shadow-casting geometry that
does not affect these regions.

The second goal is met by designing a system that leverages the recent introduction
of virtual textures in graphics hardware and APIs. The design in the paper uses virtual-
texture support to be able to allocate virtual shadow maps for each light but only commit
physical storage where needed. The regions where physical backing is required are those
containing shadow receivers, as described above. In this way, the design aims to keep
the memory usage related to the number of samples needing shadow, while allowing the
shadow-map resolution to roughly match the needed resolution.

To evaluate the feasibility of this design, the system was implemented using OpenGL
and CUDA. All stages that do not involve rasterization were implemented in CUDA,
with sequencing running on the host CPU.

Contributions Paper III demonstrates that virtual shadow maps represent a viable
path towards real-time many-light shadows. The results show real-time performance for

11

several hundred high-quality shadows in a complex scene. The memory usage was found
to be correlated to the number of shadowed samples, which enables memory budgeting
with reasonable constraints. The shadow-culling performance is very high and effective,
significantly reducing the number of triangles rasterized into the shadow maps, while
incurring little overhead.

The paper also contributes a method for very quickly estimating the required resolu-
tion of the shadow map for all lights, in order to achieve uniform quality. This is shown
to produce shadows of high visual quality.

Additionally, the paper explores Level of Detail (LOD) schemes, to attempt to
establish performance bounds. To this end, GPU ray tracing using a voxel hierarchy
is explored. The ray tracing is shown to perform well when there are few samples to
shadow for each light, and a hybrid approach combining shadow maps for lights that
require many samples, with ray tracing when only few samples are required, is shown to
be promising.

Paper III presents a high-performing bottom line for real-time many-light shadowing
performance, while at the same time providing high quality and efficient use of memory.
This makes the paper an important benchmark for future research into this problem
space.

3 Real-Time Accurate Shadows

Accurate and robust shadows has been a research topic in computer graphics for a
long time. The most successful design to date was introduced by Crow in 1977 [11]
under the name shadow volumes. In 1991 the modern stencil-buffer based approach
was introduced [21]. As the technique makes use of fixed-function hardware available
already in early GPUs, the technique quickly became popular, and has been followed by
numerous variations and optimizations [7, 8, 22, 15, 26, 1, 9].

The stencil buffer is a full screen buffer that can be set or queried for each generated
fragment and can be used to terminate fragments before shading. The basic idea of
stencil based shadow volumes is to find the silhouette edges of the shadow-casting object,
as seen from the light, and for each of these edges create a shadow quad, which extends
from the edge to infinity. All shadow quads for an object together with the object itself,
precisely bound the volume that is in shadow. The shadow quads are then rasterized to
the screen, which must have the depth buffer prepared with the scene geometry. For each
front-facing quad, the stencil buffer is incremented by one, and for back-facing quads, it
is decremented. Since the stencil operations are performed after the depth test, this will
leave all pixels inside the volume with a value greater than zero. These pixels are thus in
shadow and can be shaded in a separate shading pass.

There exists competing techniques collectively referred to as alias-free shadow maps,
which can also produce accurate shadows efficiently [2, 23]. These techniques use the
shadow-mapping algorithm [45] as the starting point and have been realized in real-time
implementations utilizing GPGPU techniques [38].

12

3.1 Paper IV

Problem The various accurate shadow algorithms present all have limitations. Shadow-
volume algorithms are able to perform in real-time for many scenes but require geometry
to be pre-processed to extract silhouette edges, do not support alpha tested geometry,
are not generally robust, and have very high ROP-throughput requirements. There
have been numerous papers proposed to advance these issues individually, but they
typically sacrifice performance for features or robustness, or generality and scalability
for performance.

The use of the fixed-function rasterizer to draw shadow quads leads to very high
fill-rate requirements of the shadow-volume algorithms. This is a problem that is strongly
view dependent, as it depends on how large the shadow volumes are on screen. Even
for moderately complex scenes, it is usually possible to find view points that are several
times more costly than other views. This variable and unpredictable performance is
problematic for real-time applications, where a maintained smooth and high frame rate
is generally desired.

Alias-free shadow maps have fewer problems with robustness and are more flexible.
However, existing GPU implementations of techniques suffer from load-balancing
problems and resulting unpredictable and poor performance. In addition, memory
requirements are quite high.

Methodology Paper IV introduces a novel shadow-volume algorithm, based on screen-
space tiles, to solves these problems. The algorithm essentially starts from the original
idea of shadow volumes and applies that to individual triangles, producing Per Triangle
Shadow Volumes (PTSVs) that are rasterized using a hierarchical software rasterizer
running on the GPU. This represents a novel path compared to the vast majority of
previous work, which focuses on silhouette edge extraction and hardware rasterization.

The algorithm tests each PTSV against a depth hierarchy constructed directly from
tiles over the depth buffer, similar to a mip-map. As this is a full hierarchy, no references
need to be stored, and the representation is very compact.

By choosing triangle volumes as the primitive, it appears the algorithm would loose
a lot of the opportunities for optimization brought by the introduction of the silhouette
extraction. This is indeed the case, but it simultaneously enables new, more significant,
opportunities. First, by considering a volume primitive, the algorithm can now reject any
sample that is outside the volume, whereas stencil-based shadow algorithms need to draw
all the shadow quads before this property can be established. The opposite also holds,
allowing the algorithm efficiently establish regions that are in shadow. Secondly, where
stencil shadows need a counter for each sample, the new method only needs a flag, as a
sample can be directly tested for membership in the volume. In addition, the robustness
problems are not inherited, and no requirements are made on the scene geometry – any
triangle soup can be handled.

To compare efficiency, a measure called test-and-set operations is introduced, which
describes how many operations are executed. In the case of the stencil based shadows,
this corresponds to the number of stencil updates, and for the new method it refers to

13

the number of nodes visited during the hierarchical rasterization. This measure enables
comparing the efficiency of two relatively different approaches.

This algorithm is implemented using CUDA and compared to optimized version of
the most prominent versions of shadow volumes, as these represent the best performing
real-time accurate shadow methods. The implementation was evaluated on a moderately
complex game scene, using an animated camera path.

Contributions Paper IV contributes a real-time, robust and very efficient shadow algo-
rithm, demonstrating that even highly tuned algorithms utilizing fixed-function hardware
can be outperformed by software running on the general-purpose GPU hardware. The
algorithm uses a novel approach to achieve an efficient shadow-volume algorithm based
on individual triangle shadow volumes. Compared to traditional shadow volumes, the
new approach is much more efficient in the number of test-and-set operations needed
to compute shadows. The new approach offers higher performance at high resolutions
and is generally shown to exhibit a lower view dependence. The memory overhead is
very low, even compared to shadow volumes. The new algorithm can also be trivially
extended to support transparent and textured shadow casters, without sacrificing the high
efficiency.

3.2 Paper V

Problem The use of screen-space tiles in Paper IV means that, while the view de-
pendency of the algorithm is lower than for shadow volumes, it suffers from the same
type of view dependency as does the techniques in Paper I. This is also a source of
inefficiency as, in the presence of depth discontinuities, the higher levels of the depth
hierarchy represent very large volumes that intersect many shadow volumes. This also
results in poor load balancing in the implementation, as some PTSVs need to visit large
portions of the screen to determine if samples intersect.

Methodology To improve these matters, Paper V makes use of the cluster concept
introduced in Paper II, instead of screen-space tiles. The algorithm makes use of small
three-dimensional clusters with explicit bounding boxes. From the view samples, a
semi-implicit hierarchy of clusters is constructed, making use of the improved atomic
operation support found in modern GPUs. The hierarchy is then traversed using the
PTSVs as before, at the leaves testing individual samples. These improvements solve
the problems with depth discontinuities and therefore also reduce the associated load-
balancing problems. However, to completely eliminate these, the algorithm is extended
with a two-pass method that performs traversal of all PTSVs to a certain level, and then
stores the traversal state to a buffer, before restarting traversal from this depth, with a
rebalanced work distribution.

Contributions The resulting algorithm is shown to outperform Paper IV and also
shadow volumes, consistently. Shadow volumes are demonstrated to offer little perfor-
mance increase on recent GPU generations, as they scale with ROP throughput. The

14

new algorithm is able to make effective use of the increased compute capability. The use
of clusters and load-balancing measures are shown to be effective and the performance
is very robust with respect to changing viewing conditions. The overhead for building
the more advanced acceleration structure is modest, even with explicit cluster bounds
calculated, and has great potential for many other applications that could benefit from
a fast and tight hierarchy over the visible samples. The paper also introduces a new
set of culling planes, which significantly improves culling efficiency during traversal,
compared to Paper IV. The ability to trivially extend to transparent and textured shadow
casters is retained and, through the improved load balancing, made more efficient.

4 Discussion and Future Work

This thesis demonstrates that using groupings of view samples provides a useful
mechanism for real-time algorithms. Especially, clusters stand out as a useful building
block, and the thesis shows several ways in which they can be established very quickly.
The applications used to develop these methods are many-light shading and accurate
shadows, but there exists many other applications where the fundamental problem is the
intersection between view samples and some kind of volume.

In fact, this description applies to much of the real-time research that uses a deferred
shading approach to apply effects in screen space. One example is illumination splatting
to produce GI effects, which has many similarities to many-light shading [39, 12].
Splatting has been implemented using tiled approaches and therefore suffers from
the problem of discontinuities that is overcome by using clusters [32, 28]. Another
example is ambient occlusion volumes, which have the same basic characteristic [29].
Soft shadows using some penumbra-volume representation is another candidate for
a clustered approach [5, 14]. These techniques might all be made more efficient by
applying the solutions advanced in this thesis.

The many-light shading techniques presented in this thesis will probably become
directly useful in the games industry – clustered shading is already implemented in
at least one high-profile game [35]. The general techniques in this thesis may also
gain attention, with the new generation of high-end consoles having the bulk of their
computational resources in GPGPU-capable GPUs. This should lead to an increased
interest and pay-off of algorithms that can efficiently exploit this kind of architecture.

Paper II and Paper III make use of a light hierarchy to quickly establish the lights
needed for shading. When the number of lights increases, there emerges an interesting
opportunity to using such a hierarchy to merge lights that have a similar influence. This
has been explored for off-line rendering and might become applicable in real time in the
future [44, 20, 33].

Paper II begins the exploration of higher-dimensional clusters. While it is found to
not improve performance appreciably for the relatively simple shading application in
the paper, the idea remains interesting and potentially useful. In the future, it would be
interesting to explore clustering on other attributes and other applications.

Another direction to extend clustered shading in is to consider specular lobes during
light assignment [24]. This is a reasonably simple matter of extending the intersection

15

test between clusters and lights to consider the specular intensity. Doing this would
require the normal information in the clusters, as described in Paper II. This should
increase the visual fidelity by providing specular highlights far from the light sources,
but the performance ramifications are unclear.

Volumetric phenomena, such as particles in real-time rendering, are usually bandwidth
limited due to high overdraw. These effects might also benefit from the techniques
presented in this thesis. However, it is less straight forward as the effects are volumetric
and therefore require integration along the entire ray from the eye to the sample. This
means that it is not enough to find the intersection with the visible samples. Thus, using
a depth hierarchy as in Paper IV might be a useful approach, but it seems not unlikely
that a solution tailored more towards the specific problem may prove more suitable. The
GPU hardware development trends outlined in this thesis show little sign of slowing.
Instead, what we find today is that CPUs are becoming more like GPUs, with wide SIMD
units and several cores, and are also starting to integrate GPUs on the same chip. This
leads to an increasing focus on the use of the GPU for general-purpose programming, to
be able to exploit the full potential of the hardware. As the general-purpose compute
capabilities of the GPUs increase, yet more algorithms will need to target this hardware
to remain on the forefront of real-time performance.

16

Bibliography

[1] Timo Aila and Tomas Akenine-Möller. A hierarchical shadow volume algorithm.
In Proc. of the ACM SIGGRAPH/EUROGRAPHICS conf. on Graphics hardware,
HWWS ’04, pages 15–23, 2004.

[2] Timo Aila and Samuli Laine. Alias-free shadow maps. In Proc. of EGSR 2004,
pages 161–166, jun 2004.

[3] Johan Andersson. Parallel graphics in frostbite - current & future. SIGGRAPH
Course: Beyond Programmable Shading, 2009.

[4] Jukka Arvo and Timo Aila. Optimized shadow mapping using the stencil buffer.
journal of graphics, gpu, and game tools, 8(3):23–32, 2003.

[5] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft shadow volume
algorithm using graphics hardware. In Proc. SIGGRAPH ’03, page 511–520. ACM,
2003.

[6] Christophe Balestra and Pål-Kristian Engstad. The technology of uncharted:
Drake’s fortune. Game Developers Conference, 2008.

[7] William Bilodeau and Mike Songy. Real time shadows. Creativity 1999, Creative
Labs Inc. Sponsored game developer conferences, 1999.

[8] John Carmack. Z-fail shadow volumes. Internet Forum, 2000.

[9] Eric Chan and Frédo Durand. An efficient hybrid shadow rendering algorithm. In
Proc. of the EGSR, pages 185–195, 2004.

[10] Christina Coffin. Spu-based deferred shading in battlefield 3 for playstation 3.
Game Developers Conference, 2011.

[11] Franklin C. Crow. Shadow algorithms for computer graphics. SIGGRAPH Comput.
Graph., 11:242–248, July 1977.

[12] Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination. In
Proc. I3D ’06, page 93–100. ACM, 2006.

[13] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt.
The triangle processor and normal vector shader: a vlsi system for high performance
graphics. SIGGRAPH Comput. Graph., 22(4):21–30, 1988.

[14] Elmar Eisemann and Xavier Décoret. Visibility sampling on GPU and applications.
Computer Graphics Forum, 26(3):535–544, 2007.

[15] Cass Everitt and Mark J Kilgard. Practical and robust stenciled shadow volumes
for hardware-accelerated rendering. arXiv preprint cs/0301002, 2003.

[16] Rich Geldreich, Matt Pritchard, and John Brooks. Deferred lighting and shading.
Game Developers Conference, 2004.

17

[17] Takahiro Harada. A 2.5D culling for forward+. In SIGGRAPH Asia 2012 Technical
Briefs, pages 18:1–18:4. ACM, 2012.

[18] Takahiro Harada, Jay McKee, and Jason C. Yang. Forward+: Bringing deferred
lighting to the next level. In Eurographics (Short Papers), pages 5–8, 2012.

[19] Shawn Hargreaves and Mark Harris. Deferred shading. NVIDIA Developer
Conference: 6800 Leagues Under the Sea, 2004.

[20] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling for
the many-light problem. ACM Trans. Graph., 26(3), July 2007.

[21] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28–31, 1991. Silicon
Graphics, Inc.

[22] Samuel Hornus, Jared Hoberock, Sylvain Lefebvre, and John C. Hart. ZP+: correct
Z-pass stencil shadows. In Proc. I3D ’05, pages 195–202. ACM, 2005.

[23] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and William R. Mark. The
irregular z-buffer: Hardware acceleration for irregular data structures. ACM Trans.
Graph., 24(4):1462–1482, 2005.

[24] Brian Karis. Tiled light culling. Blog ’Graphic Rants’ at http://blogspot.se, 2012.

[25] Andrew Lauritzen. Deferred rendering for current and future rendering pipelines.
SIGGRAPH Course: Beyond Programmable Shading, 2010.

[26] Brandon Lloyd, Jeremy Wend, Naga K. Govindaraju, and Dinesh Manocha. Cc
shadow volumes. In EGSR/Eurographics Workshop on Rendering Techniques,
pages 197–206, 2004.

[27] Rob Mace. GL ATI draw buffers. OpenGL Registry, 2002. http://www.
opengl.org/registry/specs/ATI/draw_buffers.txt.

[28] Michael Mara, David Luebke, and Morgan McGuire. Toward practical real-time
photon mapping: efficient GPU density estimation. In Proc. I3D ’13, I3D ’13, page
71–78. ACM, 2013.

[29] Morgan McGuire. Ambient occlusion volumes. In Proc. of the HPG ’10, page
47–56. Eurographics Association, 2010.

[30] Microsoft. Directx 9.0 features revolutionary high-level shader language. Mi-
crosoft Press Release, 2003. http://www.microsoft.com/presspass/
press/2003/jan03/01-22directxhlslpr.mspx.

[31] Gordon E Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8):114–117, 1965.

[32] Greg Nichols and Chris Wyman. Interactive indirect illumination using adaptive
multiresolution splatting. IEEE Transactions on Visualization and Computer
Graphics, 16(5):729 –741, 2010.

18

[33] Jiawei Ou and Fabio Pellacini. LightSlice: matrix slice sampling for the many-
lights problem. In Proc. SA ’11, page 179:1–179:8. ACM, 2011.

[34] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and
James C. Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[35] Emil Persson and Ola Olsson. Practical clustered deferred and forward shading.
In Courses: Advances in Real-Time Rendering in Games, SIGGRAPH ’13, page
23:1–23:88. ACM, 2013.

[36] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d shapes.
SIGGRAPH Comput. Graph., 24(4):197–206, 1990.

[37] Oles Shishkovtsov. Deferred shading in S.T.A.L.K.E.R. In GPU Gems 2. Addison-
Wesley, 2005.

[38] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample-based visibility for soft
shadows using alias-free shadow maps. CG Forum (EGSR 2008), 27(4):1285–1292,
June 2008.

[39] Wolfgang Stürzlinger and Rui Bastos. Interactive rendering of globally illuminated
glossy scenes. In Proc. of the Eurographics Workshop on Rendering Techniques

’97, pages 93–102. Springer-Verlag, 1997.

[40] Matt Swoboda. Deferred lighting and post processing on playstation 3. Game
Developers Conference, 2009.

[41] Brice Tebbs, Ulrich Neumann, John Eyles, Greg Turk, and David Ellsworth. Par-
allel architectures and algorithms for real-time synthesis of high quality images
using deferred shading. 1992.

[42] Nicolas Thibieroz. Deferred shading with multiple render targets. In ShaderX2:
Shader Programming Tips and Tricks with DirectX 9.0, Wordware game developer’s
library. Wordware Publishing, Incorporated, 2003.

[43] Video Transcript. Excerpts from a conversation with gordon moore: Moore’s law.
Intel Corporation, 2005.

[44] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian,
and Donald P. Greenberg. Lightcuts: A scalable approach to illumination. In Proc.
SIGGRAPH ’05, page 1098–1107. ACM, 2005.

[45] Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH Comput.
Graph., 12:270–274, August 1978.

20

Paper I: Tiled Shading
Ola Olsson and Ulf Assarsson

Abstract: In this article we describe and investigate Tiled Shading. The tiled tech-
niques, though simple, enable substantial improvements to both deferred and forward
shading. Tiled Shading has previously been talked about only in terms of deferred
shading (Tiled Deferred Shading). We contribute a more detailed description of the
technique, introduce Tiled Forward Shading (a generalization of Tiled Deferred Shading
to also apply to forward shading), and a thorough performance evaluation.

Tiled Forward Shading has many of the advantages of deferred shading, e.g. scene
management and light management is decoupled. At the same time, unlike traditional
deferred and tiled deferred shading, Full Screen Anti Aliasing and transparency is trivially
supported.

We also contribute a thorough comparison of the performance of Tiled Deferred, Tiled
Forward and traditional deferred shading. Our evaluation shows that Tiled Deferred
Shading has the least variable worst case performance, and scales the best with faster
GPUs. Tiled Deferred Shading is especially suitable when there are many light sources.
Tiled Forward Shading is shown to be competitive for scenes with fewer lights, while
being much simpler than traditional forward shading techniques.

Tiled shading also enables simple transitioning between deferred and forward shading.
We demonstrate how this can be used to handle transparent geometry, frequently a
problem when using deferred shading.

Demo source code is available online.

Journal of graphics, GPU, and game tools, Volume 15, Issue 4, Pages 235–251, 2011

21

Vol. 15, No. 4: 235–251

Tiled Shading

Ola Olsson and Ulf Assarsson
Chalmers University of Technology

Abstract. In this article we describe and investigate tiled shading . The tiled

techniques, though simple, enable substantial improvements to both deferred and

forward shading. Tiled Shading has been previously discussed only in terms of

deferred shading (tiled deferred shading). We contribute a more detailed description

of the technique, introduce tiled forward shading (a generalization of tiled deferred

shading to also apply to forward shading), and a thorough performance evaluation.

Tiled Forward Shading has many of the advantages of deferred shading, for exam-

ple, scene management and light management are decoupled. At the same time,

unlike traditional deferred and tiled deferred shading, full screen antialiasing and

transparency are trivially supported.

We also present a thorough comparison of the performance of tiled deferred, tiled

forward, and traditional deferred shading. Our evaluation shows that tiled deferred

shading has the least variable worst-case performance, and scales the best with

faster GPUs. Tiled deferred shading is especially suitable when there are many light

sources. Tiled forward shading is shown to be competitive for scenes with fewer

lights, and is much simpler than traditional forward shading techniques.

Tiled shading also enables simple transitioning between deferred and forward

shading. We demonstrate how this can be used to handle transparent geometry,

frequently a problem when using deferred shading.

Demo source code is available online at the address provided at the end of this

paper.

© Taylor & Francis Group, LLC

235 ISSN: 2151-237X print/2151-2272 online

236 journal of graphics tools

1. Introduction

Tiled shading works by bucketing lights into screen-space tiles. Each tile con-
tains a list of (potentially) affecting lights. The tiles can then be processed
independently to compute the lighting. We will describe how this technique
can be used to great advantage when implementing both deferred and forward
shading.

Tiled shading has similarities to tiled rendering [Fuchs et al. 89], an old tech-
nique wherein the tiling is applied to geometry primitives, instead of lights.
Tiled rendering has been unable to scale to the millions of primitives used
today. Lights, in contrast, number (at most) in the thousands, for even the
most demanding real-time applications. For tiled shading, this enables quick
bucketing, and real-time performance.

Tiled deferred shading is not a new technique, but has been described in
several recent talks [Balestra and Engstad 08, Andersson 09, Swoboda 09,
Lauritzen 10]. In this article, we describe the technique in detail and show how
it can be generalized to apply to forward shading as well. We also present an in-
depth comparison of the performance, comparing tiled forward shading, tiled
deferred shading, and traditional deferred shading. A sample implementation
with source code is available online at the address listed at the end of this
paper.

1.1. Definitions

Lights, in this article, are point lights with a finite range, beyond which they
do not contribute any lighting. Thus, when we refer to the light volume, this is
the spherical volume defined by the light position and influence radius. This is
obviously not physically correct, but represents a very common type of light in
real-time applications. The techniques presented can be applied to arbitrary
kinds of lights, but this is beyond the scope of this article.

In the literature, it is not always clear what is meant by deferred shad-
ing . In this article we refer to the technique whereby all required geometry
attributes are rendered into geometry buffers (G-buffers [Saito and Takahashi
90]), in a single geometry pass. The G-buffers contain attributes such as posi-
tion, normal, and material properties for each pixel. This is followed by a
lighting pass, during which the lights are applied one at a time by rasterizing
the light volumes. Note that this is different from deferred lighting [Arvo and
Aila 03], which performs light computations only in the deferred pass and
adds a separate geometry pass to compute final shading. This technique is
also referred to as light pre-pass rendering [Engel 09]. Because deferred light-
ing has the same basic characteristics as deferred shading, we do not evaluate
this technique in this article.

Olsson and Assarsson: Tiled Shading 237

We use the term forward shading in reference to lighting that is computed
in the fragment (or sometimes, vertex) shader as part of the rasterization
of the scene geometry. This technique is probably still the most common in
real-time applications, such as games.

2. Tiled Deferred Shading

Recently, a technique called tiled deferred shading has been discussed in
the game development community [Balestra and Engstad 08, Andersson 09,
Swoboda 09, Lauritzen 10]. The primary goal is to solve the bandwidth prob-
lem, which plagues deferred shading. The problem is that each time a fragment
is affected by a light, the geometry information must be read from the G-
buffers. Tiled deferred shading also offers other improvements over traditional
deferred shading, as listed below:

● G-buffers are read exactly once for each lit fragment.

● Common terms in the rendering equation can be factored out.

● The framebuffer is written exactly once.

● Light accumulation is done in register, at full floating-point precision.

● Fragments (in the same tile) coherently process the same lights.

The first point also benefits computations, as texture fetch and data unpacking
need be performed only once. Examples of the common terms that can be
factored out are the material diffuse and specular colors, because these are
the same for all lights. As can be seen, there are major improvements to both
bandwidth and compute. The tiled deferred shading algorithm is summarized
in the following steps:

1. Render the (opaque) geometry into the G-buffers.

2. Construct a screen-space grid, covering the framebuffer, with some fixed
tile size, t = (x , y), e.g., 32 × 32 pixels.

3. For each light, find the screen-space extents of the light volume and
append the light ID to each affected grid cell.

4. For each fragment in the framebuffer, with location f = (x , y),

a. sample the G-buffers at f ,

b. accumulate light contributions from all lights in tile at �f/t�, and
c. output total light contributions to framebuffer at f .

238 journal of graphics tools

The first step is an ordinary deferred geometry pass. The second and third
steps are part of the light-grid construction process, which can be implemented
in several ways (see Sections 6 and 7). The fourth step can be implemented
using compute shaders, CUDA, OpenCL, SPUs, or by drawing a full-screen
quad, as platform or desire dictates.

2.1. Limitations

Deferred shading has notable weaknesses, some of which are shared by the
tiled approach. The most important, perhaps, is when it is combined with
full screen antialiasing (FSAA). The primary issue is simply the required
framebuffer size. At 1080p (1920 × 1080), and with 16 times multisample
antialiasing (MSAA), a 32-bit color render requires almost 256 Mb to store
depth and color samples. For most current graphics hardware, adding several
other G-buffers on top of this is simply not possible. Performing the deferred
shading post-resolve (i.e., after AA averaging) re-creates the aliasing wherever
shading changes quickly. It is, however, possible to compute the shading pre-
resolve, and to do so only where edges are present [Swoboda 09, Lauritzen 10]
— provided, that is, G-buffers can be made to fit in memory.

Neither deferred shading, nor tiled deferred shading, provides a way to
handle transparency. We are left instead with techniques that are approxi-
mate [Kircher and Lawrance 09, Enderton et al. 10], or expensive [Everitt 01].
In Section 4, we present a way to conveniently support transparency when
using tiled shading.

Another issue, common to both forward shading and tiled deferred shading,
is that all lights (that cast shadows) must have their shadow maps built before
the shading pass. This is because all lights are in flight simultaneously. Storing
shadow maps for hundreds of lights can be prohibitive in terms of memory.
In contrast, traditional deferred shading computes all light contributions from
each light, one at a time. This means a single shadow map can be reused for
all lights.

3. Tiled Forward Shading

Tiled shading is not limited to performing deferred shading. We can also apply
the technique to traditional forward shading. We simply access the grid in the
fragment shader and apply the relevant lights. This approach has the following
advantageous properties:

● Light management is decoupled from geometry.

● Light data can be uploaded to the GPU once per scene.

Olsson and Assarsson: Tiled Shading 239

● FSAA functions as expected.

● Common terms in the rendering equation can be factored out.

● Light accumulation is done in register, at full floating-point precision.

● It performs the same shading function as tiled deferred.

The traditional approach in forward shading is to find and upload a minimal
set of lights for each batch of rendered geometry. This is time consuming and
imposes an unfortunate conflict between optimal batch sizes and minimizing
the number of lights. With the tiled approach, geometry batching can be
optimized separately from lighting, and light data can be uploaded once for
the entire scene.

Because shading is done in its traditional place in the pipeline, there is no
problem applying any FSAA scheme. Also, there are no G-buffers to worry
about. Integrating tiled shading into an existing forward shading pipeline is
straightforward, owing to the self-contained nature of tiled shading.

The last property is also worth highlighting. Because we use the same data
structure for lights, we can use the same shader functions for both deferred
and forward shading. This enables much easier transition between the two
techniques. We also exploit this to support transparency, as described further
in Section 4.

3.1. Limitations

One drawback, compared with deferred shading techniques, is that each
fragment can be shaded more than once. When overdraw occurs, the same
fragment is influenced by several primitives and consequently shaded for each.
This overdraw problem can be addressed by using a pre-z pass, which intro-
duces an extra geometry pass to prime the hierarchical/early Z-buffer. This
is already common practice in order to avoid reprocessing complex shaders,
and it is ultimately a trade-off between the cost of an extra geometry pass vs.
the cost of the redundant shading work. For example, if there are few lights
or there is low scene-depth complexity, it might be quicker to skip the pre-z
pass.

A related problem occurs when FSAA is enabled. Along primitive edges,
fragments can also be shaded several times up to once for each sample. Where
there are shading discontinuities, this yields a nicely softened edge. However,
if the edge is an interior edge in a continuous mesh, this creates redundant
work, whereby each sample is shaded to a very similar (or identical) tone.
This is in part a general problem for GPUs, because triangles are becom-
ing smaller (perhaps especially since the introduction of tessellation units).
Deferred techniques, in contrast, can analyze the samples in the G-buffers

240 journal of graphics tools

and compute shading only once, unless a discontinuity is found. In principle,
then, deferred shading has an advantage, though efficiently implementing it
is not trivial.

4. Transparency

In real-time rendering, transparent geometry is usually handled in a separate
pass. The transparent geometry is submitted in (roughly) back-to-front order,
with alpha blending enabled. This approach is impossible with deferred shad-
ing, because only one layer is represented in the G-buffers. A separate forward
pipeline must thus be maintained, complete with light management, which,
as mentioned earlier, is both complex and costly—and increasingly so as the
number of lights grows.

Using tiled shading, however, we can reuse the grid built for the deferred
pass and apply a second tiled forward shading pass with sorting and blending.
Because of the fact that all light information is stored in a single global struc-
ture (the grid), the rendering pipeline can be mostly the same for both passes.
This makes it vastly simpler to support transparency while using deferred
shading for the bulk of the geometry.

5. Algorithm Comparison

In Table 1, we summarize the the key differences and properties of the algo-
rithms for easy comparison of important features of the algorithms. Note that
the properties are not independent: many depend on other, more fundamental

Deferred Tiled Deferred Tiled Forward

Innermost loop Pixels Lights Lights
Light data access pattern Sequential Random Random
Pixel data access pattern Random Sequential Sequential
Reuse shadow maps Yes No No
Shading pass Deferred Deferred Geometry
G-buffers Yes Yes No
Overdraw of shading No No Yes
Transparency Difficult Simplea Simple
Supporting FSAA Difficult Difficult Trivial
Bandwidth usage High Low Low
Light volume intersection Per Pixel Per Tile Per Tile

aThat is, simple to implement by applying a tiled forward pass reusing the light

grid (described in Section 4).

Table 1. Comparison of properties of the algorithms.

Olsson and Assarsson: Tiled Shading 241

features. They are listed in this way, nonetheless, in order to highlight
important practical differences.

The most prominent property is the innermost loop structure. If this loop
is over the pixels, then lights are accessed in a sequential manner. This makes
it possible to reuse shadow maps. Conversely, when the innermost loop is over
the lights, the framebuffer data is sequentially accessed. This is what enables
fetching the G-buffer data once, providing the large bandwidth savings of tiled
deferred shading.

6. Building Tiles

When constructing the grid, our first task is to choose tile size. This choice
involves many trade-offs between memory and computation. For example,
smaller tiles means more storage and bandwidth use for the grid, but less
wasted computation at the light boundaries. It is therefore not likely that
there exists a single best tile size for all scene configurations (or even for all
views of the same scene).

For this article we use a tile size of 32 × 32, because this gives three orders
of magnitude fewer grid cells than pixels. Consequently, the time and memory
spent on managing tiles should not create a bottleneck. We did not experimen-
tally evaluate varying the tile size. However, 16 × 16 has also been reported
to work well [Andersson 09, Lauritzen 10].

6.1. Light Insertion

Next, we must insert the lights into the grid. The simplest way is to find the
screen-space extents of the light bounding sphere [Lengyel 02, Sigg et al. 06],
and then insert the light into the covered grid cells. This process is simple
enough to have a relatively small cost even for hundreds of lights, if imple-
mented on the CPU. For thousands of lights, with high overdraw, it can
be implemented on the GPU. The CPU approach is also suitable for older
hardware and APIs, which do not support compute shaders.

An interesting way to implement this, which we have not tested, might
be to use rasterization to build the grid. This would allow for easy handling
of arbitrarily shaped light volumes (e.g., spotlight cones). To ensure that all
lights are included, we must use conservative rasterization [Hasselgren et al.
05], because ordinary rasterization samples only fragment centers; and an
A-buffer, for example, using per-fragment linked lists [Thibieroz and Grün
10]. It is, however, unclear how well the GPU would perform with these very
small render targets (e.g., 60 × 34, when using tiles of size 32 × 32 at 1080p).

242 journal of graphics tools

A quick estimate, obtained by performing standard deferred shading to a
render target of this size, indicates that it would be at least around five times
slower, compared with the screen-space-bounding-sphere approach.

6.2. Data Structure

To facilitate lookup from shaders, we must store the data structure in a suit-
able format. We have chosen to use three arrays, as depicted in Figure 1. The
light grid contains an offset to and the size of the light list for each tile. The
tile light index list contains light indices, referring to the lights in the global
light list . This data structure can easily be stored on the GPU as constant
buffers or textures. The index list length varies with light overdraw, and can
become relatively large. It is thus suitable for storing in a texture.

6.3. Depth Range Optimization

Standard deferred shading implementations often use what is known as the
stencil optimization [Arvo and Aila 03]. This technique uses an approach
analogous to shadow volumes, but with light volumes, to create a stencil
mask. The mask lets through only fragments that are actually inside the light
volume. This can offer substantial performance improvement where the light
is large on screen but affects only a few fragments (for example, a light in the
middle of an empty corridor).

Tiled shading can make use of a similar technique, using the depth buffer
to compute a min and max Z value for each grid tile. These bounds are then
used when adding lights to the grid, to exclude lights that cannot affect the
geometry in the tile. Note that tiles that span a depth discontinuity can have

Figure 1. Grid data structure.

Olsson and Assarsson: Tiled Shading 243

a quite large difference between min and max depth. The tiled techniques will
therefore always cull somewhat less work than the stencil optimization (this
is shown in Figure 3).

Computing the tile min/max depth requires access to the Z-buffer before
the grid is constructed. This is not a problem if a pre-z or deferred pass
is performed. The min/max operation is suitable for implementation on the
GPU, using a parallel reduction per tile. The result can be read back to
the host for CPU grid-building, or the grid can be constructed entirely on
the GPU. Note that if the CPU is used, the process cannot be completely
pipelined with most current APIs.

When rendering transparent geometry (using the tiled forward approach),
this geometry is not represented in the depth buffer. We can thus only use
the farthest Z value, to reject lights that are hidden by the opaque geometry.
We could, if needed, render the transparent geometry to a separate depth
buffer with reversed depth test, to find the nearest depth value. This would
allow us to reject any light completely in front of all transparent geome-
try. In scenes where the transparent geometry lies close to the opaque—for
example, shallow water—this could be a useful optimization.

7. Single Kernel Tiled Deferred Shading

In past presentations on tiled deferred shading [Andersson 09, Lauritzen 10],
the whole process of grid building and lighting application is performed in
a single DirectX 11 compute shader. This works by launching one thread
group per tile, with one thread per fragment in the tile. Each thread group
then independently tests all lights. The six frustum planes for the tile are
constructed and then tested against each light bounding sphere. The light list
for the tile is built in local, on chip, memory, and the threads involved then
switch to lighting the fragments in the tile.

Treating each tile independently leads to a number of redundant calcula-
tions. For example, all tiles in a column or row share planes. Also, consider a
tile which has at least two opposite neighbors that are affected by a light.
This tile must also be affected by the light, without needing any plane
tests at all. The approach also requires atomic operations and thread group
synchronization, making it unsuitable for older hardware.

An advantage for the single kernel approach is that the process is self-
contained and hence simple to implement and integrate. Storing the light index
list in shared memory saves some bandwidth but is not a large improvement,
because these lists are relatively small.

8. Performance Evaluation

Performance was measured on a PC with an Intel Core 2 Quad at 2.5 GHz,
using either an NVIDIA GTX 280 or GTX 480 GPU (as indicated). The

244 journal of graphics tools

frames were rendered at full HD resolution, 1920 × 1080. The following
variations were implemented:

1. TiledForward – Tiled forward shading, using the light grid from the
pixel shader. Uses the CPU to build the grid, and OpenGL for everything
else.

2. TiledForward-PreZ – As above, with pre-z pass and depth range
optimization (min-max reduction implemented in CUDA).

3. Deferred – Standard deferred shading.

4. Deferred-Stencil – As above, with stencil optimization to cull unaf-
fected fragments within light volumes.

5. TiledDeferred – Tiled deferred shading, using CUDA to build the grid,
compute depth range and lighting.

We evaluated several versions of tiled deferred shading, but we report results
only for the best performing version. This was an implementation of the
process outlined in Sections 2 and 6, using multiple CUDA kernels.

We tried using a full-screen quad in OpenGL, computing the lighting in
the fragment shader. However, this approach was substantially slower. For
comparison, we also ported the single kernel method used in [Lauritzen 10] to
CUDA. We optimized their depth min/max reduction by using a warp-parallel
SIMD reduction (similar to warpReduce in [Harris 08]) within each warp and
only atomic operations between warps. This sped up the reduction by a factor
of six for a 16 × 16 tile on our GTX 280. After this optimization, performance
is very close to our chosen implementation, with a small advantage for the
reported version.

The light model is a fairly ordinary Blinn-Phong model with diffuse and
specular reflections. To facilitate this model, the G-buffers are:Depth, Normal ,
Diffuse Color , Specular Color and Shininess and Emissive and Ambient .

Each buffer, except depth, stores four 16-bit floating-point values per frag-
ment. However, we also tested using 32 bits, to investigate the impact of
G-buffer size on performance (see Tables 2 and 3). The depth buffer always
stores a scalar 32-bit floating-point value.

We implemented the 32-bit G-buffers to explore how varying the balance
between compute and bandwidth affect the outcome. The expected behavior is
that more bandwidth use will favor tiled deferred, whereas increasing compute
demand favors traditional deferred. Changing the light model or packing the
G-buffers would have a similar impact.

As a test scene we chose the Robots scene from the Benchmark for Animated
Ray Tracing (BART) suite [Lext et al. 01]. We chose this scene rather than
a perhaps better looking game scene because it will allow our experiments

Olsson and Assarsson: Tiled Shading 245

GPU GTX280 GTX480

G-Buffer Depth 16-bit 32-bit 16-bit 32-bit

TiledDeferred 15.7 17.2 7.87 10.4
min / max 7.05 / 33.3 8.82 / 34.8 4.19 / 15.9 6.91 / 18.2

TiledFwd 148 43.0
min / max 26.5 / 410 11.0 / 107

TiledFwd-PreZ 45.5 30.1
min / max 12.1 / 125 9.31 / 72.4

Deferred 38.3 82.1 26.8 51.3
min / max 14.0 / 90.0 27.7 / 197 9.36 / 64.3 18.2 / 121

DeferredStencil 18.4 28.3 12.2 20.2
min / max 8.1 / 39.1 12.4 / 64.8 4.98 / 26.6 9.55 / 43.8

Table 2. Average frame times in milliseconds for the scene
with many lights. Min and max frame times are also shown.
Results for 16-bit and 32-bit G-buffers are shown, for both
the GTX 280 and GTX 480 GPUs. Note that G-buffers are
not used for forward shading; thus, only one value is needed
for these techniques.

GPU GTX 280 GTX 480

G-Buffer Depth 16-bit 32-bit 16-bit 32-bit

TiledDeferred 5.55 7.06 3.34 6.34
min / max 3.00 / 7.13 5.20 / 9.44 2.36 / 4.48 4.68 / 8.98

TiledFwd 9.08 4.03
min / max 3.39 / 21.1 1.39 / 9.95

TiledFwd-PreZ 8.39 4.56
min / max 5.53 / 14.4 3.22 / 9.82

Deferred 6.55 12.8 4.17 9.36
min / max 3.86 / 10.6 6.65 / 22.7 2.12 / 7.41 5.29 / 15.5

DeferredStencil 6.20 10.6 3.65 8.05
min / max 3.90 / 9.30 6.03 / 16.9 1.65 / 5.81 4.07 / 12.4

Table 3. Average frame times in milliseconds for the scene
with few lights. Min and max frame times are also shown.
Results for 16-bit and 32-bit G-buffers are shown, for both
the GTX 280 and GTX 480 GPUs. Note that G-buffers are
not used for forward shading; thus, only one value is needed
for these techniques.

to be repeated. The BART suite is freely available, whereas most game data
is not.

We augmented the scene with point lights, and created two variations with
differing light distributions (for reference, the main street is 29.1 units wide):

● Many Static Lights – 924 lights evenly spaced along the animation
paths of the robots, with random sideways offsets. Each light has a
range of 12.5 units.

246 journal of graphics tools

● Few Dynamic Lights – One light attached to each of the 11 robots.
Each light has a range of 40 units.

8.1. Tiled Deferred Shading Performance

Overall, the results confirm that tiled deferred shading is much less variable,
with smaller differences between best and worst case performance. This is seen
in Figure 2 and Tables 2 and 3.

Traditional deferred shading is usually bandwidth limited. Thus, we expect
frame times to scale linearly with G-buffer size. This was confirmed in our
experiments, as can be seen in Tables 2 and 3. The tiled deferred variants are
much less affected.

Tables 2 and 3 also show results from a GTX 480. This new GPU roughly
doubles the (attainable) compute capabilities, whereas bandwidth grows by
only about 30%. This also favors the tiled techniques, almost doubling their
performance on the new architecture. Traditional deferred shading improves
by only about 30%, as expected.

Figure 2. Frame times over the animation sequence in the scene with many static
lights, measured on an NVIDIA GTX 280 GPU. The animation is sampled at 5 fps.
The peaks correspond to times when the camera is looking through a great many
lights. Note that the tiled forward version is clipped, in order to make the presenta-
tion clearer. It plateaus at around 400 ms, with a similar shape to the others. The
thumbnails below the graph show frames 0, 86, 186, and 259.

Olsson and Assarsson: Tiled Shading 247

Notice that traditional deferred shading with stencil optimization is fairly
competitive, when we use 16-bit G-buffers. However, with fatter G-buffers,
or increasing compute/bandwidth ratio in the GPU, performance quickly
falls behind the tiled techniques. This may not be enough to outweigh the
advantages, such as being able to share shadow map storage between lights.

In Figure 3, we show the number of lighting computations (i.e., number
of lighting function invocations) performed each frame for the different tech-
niques. As expected, the stencil optimization is the most efficient at culling
work, because it is performed at a per-fragment level. TiledFwd is worst,
but is substantially improved by the addition of pre-z pass and depth range
optimization. Notice the clear similarity to the frame time curves shown in
Figure 2. This implies that (perhaps unsurprisingly) there is a reasonably
fixed cost per lighting operation, albeit with quite different scales.

8.2. Tiled Forward Shading Performance

Tiled forward shading scales much worse with increasing light overdraw, but
the performance curves have the same overall shape (see Figure 2). In fact,

Figure 3. Lighting computations per frame, that is, the number of times the light-
ing function is executed over the animation sequence in the scene with many static
lights. This value corresponds to light volume overdraw for deferred shading, mea-
sured using occlusion queries. For TiledFwd-PreZ and TiledDeferred, this is simply
the tile size multiplied by the total length of the tile light lists. TiledFwd suffers
from geometry overdraw; we measured this using a simple shader, outputting the
light counts for each pixel with additive blending enabled.

248 journal of graphics tools

TiledFwd-PreZ is close to a factor four, and a constant offset, slower than
TiledDeferred. Because they ought to perform the same number of lighting
computations, the hardware is not utilized as efficiently. One factor could
be fragments belonging to different tiles being packed into the same warp
(SIMD unit), causing divergence. Also, along the edges of triangles, there
can be many pixel quads that are not full, in other words, up to three
of the four fragments are outside the triangle (a 2 × 2 pixel quad is the
basic unit handled by fragment shaders), wasting up to 3/4 of computa-
tional resources. Furthermore, early Z cull is conservative. Thus, there will
be fragments that are shaded, but finally discarded by the Z test, pre-z pass
notwithstanding.

On the GTX 480, the TiledFwd technique improves by up to four times
for the worst cases. This brings performance closer to expectations, given
the high number of lighting computations. The TiledFwd-PreZ shows only
modest improvement. It is unclear why it does not improve as much as
TiledFwd.

One scenario where tiled forward shading should work well is when scene
depth complexity is low, and most light volumes are overlapping the geometry.
When lights overlap the geometry, the effect of depth range optimizations is
nullified, because these optimizations are designed to cull lights that do not
overlap the geometry. This description would match a real time strategy (RTS)
game pretty well, assuming a top-down view and lots of action on, or near,
the terrain.

8.3. Fewer Lights

When rendering fewer lights (i.e., the scene with 11 dynamic lights), the
situation is quite different (see Table 3). One important factor is that the
total frame time is smaller, and consequently, a larger proportion of time is
spent rendering the model into the G-buffers. This favors the forward shading
approach, especially on the GTX 480 using 32-bit G-buffers, when compared
to the deferred techniques.

However, tiled deferred is still the technique that scales best across plat-
forms and G-buffer depth. It has the fastest worst case performance in all tests
performed. The worst case performance is arguably the most important met-
ric for real-time applications, because a stable frame rate is very important
for the perceived quality.

At the same time, it is clear that tiled forward shading offers very competi-
tive performance on the GTX 480. Remember that forward shading supports
both AA and transparency, and may therefore be a good choice if few lights
are used.

Olsson and Assarsson: Tiled Shading 249

8.4. Scaling

To show how the different algorithms respond to varying numbers of lights,
we ramped up the number of lights from zero to the maximum number (924)
for a fixed view of the scene with many lights. We selected a view that is
similar to one of the worst cases in the animation sequence from the previous
measurements (see frame 186 in Figure 2). The result is shown in Figure 4.

As can be seen from the figure, the trends are roughly linear for each of
the methods. The variability is a result of the lights requiring a varying num-
ber of lighting computations, some not being on-screen at all. The relations
established by approximately 300 lights continue unaltered for the remainder
of the measurement, and are therefore left out of the plot in order to better
show the details.

TiledDeferred displays the best scaling with the number of lights, though
it also has a higher constant offset. Below about 100 lights, deferred stencil
becomes somewhat faster. This reversal is probably tied to light overdraw
dropping far enough that the more efficient culling of the stencil optimization
outweighs the benefit of reading the G-buffers only once. Where this crossover
point occurs, consequently, depends on the relation between compute and
bandwidth capabilities (and of course G-buffer size).

Below around ten lights, tiled forward eventually wins out. However, with
so few lights, the precise size and placement of each light will influence the
results, making results difficult to interpret.

Figure 4. Frame times for an increasing number of lights, measured for a fixed view
of the scene with many lights, using an NVIDIA GTX 280 GPU. The discernible
trends continue up to the maximum number of lights (924).

250 journal of graphics tools

References

[Andersson 09] Johan Andersson. “Parallel Graphics in Frostbite - Current &
Future.” SIGGRAPH Course: Beyond Programmable Shading, 2009. Available
at http://s09.idav.ucdavis.edu/talks/04-JAndersson-ParallelFrostbite-Siggra
ph09.pdf.

[Arvo and Aila 03] Jukka Arvo and Timo Aila. “Optimized Shadow Mapping Using
the Stencil Buffer.” journal of graphics, gpu, and game tools 8:3 (2003), 23–32.

[Balestra and Engstad 08] Christophe Balestra and P̊al-Kristian Engstad. “The
Technology of Uncharted: Drake’s Fortune.” Game Developer Conference,
2008. Available at http://www.naughtydog.com/docs/Naughty-Dog-GDC08-
UNCHARTED-Tech.pdf.

[Enderton et al. 10] Eric Enderton, Erik Sintorn, Peter Shirley, and David
Luebke. “Stochastic Transparency.” In I3D ′10: Pro. 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, pp. 157–164. New York,
NY, USA: ACM, 2010.

[Engel 09] Wolfgang Engel. “The Light Pre-Pass Renderer: Renderer Design for
Efficient Support of Multiple Lights.” SIGGRAPH Course: Advances in Real-
Time Rendering in 3D Graphics and Games, 2009. Available at http://www.
bungie.net/News/content.aspx?type=topnews&link=Siggraph˙09.

[Everitt 01] Cass Everitt. “Interactive Order-Independent Transparency.”
NVIDIA White Paper, 2001. Available at http://developer.nvidia.com/object/
Interactive˙Order˙Transparency.html.

[Fuchs et al. 89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and
Laura Israel. “Pixel-Planes 5: a Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories.” In SIGGRAPH ′89: Proceedings of the
16th Annual Conference on Computer Graphics and Interactive Techniques, pp.
79–88. New York, NY, USA: ACM, 1989.

[Harris 08] Mark Harris. “Optimizing Parallel Reduction in CUDA.” NVIDIA
CUDA Sample, 2008. Available at http://scholar.google.com/scholar?hl=en&
btnG=Search&q=intitle:Optimizing+Parallel+Reduction+in+CUDA#0.

[Hasselgren et al. 05] J Hasselgren, T Akenine-Möller, and L Ohlsson. “Conservative
Rasterization.” In GPU Gems 2 edited by M. Pharr and R. Fernando, pp.
677–690. Reading, MA: Addison-Wesley, 2005.

[Kircher and Lawrence 09] Scott Kircher and Alan Lawrance. “Inferred Lighting:
Fast Dynamic Lighting and Shadows for Opaque and Translucent Objects.” In
Sandbox ′09: Proceedings of the 2009 ACM SIGGRAPH Symposium on Video
Games New York, NY, USA: ACM (2009), pp. 39–45.

Olsson and Assarsson: Tiled Shading 251

[Lauritzen 10] Andrew Lauritzen. “Deferred Rendering for Current and Future
Rendering Pipelines.” SIGGRAPH Course: Beyond Programmable Shading,
2010. Available at http://bps10.idav.ucdavis.edu/talks/12-lauritzen˙Deferred
Shading˙BPS˙SIGGRAPH2010.pdf.

[Lengyel 02] Eric Lengyel. “The Mechanics of Robust Stencil Shadows.”
Gamasutra, 2002. Available at http://www.gamasutra.com/view/feature/
2942/the˙mechanics˙of˙robust˙stencil˙.php.

[Lext et al. 01] Jonas Lext, Ulf Assarsson, and Tomas Möller. “A Benchmark for
Animated Ray Tracing.” IEEE Computer Graphics and Applications 21 (2001),
22–31.

[Saito and Takahashi 90] Takafumi Saito and Tokiichiro Takahashi. “Comprehensible
Rendering of 3-D shapes.” Proc. SIGGRAPH ′90 Computer Graphics 24:4
(1990), 197–206.

[Sigg et al. 06] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross.
“GPU-Based Ray Casting of Quadratic Surfaces.” Proc. Eurographics
Symposium on Point-Based Graphics, 2006.

[Swoboda 09] Matt Swoboda. “Deferred Lighting and Post Processing on
PLAYSTATION 3.” Proc. Game Developer Conference (2009). Available at
http://www.technology.scee.net/files/presentations/gdc2009/DeferredLighting
andPostProcessingonPS3.ppt.

[Thibieroz and Grün 10] Nick Thibieroz and Holger Grün. “OIT and GI
Using DX11 Linked Lists.” Proc. Game Developer Conference ′10.
Available at http://developer.amd.com/gpu˙assets/OIT%20and%20Indirect%
20Illumination%20using%20DX11%20Linkend%20Lists˙forweb.ppsx.

Web Information:

Demo executable with source code is available at http://www.cse.chalmers.se/
∼olaolss/jgt2011. The demo is implemented using C++ and OpenGL 3.3 with GLSL
shaders. Note that this code is different from that which was used for the perfor-
mance measurements presented in the article. The provided source code is intended
to be instructive rather than performing optimally.

Supplementary material can also be found in the publisher’s online edition of journal
of graphics, gpu, and game tools.

Ola Olsson, Chalmers University of Technology Department of Computer Science
and Engineering, SE-412 96 Göteborg, Sweden (ola.olsson@chalmers.se)

Ulf Assarsson, Chalmers University of Technology Department of Computer Science
and Engineering, SE-412 96 Göteborg, Sweden (uffe@chalmers.se)

Received September 23, 2010; accepted in revised form July 5, 2011.

Paper II: Clustered Deferred and Forward Shading
Ola Olsson, Markus Billeter, and Ulf Assarsson

Abstract: This paper presents and investigates Clustered Shading for deferred and
forward rendering. In Clustered Shading, view samples with similar properties (e.g.
3D-position and/or normal) are grouped into clusters. This is comparable to tiled shading,
where view samples are grouped into tiles based on 2D-position only. We show that
Clustered Shading creates a better mapping of light sources to view samples than tiled
shading, resulting in a significant reduction of lighting computations during shading.
Additionally, Clustered Shading enables using normal information to perform per-cluster
back-face culling of lights, again reducing the number of lighting computations. We also
show that Clustered Shading not only outperforms tiled shading in many scenes, but
also exhibits better worst case behaviour under tricky conditions (e.g. when looking at
high-frequency geometry with large discontinuities in depth). Additionally, Clustered
Shading enables real-time scenes with two to three orders of magnitudes more lights
than previously feasible (up to around one million light sources).

HPG ’12 Proceedings of the Conference on High Performance Graphics, pp 87–96, June,
2012

41

High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

Clustered Deferred and Forward Shading

Ola Olsson, Markus Billeter, and Ulf Assarsson

Chalmers University of Technology

Figure 1: Clustered Shading groups samples from a view (left image) into clusters (show in blue in the top center image). For
shading, each cluster is assigned lights that affect the cluster. Since the clusters are small in comparison to volumes created by
e.g. screen space tiling (shown in red in the bottom center image), the number of lighting computations per pixel is kept low (top
right image) when compared to Tiled Shading (bottom right image). The colors indicate the number of lighting computations
per pixel, ranging from less than 50 for blue pixels, to in excess of 300 for white pixels. The scene contains around 2400 light
sources, and is rendered in 17ms by our method (2.3ms for clustering, 1.5ms for light assignment and 5.6 ms for shading;
remaining frame time is dominated by rendering to G-buffers and, here, visualizing light sources with glutSolidSphere()),
compared to 26ms for the Tiled Shading implementation (1.0ms for light assignment and 17.7ms for shading).

Abstract
This paper presents and investigates Clustered Shading for deferred and forward rendering. In Clustered Shading,
view samples with similar properties (e.g. 3D-position and/or normal) are grouped into clusters. This is compara-
ble to tiled shading, where view samples are grouped into tiles based on 2D-position only. We show that Clustered
Shading creates a better mapping of light sources to view samples than tiled shading, resulting in a significant
reduction of lighting computations during shading. Additionally, Clustered Shading enables using normal infor-
mation to perform per-cluster back-face culling of lights, again reducing the number of lighting computations. We
also show that Clustered Shading not only outperforms tiled shading in many scenes, but also exhibits better worst
case behaviour under tricky conditions (e.g. when looking at high-frequency geometry with large discontinuities
in depth). Additionally, Clustered Shading enables real-time scenes with two to three orders of magnitudes more
lights than previously feasible (up to around one million light sources).

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In recent years, Tiled Shading [OA11] in various forms has
been gathering increased attention in the games develop-

ment community. The most popular form is Tiled Deferred
Shading, which has been implemented on both the Sony
PlayStation 3 and Microsoft XBox 360 console, as well

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

as PC [BE08, And09, Swo09, Lau10, Cof11]. More recently
Tiled Forward Shading, has also gained attention [McK12].

Tiled deferred shading removes the bandwidth bottleneck
from deferred shading, instead making the technique com-
pute bound. This enables efficient usage of devices with a
high compute-to-bandwidth ratio, such as modern consoles
and GPUs. Modern high-end games are using tiled deferred
shading to allow for thousands of lights, which are required
to push the limits of visual fidelity [FC11]. With large num-
bers of lights, GI effects can be produced that affect dynamic
as well as static geometry.

Tiled shading groups samples in rectangular screen-space
tiles, using the min and max depth within each tile to define
sub frustums. Thus, tiles which contain depth values that are
close together, e.g. from a single surface, will be represented
with small bounding volumes. However, for tiles where one
or more depth discontinuities occur, the depth bounds of the
tile must encompass all the empty space between the sample
groups (illustrated in Figure 1). This reduces light culling
efficiency, in the worst case degenerating to a pure 2D test.
This results in a strong dependency between view and per-
formance, which highly is undesirable in real-time applica-
tions, as it becomes difficult to guarantee consistent render-
ing performance at all times.

We introduce Clustered Shading, where we explore higher
dimensional tiles, which we collectively call clusters. Each
cluster has a fixed maximum 3D extent, which means that
there is no degenerate case depending on the view. Each
sample can at worst be over-represented by a fixed volume,
and empty space is ignored.

We show how clustered shading can be implemented ef-
ficiently on the GPU, supporting both deferred and forward
shading implementations. Our implementation shows much
less view-dependent performance, and is much faster for
some cases that are challenging for tiled shading. We also
extend beyond 3D clusters and also use normal information.
This is used to implement light back-face culling on a per-
cluster basis, discarding lights that affect no samples. To ro-
bustly support large numbers of lights, we also implement
a hierarchical light assignment approach, which is shown to
enable real-time performance for up to 1M lights.

2. Previous Work

Deferred shading was first introduced in a hardware design
in 1988 [DWS∗88], with a more general purpose method
using full screen Geometry Buffers (G-Buffers) following
in 1990 [ST90]. Deferred shading decouples geometry and
light processing, making it relatively simple to manage large
numbers of light sources. It has become mainstream only in
recent years, as hardware has become more powerful and
raising the bar on visual fidelity requires more and more
lights.

Tiled shading is a relatively recent development that

builds upon deferred shading. Aimed primarily at address-
ing the memory bandwidth bottleneck in deferred shading,
it has been implemented in many modern computer games.
Since game consoles are highly bandwidth constrained de-
vices, tiled deferred shading has quickly become an impor-
tant algorithm for high-profile games [BE08,And09,Swo09,
Lau10, Cof11, McK12]. The trend for computational power
to increase faster than memory bandwidth is also present in
consumer GPUs. Tiled shading has been shown to scale well
with successive GPU generations [OA11].

2.1. Cluster Determination

To enable efficient processing of clusters, we need some way
of determining what clusters are present in a given frame. In
a deferred shading setting, this requires analysis of the whole
frame buffer, which must be done efficiently on the GPU to
minimize data transfers and synchronization. Determining a
grouping of samples that goes beyond simple 2D tiling is a
fairly common problem in GPU rendering algorithms.

Resolution Matched Shadow Maps (RMSM), must deter-
mine which shadow pages are used by the view samples
[LSO07]. The method achieves this by first exploiting screen
space coherency to reduce duplicate requests from adjacent
pixels in screen space. Globally unique requests are then de-
termined by sorting and compacting the remaining requests.

Garanzha et al. [GL10] present a similar technique that
they call Compress-Sort-Decompress (CSD). Their goal is
to find 3D (or 5D) clusters in a frame buffer, which are
used to form ray packets. The main differences are that
Garanzha et al. treat the frame buffer as a 1D sequence and
use run length encoding (RLE) to reduce duplicates before
sorting. They expand the result after the sorting.

The approaches in both RMSMs and CSD rely on the
presence of coherency between adjacent input elements, in
2D and 1D respectively. In many cases, this is a reasonable
assumption. However, techniques such as multi sampling
anti aliasing (MSAA) with alpha-to-coverage, or stochas-
tic transparency [ESSL10], invalidate this assumption. Co-
herency is still present in the frame buffer, but not between
adjacent samples. For scenes with low coherence between
adjacent samples, both of these methods degenerate to sort-
ing the entire frame buffer.

Virtual textures face a very similar problem as RMSMs,
having to determine the used pages in a virtual texture.
Mayer [May10] surveys several techniques for solving this
problem, all of which are very similar to the above methods.
Hollemeersch et al. [HPLdW10] describe a different solu-
tion, which instead directly sets a flag in the virtual page
table, to indicate that a page is needed. Next the page table
is compacted, producing the unique pages needed.

Flagging and compacting page tables does not need to use
adjacency to reduce work. All samples requiring the same

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

page will set the same flag, regardless of their position in the
frame buffer, eliminating duplicate requests. This method
should therefore be more robust with respect to incoherent
frame buffers. However, as direct indexing is used, there
must be relatively few possible indices (in this case pages).

Liktor and Dashsbacher [LD12] determine and allocate
unique shading samples using a related technique. However,
because of the high number of unique shading sample iden-
tifiers, a direct mapping is not feasible. Also, as they need
to allocate space for the samples during the process, they
use a more compact hash table to track which samples ex-
ist. Space for the samples is allocated in a continuous array,
further complicating the process.

3. Clustered Deferred Shading Algorithm

Our algorithm consists of the following basic steps, each of
which will be described in more detail in the following sec-
tions.

1. Render scene to G-Buffers.
2. Cluster assignment.
3. Find unique clusters.
4. Assign lights to clusters.
5. Shade samples.

The first step, rendering the model to populate the G-Buffers,
does not differ from traditional deferred shading or from
tiled deferred shading. The second step computes for each
pixel which cluster it belongs to according to its position
(and possibly normal). In the third step, we reduce this into
a list of unique clusters. The fourth step, assigning lights to
clusters, consists of efficiently finding which lights influence
which of the unique clusters and produce a list of lights for
each cluster. Finally, for each sample, these light lists are
accessed to compute the sample’s shading.

3.1. Cluster Assignment

The goal of the cluster assignment is to compute an integer
cluster key for a given view sample from the information
available in the G-Buffers. We make use of the position and,
optionally, the normal.

There is a potentially limitless number of ways to group
view samples. Fundamentally, we desire samples that are
close to each other to be grouped together, as they are likely
to be affected by the same set of lights. There are many dy-
namic clustering algorithms available, e.g. k-means cluster-
ing, but none of these perform well enough on the millions
of samples required to be of interest. Consequently, we em-
ploy a regular subdivision, or quantization, of the sample po-
sitions, as this is both fast and provides predictable cluster
sizes.

The way in which we chose to quantize positions is impor-
tant in several ways. We desire the clusters to be small, such

(a) Uniform NDC. (b) Uni. view space. (c) Exp. view space.

Figure 2: Depth subdivision schemes: (a), uniform subdivi-
sion of normalized device coordinates; (b), uniform subdi-
vision in view space; and (c), exponential spacing in view
space.

that as few lights as possible affect each, but, conversely,
they should contain as many samples as possible to keep the
light assignment and shading efficient. We also desire the
number of bits required to encode the cluster key to be small
and predictable.

A common method is to simply use a world space (virtual)
uniform grid [GL10]. This method provides quick cluster
key computation, and all clusters are the same size. However,
selecting the proper grid cell size requires manual tweaking
for each scene, and, depending on scene size, may require a
very large number of bits to represent the key. Furthermore,
as the grid is viewed under projection, far-away clusters be-
come small on screen. Thus, in large scenes, it is possible to
encounter views where many of the clusters are pixel sized,
causing poor performance.

We therefore explored an alternative approach, based on
the observation that we are only interested in points within
the view frustum. Starting with the uniform screen space
tiling used in tiled deferred shading, we extend this by also
subdividing along the z-axis in view space (or normalized
device coordinates), in a manner similar to [HM08]. Viewed
in world space, this produces small sub-frustums partition-
ing the view frustum, see Figure 2.

hk

dk=hk

Z

Y

neark farknear far

Figure 3: Exponential spacing in view space. For a given
partition k, the near and far planes, as well as cell height
and depth are shown.

The simplest way to perform the z subdivision is to parti-
tion the depth range in normalized device coordinates into a
set of uniform segments. However, because of the non-linear
nature of normalized device coordinates, such a quantization
leads to very uneven cluster dimensions. Clusters close to the
near plane become very thin, whereas those towards the far

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

Figure 4: Quantization of normal directions on the unit
cube, using 3× 3 subdivisions on each face, and the recon-
structed normal cone for one subdivision.

plane become very long (Figure 2(a)). Uniform subdivision
in view space produces the opposite artifact, where clusters
near the view point are long and narrow, and those far away
are wide and flat (Figure 2(b)).

We therefore choose to perform the subdivision in view
space, by spacing the divisions exponentially to achieve self-
similar subdivisions [LTYM06], such that the clusters be-
come as cubical as possible (Figures 2(c) and 3).

In Figure 3, we illustrate the subdivisions of a frustum.
The number of subdivisions in the Y direction (Sy) is given
in screen space (e.g. to form tiles of 32×32 pixels). The near
plane for a division k, neark, can be calculated from

neark = neark−1 +hk−1.

For the first subdivision, near0 = near , i.e. the near viewing
plane. For a given field of view of 2θ, we find that

h0 =
2near tanθ

Sy
.

It follows that neark can be computed using the following
expression:

neark = near
(

1+
2 tanθ

Sy

)k

. (1)

Solving Equation 1 for k, we find that

k =

 log(−zvs/near)

log
(

1+ 2 tan θ
Sy

)

 . (2)

Using Equation 2, we can now compute the cluster
key tuple (i, j,k) from screen-space coordinates (xss,yss)
and the view-space depth zvs. Coordinates (i, j) are the
screen space tile indices, i.e. for tile size (tx, ty), (i, j) =
(bxss/txc,byss/tyc).

Using our more dynamic definition of a cluster opens up
for the ability to use attributes other than the position to de-
fine the cluster key. We extend the cluster key with a number
of bits that encode a quantized normal direction (Figure 6).
We quantize normals by cube face and a discrete 2D grid
over each face, as illustrated in Figure 4. Clustering on nor-
mals improves culling of lights (see Section 3.3).

Compacted

Sorted Key Buffer

Key Buffer (pixels)

Figure 5: Sorting and compacting the key buffer to find
unique clusters. The cluster keys in the key buffer are sorted
and then compacted, to find the list of unique clusters. The
sorting is, for instance, based on the view sample’s depth
and normal direction.

3.2. Finding Unique Clusters

We will here present two different options that we use for
identifying unique clusters: with sorting and with page ta-
bles.

The perhaps most obvious method to find the unique clus-
ters in parallel is to simply sort the cluster keys, and then
perform a compaction step that removes any with an identi-
cal neighbour (see Figure 5). Both sorting and compaction
are relatively efficient and readily available GPU building
blocks [HB10, BOA09]. However, despite steady progress,
sorting remains an expensive operation, and we therefore ex-
plore better performing alternatives.

As noted in Section 2, methods that rely on adjacent
screen-space coherency are not robust, especially with re-
spect to stochastic frame buffers. We therefore focus on tech-
niques that do not suffer from this weakness.

3.2.0.1. Local Sorting In our first technique, we sort sam-
ples in each screen space tile locally. This allows us to per-
form the sorting operation in on-chip shared memory, and
use local (and therefore smaller) indices to link back to the
source pixel. We extract unique clusters from each tile using
a parallel compaction. From this, we get the globally unique
list of clusters. During the compaction, we also compute and
store a link from each sample to its associated cluster.

3.2.0.2. Page Tables The second technique is similar to
the page table approach used by virtual textures (Section 2).
However, as the range of possible cluster keys is very large,
we cannot use a direct mapping between cluster key and
physical storage location for the cluster data; it simply would
typically not fit into GPU memory. Instead we use a vir-
tual mapping, and allocate physical pages where any actual
keys needs storage. Lefohn et.al. [LSK∗06] provide details
on software GPU implementation of virtual address transla-
tion. We exploit the fact that all physical pages are allocated
in a compact range, and we can therefore compact that range
to find the unique clusters.

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

(a) Reference view (b) Clustering based on 3D position only (c) Using 3D position and sample normal

Figure 6: Results of different clustering methods. (a) The rendered and lit reference view is shown to the right. (b) The center
image shows the results of clustering on position only. (Each cluster is assigned a random color.) (c) Clustering based on
position and normals is shown to the right . In both cases, flat regions produce a clustering very similar to screen space tiling.

Whether using sorting or page tables, the cluster key defines
implicit 3D bounds and, optionally, an implicit normal cone.
However, as the actual view-sample positions and normals
typically have tighter bounds, we also evaluate explicit 3D
bounds and normal cones. We compute the explicit bounds
by performing a reduction over the samples in each cluster
(e.g., we perform a min-max reduction to find the AABB en-
closing each cluster). The results of the reduction are stored
separately in memory.

When using page tables, the reduction is difficult to imple-
ment efficiently. Because of the many-to-one mapping from
view samples to cluster data, we would need to make use
of atomic operations, and get a high rate of collisions. We
deemed this to be impractically expensive. We therefore only
implement explicit bounds for the first technique based on
sorting (after the local sort, information about which sam-
ples belong to a given cluster is readily available).

3.3. Light Assignment

The goal of the light assignment stage is to calculate the list
of lights influencing each cluster. Previous designs for tiled
deferred shading implementations have by and large utilized
a brute force approach to finding the intersection between
lights and tiles. That is, light-cluster overlaps were found
by, for each tile, iterating over all lights in the scene and
testing bounding volumes. This is tolerable for reasonably
low numbers of lights and clusters.

To robustly support large numbers of lights and a dynam-
ically varying number of clusters, we use a fully hierarchical
approach based on a spatial tree over the lights. Each frame,
we construct a bounding volume hierarchy (BVH) by first
sorting the lights according to the Z-order (Morton Code)
based on the discretized centre position of each light. We de-

rive the discretization from a dynamically computed bound-
ing volume around all lights.

The leaves of the search tree we get directly from the
sorted data. Next, 32 consecutive leaves are grouped into a
bounding volume (AABB) to form the first level above the
leaves. The next level is constructed by again combining 32
consecutive elements. We continue until a single root ele-
ment remains.

For each cluster, we traverse this BVH using depth-first
traversal. At each level, the bounding box of the cluster (ei-
ther explicitly computed from the cluster’s contents or im-
plicitly derived from the cluster’s key) is tested against the
bounding volumes of the child nodes. For the leaf nodes, the
sphere bounding the light source is used; other nodes store
an AABB enclosing the node. The branching factor of 32
allows efficient SIMD-traversal on the GPU and keeps the
search tree relatively shallow (up to 5 levels), which is used
to avoid expensive recursion (the branching factor should be
adjusted depending on the GPU used, the factor of 32 is con-
venient on current NVIDIA GPUs).

If a normal cone is available for a cluster, we use this cone
to further reject lights that will not affect any samples in the
cluster. This happens if ω, the angle between the incoming
light direction from the centre of the cluster AABB (di) and
the normal cone axis (a), is greater than π/2+α+ δ. The
angle α is the normal-cone half angle, and δ is the half angle
of the cone from the light enclosing the cluster AABB (see
Figure 7).

3.4. Shading

Shading differs from Tiled Shading only in how we look up
the cluster for the view sample in question. For Tiled Shad-
ing, a simple 2D lookup, based on the screen-space coordi-

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

α a
ω

δ
dl

Figure 7: Back-face culling of lights against clusters. A nor-
mal cone (blue), with the opening angle α is derived from or
stored with the cluster. The normals of the samples contained
in this cluster are all within this cone. The cone originating
at the light source and enclosing the cluster (dashed grey –
geometrically equivalent to the red cone) gives the angle δ.
If the angle between the incoming light and the axis of the
normal cone (ω) is greater than π/2+α+δ, the light faces
the back of all samples in the cluster, and can therefore be
ignored.

nates, is sufficient to retrieve light-list offset and count. How-
ever, for clustered approaches, there no longer exists a direct
mapping between the cluster key and the index into the list
of unique clusters.

In the sorting approach, we explicitly store this index for
each pixel. This is achieved by tracking references back to
the originating pixel, and, when the unique cluster list is
established, storing the index to the correct pixel in a full
screen buffer.

When using page tables, after the unique clusters are
found, we store the cluster index back to the physical mem-
ory location used to store the cluster key earlier (using the
same page table as before). This means that a virtual lookup
for the cluster key will yield the cluster index. Thus, each
sample can look up the cluster index using the cluster key
computed earlier (or re-computed).

4. Implementation and Evaluation

We implemented several variants of the new algorithm using
OpenGL and CUDA. The variants are as follows (suffixes
used are documented in Table 1):

• ClusteredDeferred[Nk][En][Eb][Pt] – clustered deferred
shading.
• ClusteredForward – clustered forward shading. Clustered

forward shading requires a pre-z pass to prime the depth
buffer, which is used for clustering. Currently only imple-
mented with page tables.

Additionally, we implemented the following methods for
comparison, as described in [OA11]:

• Deferred, traditional deferred shading, with stencil opti-

Table 1: Suffixes identifying variations of the clustered
methods.

Suffix Meaning
Nk[X] Clustering based on normal, using X ×

X subdivisions to a cube face.
En Explicit normals cones are derived and

used.
Eb Explicit Bounds (3D AABB) are de-

rived and used.
Pt Page Tables are used to find the unique

clusters

mization. This means that light assignment will be exact
per sample using a stencil test [AA03].

• TiledDeferred, standard tiled deferred shading.
• TiledDeferredEn, tiled deferred shading with explicit nor-

mal cones computed per tile.
• TiledForward, standard tiled forward shading, with a

depth pre-pass, to enable min-max culling of lights.

4.1. Cluster Key Packing

For maximum performance when using sorting or page ta-
bles, we wish to pack the cluster key into as few bits as
possible. We allocate 8 bits to each i and j components,
which identify the screen-space tile the cluster belongs to.
This allows up to 8192×8192 size render targets (assuming
screen-space tile size of 32× 32 pixels). The depth index k
is determined from settings for the near and far planes and
Equation 2. In our scenes, we found 10 bits to be sufficient.
This leaves up to 6 bits for the optional normal clustering.
Using 6 bits, we can for instance support a resolution up to
3× 3 subdivisions on each cube face (3× 3× 6 = 54 and
dlog2 54e = 6). For more restricted environments, the data
could be packed more aggressively, saving both time and
space.

4.2. Tile Sorting

To the cluster key (between 10 and 16 bits wide) we attach an
additional 10 bits of meta-data, which identifies the sample’s
original position relative to its tile. We then perform a tile-
local sort of the cluster keys and the associated meta-data.
The sort only considers the up-to 16 bits of the cluster key;
the meta-data is used as a link back to the original sample af-
ter sorting. In each tile, we count the number of unique clus-
ter keys. Using a prefix operation over the counts from each
tile, we find the total number of unique cluster keys and as-
sign each cluster a unique ID in the range [0...numClusters).
We write the unique ID back to each pixel that is a mem-
ber of the cluster. The unique ID also serves as an offset in
memory to where the cluster’s data is stored.

Bounding volumes (AABB and normal cone) can be re-
constructed from the cluster keys, in which case each cluster

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

Figure 8: A view of the Crytek Sponza scene, with 10k lights
randomly placed. The tree branches cause discontinuities in
the depth buffer, making it more challenging for tiled de-
ferred shading.

only needs to store its cluster key. For explicit bounding vol-
umes, we additionally store the AABB and/or normal cone.
The explicit bounding volumes are computed using a reduc-
tion operation: for instance, AABBs can be found using a
min- and a max-reduction operation on the sample positions.
The meta-data from the locally sorted cluster keys gives us
information on which samples belong to a given cluster.

4.3. Page Tables

We implemented a single level page table using a two pass
approach. First the required pages are flagged in the table.
Then, the physical pages are allocated using a parallel prefix
sum, and finally the keys are stored into the physical pages.
Performing the physical page allocation on the fly in a single
pass was more than 2 times slower, but could still be viable
on hardware with faster atomic operations.

4.4. Light Assignment

As described in Section 3.3, we construct a search tree over
the lights each frame. Construction relies on efficient sort-
ing functions; here we use the sorting function provided by
Thrust [HB10]. To construct the upper levels of the tree, we
launch a CUDA warp (32 threads) for each node to be con-
structed. The warp performs an in-warp parallel reduction
over the children’s bounding volumes.

For traversal, we again take advantage of the 32-wide fan-
out of the search tree. For each cluster we allocated a warp
that traverses the tree in depth-first order. Each thread in the
warp tests the 32 bounding volumes of the children in paral-
lel. By providing unrolled implementations for trees of depth
up to 5, we can avoid expensive recursion in CUDA. With a
depth of 5, we can support up to 32 million lights, which we
deemed to be sufficient (it is trivial to expand this).

5. Results and Discussion

We measured performance for the algorithm and variants de-
scribed in the previous section, and measurements are per-

0

5

10

15

20

25

30

0 200 400

Li
gh

ti
n

g
C

o
m

p
s.

 (
M

ill
io

n
s)

Frame

Deferred
Clustered
Clustered
Nk3EbEn

0

1

2

3

4

5

0 100 200 300 400
Frame

Figure 9: (left) Millions of lighting computations performed
along a fly-through of the Necropolis scene. (right) Same
data, normalized to the Deferred method.

formed on an NVIDIA GTX 480 GPU, unless otherwise in-
dicated. We used the set of scenes listed below.

• Necropolis. Scene from the Unreal Development
Kit [Epi11] (Figure 1). The scene contains 653 lights,
with bounded ranges. The majority are spot lights.
However we treat all lights as point lights (this is a
limitations in our implementation). The scene contains
around 2M triangles and is normal mapped. We created
a camera animation covering the length of the map (see
supplemental video). To bring the number of lights up
further, we added several cannon towers to the scene
which shoot out colourful spheres, bringing the total
number of lights up to around 2500 during the animation.

• Sponza. We used the version of sponza made available
by Crytek [Cry10] (Figure 8). To make the scene more
challenging, with more discontinuities, we injected a set
of bare trees. We generated 10k random lights within the
scene AABB.

5.1. Performance Analysis

The main advantage of clustered shading over tiled shading
is the reduced view dependence. By avoiding empty space,
efficiency should be similar to that of deferred shading with
stencil optimization and less variable than tiled shading. This
is shown in Figures 9 and 10(a), which both adopt the light-
ing computations metric from [OA11].

Since clustering and light assignment introduce over-
heads, it is expected that tiled shading performs better when
there are fewer lights, or few discontinuities. Clustered shad-
ing is still expected to have less view-dependent variability
in frame times. Figure 11 confirms that this is the case for
the necropolis scene, which has relatively few discontinu-
ities and lights. Even the most complex clustered algorithm
tested (ClusteredNk3EbEn), offers worst case performance
comparable to tiled deferred. This is also the case for the
more challenging scene shown in Figure 10(b), with many
discontinuities and lights, indicating greater robustness for
clustered shading. We also see that the best performing clus-
tered variant (ClusteredDeferredPt) is around 50% faster in
the worst case on the necropolis animation.

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

0

5

10

15

20

25
Lighting Computations (Millions)

(a) Efficiency, millions of lighting computations.

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(m

s)

Light Assignment Find Unique Clusters Shading Deferred Render

(b) Performance, milliseconds for important stages.

Figure 10: Performance measured for the tested algorithms
for the view of the crytek sponza scene shown in Figure 8.
Tiled variants have been excluded from (a), as they make
comparison difficult. They perform around 90 million light-
ing computations. For the same reason, Deferred and Tiled-
Forward have been excluded from (b). Deferred takes a total
of 97.1 ms, and TiledForward 23.6 ms to render.

0

5

10

15

20

0 100 200 300 400

Ti
m

e
 (

m
s)

Frame

ClusteredDeferred
Nk3EbEn

Figure 11: Run time performance of some the algorithm
variants over the Necropolis scene animation.

ClusteredForward offers very competitive performance,
similar to TiledDeferred in the Necropolis animation se-
quence (Figure 11). This is interesting as, by using for-
ward shading, this variant inherently support MSAA, custom
material shaders, and sidesteps the issue of G-Buffer stor-
age. This is remarkable since TiledForward performs signif-

Table 2: Light assignment performance scaling with an in-
creasing number of randomly distributed lights.

#lights Clustered Light Tiled Light
Assignment Time Assignment Time

32 0.71 ms 0.24 ms
1024 0.73 ms 0.51 ms

32768 1.42 ms 9.31 ms
1048576 5.73 ms 341.56 ms

icantly worse than TiledDeferred (which is why TiledFor-
ward was excluded from Figure 11).

Run-time performance is influenced by many factors, in-
cluding the number of lights, light density, the level of dis-
continuities, algorithm complexity, and various implementa-
tion details. In Figure 12, we explore the first three of these
options. While the crossover point between tiled and clus-
tered implementations is at most around 2k lights, the most
important conclusion is that clustered shading is very com-
petitive even for cases with very few lights.

Using normal cones and explicit bounds improves effi-
ciency and shading time in all methods tested (Figures 9
and 10). However, as other stages become slower, this does
not translate into faster rendering overall. Even the relatively
modest overhead of adding normal cone construction to tiled
deferred (TiledDeferredEn) is too large to offer any net bene-
fit. This affirms that the major performance gain comes from
the move beyond 2D tiles. To make these more advanced
clusterings attractive, either faster methods for light assign-
ment and clustering must be found, or the shading cost must
increase.

As our clustered shading implementation uses a light hier-
archy for light assignment, it should scale well with increas-
ing numbers of lights. Table 2 shows this, where we compare
the hierarchical light assignment against the brute-force ap-
proach used by the tiled implementation. For small numbers
of lights, various overheads dominate the assignment time,
making the clustered variant slightly more expensive. At 1M
lights, our clustered-shading implementation runs at over 35
fps, where the lights are uniformly distributed and up to 100
lights (∼ 45 on average) end up influencing each cluster.

6. Conclusion and Future Work

In this paper, we have presented and evaluated Clustered
Shading. In clustered shading, we group similar view sam-
ples according to their position and, optionally, normal into
clusters. We then determine what light sources potentially
influence what clusters. Compared to tiled shading, clusters
generally are smaller, and therefore will be affected by fewer
light sources. The optional per-cluster normal-information
allows us to cull back-facing light sources against clustering,
further reducing the number of light sources affecting each

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000

Ti
m

e
(m

s)

Number of Lights

(a) Sponza, no trees.

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000

Ti
m

e
(m

s)

Number of Lights

(b) Sponza, with trees.

0

10

20

30

40

50

0 2000 4000 6000 8000 10000

Ti
m

e
(m

s)

Number of Lights

Nk3EbEn

(c) Sponza, no trees, 2x light radius.

Figure 12: Crossover points for various algorithms and numbers of lights for the view of Sponza seen in Figure 8. Note that (a)
and (c) use the same view, but without trees, and therefore contain fewer discontinuities.

cluster. We have shown that efficiency is indeed superior,
and that performance is more robust with respect to chang-
ing viewing conditions. Our implementation shows that both
clustered deferred and forward shading offer real-time per-
formance and can scale up to 1M lights. In addition, over-
head for the clustering is low, making it competitive even for
few lights.

In the future, we would like to explore approximative
lighting, where a heuristic is used to determine if all view
samples in a cluster are affected approximately equally by a
certain light. If so, the lighting for that light source is evalu-
ated once and re-used for all samples in the cluster. In some
initial tests, we have observed an up to around 20% reduction
in lighting computations, at very little computational cost.
(However, this produced some subtle visual discrepancies,
which we have been unable to work around at this point.)

We believe that it is possible to produce high quality ap-
proximations. These approximations may require additional
per-cluster data, such as average shininess for specular com-
putations. A better heuristic for determining when approxi-
mation is possible would also have to be developed.

It would also be interesting to investigate how clustered
shading interacts with more complex shading, e.g. switch-
ing due to type of material. Since clustered shading has a
much smaller shading cost than tiled shading, we expect bet-
ter scaling with shader complexity.

References

[AA03] ARVO J., AILA T.: Optimized shadow mapping using
the stencil buffer. journal of graphics, gpu, and game tools 8, 3
(2003), 23–32. 6

[And09] ANDERSSON J.: Parallel graphics in frostbite - current
& future. SIGGRAPH Course: Beyond Programmable Shading,
2009. URL: http://s09.idav.ucdavis.edu/talks/
04-JAndersson-ParallelFrostbite-Siggraph09.
pdf. 2

[BE08] BALESTRA C., ENGSTAD P.-K.: The technology
of uncharted: Drake’s fortune. Game Developer Confer-

ence, 2008. URL: http://www.naughtydog.com/docs/
Naughty-Dog-GDC08-UNCHARTED-Tech.pdf. 2

[BOA09] BILLETER M., OLSSON O., ASSARSSON U.: Efficient
stream compaction on wide simd many-core architectures. In
HPG ’09: Proceedings of the Conference on High Performance
Graphics 2009 (New York, NY, USA, 2009), ACM, pp. 159–
166. doi:http://doi.acm.org/10.1145/1572769.
1572795. 4

[Cof11] COFFIN C.: Spu-based deferred shading in bat-
tlefield 3 for playstation 3. GDC 2011, 2011. URL:
http://www.slideshare.net/DICEStudio/
spubased-deferred-shading-in-battlefield.
-3-for-playstation-3. 2

[Cry10] Cryengine3 | crytek | sponza model, 2010. URL:
http://www.crytek.com/cryengine/cryengine3/
downloads. 7

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B., DUFFY
C., HUNT N.: The triangle processor and normal vector shader: a
vlsi system for high performance graphics. SIGGRAPH Comput.
Graph. 22, 4 (1988), 21–30. doi:http://doi.acm.org/
10.1145/378456.378468. 2

[Epi11] EPIC GAMES: Unreal development kit, 2011. URL:
http://www.udk.com/. 7

[ESSL10] ENDERTON E., SINTORN E., SHIRLEY P., LUE-
BKE D.: Stochastic transparency. In I3D ’10: Proceed-
ings of the 2010 ACM SIGGRAPH symposium on Interactive
3D Graphics and Games (New York, NY, USA, 2010), ACM,
pp. 157–164. doi:http://doi.acm.org.proxy.lib.
chalmers.se/10.1145/1730804.1730830. 2

[FC11] FERRIER A., COFFIN C.: Deferred shading techniques
using frostbite in "battlefield 3" and "need for speed the run".
In ACM SIGGRAPH 2011 Talks (New York, NY, USA, 2011),
SIGGRAPH ’11, ACM, pp. 33:1–33:1. doi:10.1145/
2037826.2037869. 2

[GL10] GARANZHA K., LOOP C.: Fast ray sorting and breadth-
first packet traversal for gpu ray tracing. Computer Graphics Fo-
rum 29, 2 (2010), 289–298. doi:10.1111/j.1467-8659.
2009.01598.x. 2, 3

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel tem-
plate library, 2010. Version 1.3.0. URL: http://www.
meganewtons.com/. 4, 7

[HM08] HUNT W., MARK W. R.: Ray-specialized acceleration
structures for ray tracing. In IEEE/EG Symposium on Interactive
Ray Tracing 2008 (Aug 2008), IEEE/EG, pp. 3–10. 3

c© The Eurographics Association 2012.

Ola Olsson, Markus Billeter & Ulf Assarsson / Clustered Deferred and Forward Shading

[HPLdW10] HOLLEMEERSCH C.-F., PIETERS B., LAMBERT P.,
DE WALLE R. V.: Accelerating virtual texturing using cuda. In
GPU Pro, Engel W., (Ed.). A K Peters, 2010, pp. 623–642. 2

[Lau10] LAURITZEN A.: Deferred rendering for current
and future rendering pipelines. SIGGRAPH Course: Be-
yond Programmable Shading, 2010. URL: http://
bps10.idav.ucdavis.edu/talks/12-lauritzen_
DeferredShading_BPS_SIGGRAPH2010.pdf. 2

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred
shading for hardware rasterization. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2012), I3D ’12, ACM, pp. 143–150.
doi:10.1145/2159616.2159640. 3

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STR-
ZODKA R., OWENS J. D.: Glift: Generic, efficient, random-
access gpu data structures. ACM Trans. Graph. 25, 1 (Jan.
2006), 60–99. URL: http://doi.acm.org.proxy.lib.
chalmers.se/10.1145/1122501.1122505, doi:10.
1145/1122501.1122505. 4

[LSO07] LEFOHN A. E., SENGUPTA S., OWENS J. D.:
Resolution-matched shadow maps. ACM Trans. Graph. 26,
4 (2007), 20. doi:http://doi.acm.org/10.1145/
1289603.1289611. 2

[LTYM06] LLOYD D. B., TUFT D., YOON S.-E., MANOCHA
D.: Warping and partitioning for low error shadow maps. In Pro-
ceedings of the Eurographics Workshop/Symposium on Render-
ing, EGSR (June 2006), Eurographics Association, pp. 215–226.
4

[May10] MAYER A. J.: Virtual Texturing. Master’s
thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Oct. 2010. URL:
http://www.cg.tuwien.ac.at/research/
publications/2010/Mayer-2010-VT/. 2

[McK12] MCKEE J.: Technology behind amd’s "leo
demo". Game Developers Conference, 2012. URL:
http://developer.amd.com/gpu_assets/AMD_
Demos_LeoDemoGDC2012.ppsx. 2

[OA11] OLSSON O., ASSARSSON U.: Tiled shading. Journal of
Graphics, GPU, and Game Tools 15, 4 (2011), 235–251. doi:
10.1080/2151237X.2011.621761. 1, 2, 6, 7

[ST90] SAITO T., TAKAHASHI T.: Comprehensible render-
ing of 3-d shapes. SIGGRAPH Comput. Graph. 24, 4
(1990), 197–206. doi:http://doi.acm.org/10.1145/
97880.97901. 2

[Swo09] SWOBODA M.: Deferred lighting and post
processing on playstation 3. Game Developer Con-
ference, 2009. URL: http://www.technology.
scee.net/files/presentations/gdc2009/
DeferredLightingandPostProcessingonPS3.ppt.
2

c© The Eurographics Association 2012.

Paper III: Efficient Virtual Shadow Maps for Many
Lights

Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter and Ulf Assarsson

Abstract: Recently, several algorithms have been introduced that enable real-time per-
formance for many lights in applications such as games. In this paper, we explore the use
of hardware-supported virtual cube-map shadows to efficiently implement high-quality
shadows from hundreds of light sources in real time and within a bounded memory
footprint. In addition, we explore the utility of ray tracing for shadows from many lights
and present a hybrid algorithm combining ray tracing with cube maps to exploit their
respective strengths.

I3D ’14: Proceedings of the 2014 symposium on Interactive 3D graphics and games, to
appear, March, 2014

53

Efficient Virtual Shadow Maps for Many Lights

Ola Olsson∗ Erik Sintorn∗ Viktor Kämpe∗ Markus Billeter∗ Ulf Assarsson∗

Chalmers University of Technology

Figure 1: Scenes rendered with many lights casting shadows at 1920×1080 resolution on an NVIDIA Geforce Titan. From the left: HOUSES
with 1.01M triangles and 256 lights (23ms), NECROPOLIS with 2.58M triangles and 356 lights (34ms), CRYSPONZA with 302K triangles
and 65 lights (16ms).

Abstract

Recently, several algorithms have been introduced that enable real-
time performance for many lights in applications such as games. In
this paper, we explore the use of hardware-supported virtual cube-
map shadows to efficiently implement high-quality shadows from
hundreds of light sources in real time and within a bounded memory
footprint. In addition, we explore the utility of ray tracing for shad-
ows from many lights and present a hybrid algorithm combining ray
tracing with cube maps to exploit their respective strengths. Our
solution supports real-time performance with hundreds of lights in
fully dynamic high-detail scenes.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

Keywords: real-time,shadows,virtual,cube map

1 Introduction

In recent years, several techniques have been presented and refined
that enable real-time performance for applications such as games
using hundreds to many thousands of lights. These techniques
work by binning lights into tiles of various dimensionality [Olsson
and Assarsson 2011; Harada 2012; Olsson et al. 2012]. Many
simultaneous lights enable both a higher degree of visual quality and
greater artistic freedom, and these techniques are therefore directly
applicable in the games industry [Swoboda 2009; Ferrier and Coffin
2011; Persson and Olsson 2013].

However, this body of previous work on real-time many-light algo-
rithms has studied almost exclusively lights that do not cast shadows.
While such lights enable impressive dynamic effects and more de-
tailed lighting environments, they are not sufficient to capture the

∗e-mail:ola.olsson|erik.sintorn|kampe|billeter|uffe@chalmers.se

details in geometry, but tend to yield a flat look. Moreover, ne-
glecting shadowing makes them more difficult to use, as light may
leak through walls and similar occluding geometry, if care is not
taken when placing the lights. For dynamic effects in interactive
environments, controlling this behaviour is even more problematic.
Shadowing is also highly important if we wish to employ the lights
to visualize the result of some light-transport simulation, for example
as done in Instant Radiosity [Keller 1997].

This paper aims to compute shadows for use in real-time applications
supporting several tens to hundreds of shadow-casting lights. The
shadows are of high and uniform quality, while staying within a
bounded memory footprint.

As a starting point, we use Clustered Deferred Shading [Olsson et al.
2012], as this algorithm offers the highest light-culling efficiency
among current real-time many-light algorithms and the most robust
shading performance. This provides a good starting point when
adding shadows, as the number of lights that require shadow com-
putations is already close to the minimal set. Moreover, clustered
shading provides true 3D bounds around the samples in the frame
buffer and therefore can be viewed as a fast voxelization of the
visible geometry. Thus, as we will see, clusters provide opportuni-
ties for efficient culling of shadow casters and allocation of shadow
resolution.

1.1 Contributions

We contribute an efficient culling scheme, based on clusters, which is
used to render shadow-casting geometry to many cube shadow maps.
We demonstrate that this can enable real-time rendering performance
using shadow maps for hundreds of lights, in dynamic scenes of
high complexity.

We also contribute a method for quickly determining the required
resolution of the shadow maps. This is used to show how hardware-
supported virtual shadow maps may be efficiently implemented. To
this end, we also introduce a very efficient way to determine the
parts of the virtual shadow map that need physical backing. We
demonstrate that these methods enable the memory requirements to
stay within a limited range, while enabling uniform shadow quality.

Additionally, we explore the performance of ray tracing for many
lights. We demonstrate that a hybrid approach, combining ray trac-
ing and cube maps, offers high efficiency, in many cases better than

using either shadow maps or ray tracing individually.

We also contribute implementation details of the discussed methods,
showing that shadow maps indeed can be made to scale to many
lights. Thus, this paper provides an important benchmark for other
research into real-time shadow algorithms for many lights.

2 Previous Work

Real Time Many Light Shading Tiled Shading is a recent tech-
nique that supports many thousands of lights in real-time applica-
tions [Swoboda 2009; Olsson and Assarsson 2011; Harada 2012].
In this technique, lights are binned into 2D screen-space tiles that
can then be queried for shading. This is a very efficient and sim-
ple process, but the 2D nature of the algorithm creates a strong
view dependence, resulting in poor worst case performance and
unpredictable frame times.

Clustered Shading extends the technique by considering 3D bins in-
stead, which improves efficiency and robustness [Olsson et al. 2012].
The clusters provide a three-dimensional subdivision of the view
frustum and, thus, sample groupings with predictable bounds. This
provides a basic building block for many of the new techniques de-
scribed in this paper. See Section 3.1, for a more detailed overview.

Shadow Algorithms Studies on shadowing techniques generally
present results using a single light source, usually with long or
infinite range. Consequently, it is unclear how these techniques scale
to many light sources, whereof a large proportion cover only a few
samples. For a general review of shadow algorithms, see Eisemann
et. al. [2011].

Virtual Shadow Maps Software-based virtual shadow maps have
been explored in several publications to achieve high quality shad-
ows in bounded memory [Fernando et al. 2001; Lefohn et al. 2007].
Recently, API and hardware extensions have been introduced that
makes it possible to support virtual textures much more conveniently
and with performance equalling that of traditional textures [Sellers
et al. 2013].

Many light shadows There does exist a corpus of work in the
field of real-time global illumination, which explores using many
light sources with shadow casting, for example Imperfect Shadow
Maps [Ritschel et al. 2008], and Many-LODs [Hollander et al. 2011].
However, these techniques generally assume that a large number of
lights affect each sample to conceal approximation artifacts. In other
words, these approaches are unable to produce accurate shadows for
samples lit by only a few lights.

Ray Traced Shadows Recently, Harada et. al. [2013] described
ray traced lights in conjunction with Tiled Forward Shading. They
demonstrate that it can be feasible to ray trace shadows for many
lights but do not report any analysis or comparison to other tech-
niques.

3 Basic Algorithm

Our basic algorithm is shown below. The algorithm is constructed
from clustered deferred shading, with shadow maps added. Steps
that are inherited from ordinary clustered deferred shading are shown
in gray.

1. Render scene to G-Buffers.

2. Cluster assignment – calculating the cluster keys of each view
sample.

3. Find unique clusters – finding the compact list of unique cluster
keys.

4. Assign lights to clusters. – creating a list of influencing lights
for each cluster.

5. Select shadow map resolution for each light.

6. Allocate shadow maps.

7. Cull shadow casting geometry for each light.

8. Rasterize shadow maps.

9. Shade samples.

3.1 Clustered Shading Overview

In clustered shading the view volume is subdivided into a grid of
self-similar sub-volumes (clusters), by starting from a regular 2D
grid in screen space, e.g. using tiles of 32× 32 pixels, and splitting
exponentially along the depth direction. Next, all visible geometry
samples are used to determine which of the clusters contain visible
geometry. Once the set of occupied clusters has been found, the algo-
rithm assigns lights to these, by intersecting the light volumes with
the bounding box of each cluster. This yields a list of cluster/light
pairs, associating each cluster with all lights that may affect a sam-
ple within (see Figure 2). Finally, each visible sample is shaded by
looking up the lights for the cluster it is within and summing their
contributions.

-Z

Y

Near

Far

Eye

Geometry

L1

L0

Occupied Cluster

C1

C2

C3

C0

L0 C1 L0 C2 L1 C2 L1 C3 …

Cluster/Light Pairs:

Figure 2: Illustration of the depth subdivisions into clusters and
light assignment. Clusters containing some geometry are shown in
blue.

The key pieces of information this process yields are a set of occu-
pied clusters with associated bounding volumes (that approximate
the visible geometry), and the near-minimal set of lights for each
cluster. Intuitively, this information should be possible to exploit for
efficient shadow computations, and this is exactly what we aim to
do in the following sections.

3.2 Shadow Map Resolution Selection

One way to calculate the required resolution for each shadow map
is to use the screen-space coverage of the light-bounding sphere.
However, this produces vast overestimates whenever the camera
is near, or within, the light volume. To calculate a more precisely
matching resolution, one might follow the approach in Resolution
Matched Shadow Maps (RMSM) [Lefohn et al. 2007], using shadow-
map space derivatives for each view sample. However, applying this
naı̈vely would be expensive, as the calculations must be repeated for
each sample/light pair, and would require derivatives to be stored

Cluster

Light Source

α

Figure 3: Left, the solid angle of cluster, with respect to the light
source, α, subtended by the cluster, illustrated in 2D. Right, example
of undersampling due to an oblique surface violating assumptions
in Equation 1, shown with and without textures and PCF.

in the G-Buffer. Our goal is not to attempt alias-free shadows,
but to quickly estimate a reasonable match. Therefore, we base
our calculations on the bounding boxes of the clusters, which are
typically several orders of magnitude fewer than the samples.

R =

√
S/(α/4π)

6
(1)

The required resolution (R) for each cluster is estimated as the
number of pixels covered by the cluster in screen space (S), divided
by the proportion of the unit sphere subtended by the solid angle of
the cluster bounding sphere (α), and distributed over the six cube
faces (see Figure 3 and Equation 1).

This calculation is making several simplifying assumptions. The
most significant is that we assume that the distribution of the samples
is the same in shadow-map space as in screen space. This leads
to an underestimate of the required resolution when the light is
at an oblique angle to the surface (see Figure 3). A more detailed
calculation might reduce these errors, but we opted to use this simple
metric, which works well for the majority of cases.

For each cluster/light pair, we evaluate Equation 1 and retain the
maximum R for each light as the shadow map resolution, i.e. a cube
map with faces of resolution R×R.

Figure 4: The projected footprint (purple) of an AABB of either a
batch or a cluster (orange), projected onto the cube map (green).
The tiles on the cube map represent either virtual texture pages or
projection map bits, depending on application.

3.3 Shadow Map Allocation

Using the resolutions computed in the previous step, we can allocate
one virtual cube shadow map for each light requiring a non-zero res-
olution. This does not allocate any actual physical memory backing
the texture, just the virtual range.

In virtual textures, the pages are laid out as tiles of a certain size (e.g.
256× 128 texels), covering the texture. Before we can render into

the shadow map we must commit physical memory for those pages
that will be sampled during shading. This can be established by
projecting each sample onto the cube map, and record the requested
page. To implement this efficiently, we again use the cluster bounds
as proxy for the view samples, and project these onto the cube maps,
(see Figure 4). The affected tiles are recorded in the virtual-page
mask.

3.4 Culling Shadow-Casting Geometry

When managing many lights, culling efficiency is an important
problem. The basic operation we wish to perform is to gather the
minimal set of triangles that need to be rendered into each cube
shadow map. This can be achieved by querying an acceleration
structure with the bounding sphere defined by the light position and
range. Real-time applications typically support this kind of query
against a scene graph, or similar, for view frustum and shadow-map
culling.

Light Sphere

1 {CFM, batch index}…

Batch Hierarchy

Cube Culling
Planes

…

…

2

Figure 5: Illustration of batch hierarchy traversal. The AABBs of
batches 1 and 2 intersect the light sphere, and are tested against the
culling planes, which determine the cube faces the batch must be
rendered to.

We make use of a bounding volume hierarchy (BVH), storing groups
of triangles called Batches at the leaves. Each batch is represented
by an axis aligned bounding box (AABB), which is updated at run
time, and has a fixed maximum size. This allows us to explore
which granularity offers the best performance for our use case. The
hierarchy is queried for each light, producing a list of batch and light
index pairs, identifying the batches to be drawn into each shadow
map. For each pair, we record the result of culling for each cube
face, as this information is needed later when rendering. The result
is a bit mask with six bits that we call the cube-face mask (CFM),
see Figure 5.

4 Algorithm Extensions

4.1 Projection Maps

Efficient culling also ought to avoid drawing geometry into un-
sampled regions of the shadow map. In other words, we require
something that identifies where shadow receivers are located. This is
similar in spirit to projection maps, which are used to guide photon
distribution in photon maps, and we adopt this name.

Fortunately, this is almost exactly the same problem as establishing
the needed pages for virtual textures (Section 3.3), and we reuse
the method of projecting AABBs onto the cube faces. To represent
the shadow receivers, each cube face stores a 32× 32 bit mask (in
contrast to page masks, which vary with resolution), and we rasterize
the cluster bounds into this mask as before.

We then perform the same projection for each batch AABB that was
found during the culling, to produce a mask for each shadow caster.
If the logical intersection between these two masks is zero for any
cube face, we do not need to draw the batch into this cube face. In
addition to testing the mask, we also compute the maximum depth
for each cube face and compare these to the minimum depth of each
batch. This enables discarding shadow casters that lie behind any
visible shadow receiver. For each batch, we update the cube-face
mask to prune non-shadowing batches.

4.2 Non-uniform Light Sizes

The resolution selection presented in Section 3.2 uses the maximum
sample density required by a cluster affected by a light. If the
light is large and the view contains samples requiring very different
densities, this can be a large over-estimate. This happens when a
large light affects both some, relatively few, samples nearby the
viewer but also a large portion of the visible scene further away (see
Figure 6). The nearby samples dictate the resolution of the shadow
map, which then must be used by all samples.

Figure 6: Illustration of light requiring different sample densities
within the view frustum. The nearby, high density, clusters dictate
the resolution for the entire light.

If there are only uniformly sized lights and we are comfortable
with clamping the maximum allowed resolution, then this is not a
significant problem. However, as our results show, if we have a scene
with both large and small lights, then this can come to dominate the
memory allocation requirements (e.g.NECROPOLIS, see Figure 12).

To eliminate this issue, we allow each light to allocate a number of
shadow maps. We use a fixed number, as this allows fast and simple
implementation, in our tests ranging from 1 to 16 shadow maps per
light. To allocate the shadow maps, we add a step where we build
a histogram over the resolutions requested by the clusters affecting
each light. The maximum value within each histogram bucket is
then used to allocate a distinct shadow map. When the shadow-map
index is established, we replace the light index in the cluster light
list with this index. Then, culling and drawing can remain the same,
except that we sometimes must take care to separate the light index
from the shadow-map index.

4.3 Level of Detail

For high-resolution shadow maps that are used for many view sam-
ples, we expect that rasterizing triangles is efficient, producing many
samples for each triangle. However, low-resolution shadow maps
sample the shadow-casting geometry sparsely, generating few sam-
ples per triangle. To maintain efficiency in these cases, some form
of Level of Detail (LOD) is required.

In the limit, a light might only affect a single visible sample. Thus, it
is clear that no amount of polygon-based LOD will suffice by itself.

Consequently, we explore the use of ray tracing, which can random
access geometry efficiently. To decide when ray tracing should be
used, we simply use a threshold (in our tests we used 96 texels as the
limit) on the resolution of the shadow map, which is tested after the
resolution has been calculated. Those shadow maps that are below
the threshold are not further processed and are replaced by directly
ray tracing the shadows in a separate shading pass. We refer to this
as the hybrid algorithm. Additionally, we evaluate using ray tracing
for all shadows to determine the cross-over point in efficiency versus
shadow maps.

Since we aim to use the ray tracing for LOD purposes, we chose to
use a voxel representation, which has an inherent polygon-agnostic
LOD and enables a much smaller memory footprint than would
be possible using triangles. We use the technique described by
Kämpe et. al. [2013], which offers performance comparable to state
of the art polygon ray tracers and a very compact representation.

One difficulty with ray tracing is that building efficient acceleration
structures is still a relatively slow process, at best offering interactive
performance, and dynamically updating the structure is both costly
and complex to implement [Karras and Aila 2013]. We therefore use
a static acceleration structure, enabling correct occlusion from the
static scene geometry, which often has the highest visual importance.
As we aim to use the ray tracing for lights far away (and therefore
low resolution), we consider this a practical use case to evaluate.
For highly dynamic scenes, our results that use ray tracing are not
directly applicable. Nevertheless, by using a high-performance ac-
celerations structure, we aim to explore the upper bound for potential
ray tracing performance.

To explore the use of polygon-based LOD, we evaluate a low-
polygon version of the HOUSES scene (see Section 6). This is
done in lieu of a full blown LOD system to attempt to establish an
upper bound for shadow-mapping performance when LOD is used.

4.4 Explicit Cluster Bounds

As clusters are defined by a location in a regular grid within the
view frustum, there is an associated bounding volume that is implied
by this location. Computing explicit bounds, i.e. tightly fitting
the samples within the cluster, was found by Olsson et al. [2012]
to improve light-culling efficiency, but it also incurred too much
overhead to be worthwhile. When introducing shadows and virtual
shadow map allocation, there is more to gain from tighter bounds.
We therefore present a novel design that computes approximate
explicit bounds with very little overhead on modern GPUs.

We store one additional 32-bit integer for each cluster, which is
logically divided into three 10-bit fields. Each of these represent
the range of possible positions within the implicit AABB. With this
scheme, the explicit bounding box can be established with just a
single 32-bit atomicOr reduction for each sample. By using the bits
to represent a number line, we can only represent as many discrete
positions as there are bits. Thus, 10 bits for each axis enables down
to a 1000-fold reduction in volume.

To reconstruct the bounding box, we make use of intrinsic bit-wise
functions to count zeros from both directions in each 10-bit field.
These bit positions are then used to scale and bias the implicit AABB
in each axis direction.

5 Implementation

We implemented the algorithm and variants above using OpenGL
and CUDA. All computationally intense stages are implemented on
the GPU, and in general, we attempt to minimize stalls and GPU
to CPU memory transfers. However, draw calls and rendering state

Cluster Generation
+ Light Assignment

Light/Cluster
Pairs

Cluster Bounds

Shadow Map
Resolution Calc

Light List SM Resolutions

Virtual Page Mask Calc

Update Batch
AABBs

Batch AABBs

Build Batch
Hierarchy

Batch Hierarchy

Batch List

Cull Batches

Page Masks

SM/Batch ID +
Face Mask Pairs

Build Projection
Maps

Projection Maps

Build Draw
Commands

Render Batches

Allocate Shadow
Maps

Shadow Map
Render Targets

Draw Commands

SM Projection
Matrices

Batch Counts +
Offsets / SM

Build Shadow Map
Projections

Shadow Maps

Compute Shading
(Ray Trace)

Lighting

Composit

Fin
al Im

age

Model

Render Model G-Buffers

Figure 7: Stages (rounded) and data (square) in the algorithm implementation. Stage colors correspond to those used in Figure 8. All
computationally demanding stages are executed on the GPU, with sequencing and command issue performed by the CPU.

changes are still necessary to invoke from the CPU, and thus, we
must transfer some key information from the GPU. The system is
illustrated in Figure 7.

5.1 Shadow Map Resolution Selection

The implementation of shadow-map resolution selection is a set
of CUDA kernels, launched with one thread per cluster/light pair.
These kernels compute the resolution, cube-face mask, virtual-page
mask, and also the projection map, for each shadow map. To reduce
the final histograms and bit masks, we use atomic operations, which
provide adequate performance for current GPUs. The resulting
array of shadow-map resolutions and the array of virtual-page masks
are transferred to the CPU using an asynchronous copy.

5.2 Culling Shadow-Casting Geometry

In the implementation, we perform culling before allocating shadow
maps, as this allows better asynchronous overlap, reducing stalls, and
also minimizes transitions between CUDA and OpenGL operation.

5.2.1 Batch Hierarchy Construction

Each batch is a range of triangle indices and an AABB. A batch
is constructed such that all the vertices share the transformation
matrix1 and are located close together, to ensure coherency under
animation. At run time, we re-calculate each batch AABB from the
vertices every frame to support animation. The resulting list is sorted
along the Morton curve, and we then build an implicit left balanced
32-way BVH by recursively grouping 32 consecutive AABBs into
a parent node. This is the same type of hierarchy that was used
for hierarchical light assignment in clustered shading, and has been
shown to perform well for many light sources [Olsson et al. 2012].

The batches are created off-line, using a bottom-up agglomerative
tree-construction algorithm over the scene triangles, similar to that
described by Walter et. al. [2008]. Unlike them, who use the surface
area as the dissimilarity function, we use the length of the diagonal
of the new cluster, as this produces more localized clusters (by
considering all three dimensions). After tree construction, we create
the batches by gathering leaves in sub-trees below some predefined
size, e.g. 128 triangles (we tested several sizes, as reported below).
The batches are stored in a flat array and loaded at run time.

5.2.2 Hierarchy Traversal

To gather the batches for each shadow map, we launch a kernel with
a CUDA block for each shadow map. The reason for using blocks is

1We only implement support for a single transform per vertex, but this is
trivially extended to more general transformations, e.g. skinning.

that a modern GPU is not fully utilized when launching just a warp
per light (as would be natural with our 32-way trees). The block
uses a cooperative depth-first stack to utilize all warps within the
block. We run this kernel in two passes to first count the number
of batches for each shadow map and allocate storage, and then to
output the array of batch indices. In between, we also perform a
prefix sum to calculate the offsets of the batches belonging to each
shadow map in the result array. We also output the cube-face mask
for each batch. This mask is the bitwise and between the cube-face
mask of the shadow map and the batch. The counts and offsets are
copied back to the CPU asynchronously at this stage, as they are
needed to issue drawing commands.

To further prune the list of batches, we launch another kernel that
calculates the projection-map overlap for each batch in the output
array and updates the cube-face mask.

The final step in the culling process is to generate a list of draw com-
mands for OpenGL to render. We use the OpenGL 4.3 multi-draw
indirect feature (glMultiDrawElementsIndirect), which allows the
construction of draw commands on the GPU. We map a buffer from
OpenGL to CUDA and launch a kernel where each thread trans-
forms a batch index and cube-face mask output by the culling into a
drawing command. The vertex count and offset is provided by the
batch definition, and the instance count is the number of set bits in
the cube-face mask.

5.3 Shadow Map Allocation

To implement the virtual shadow maps, we make use of the OpenGL
4.4 ARB extension for sparse textures (ARB_sparse_texture). The
extension enables vendor-specific page sizes which can be queried.
Textures with sparse storage must be aligned to page boundaries.
On our target hardware, the page size is 256× 128 texels for 16-bit
depth textures (64kb), which means that our square cube-map faces
must be aligned to the larger value. For our implementation, the
practical page granularity is therefore 256 × 256 texels, and this
also limits the maximum resolution of our shadow maps to 8K×8K
texels, as we use up to 32× 32 bits in the virtual-page masks.

Thus, for each non-zero value in the array of shadow map resolutions,
we round the requested resolution up to the next page boundary
and then use this value to allocate a texture with virtual storage
specified. Next, we iterate the virtual-page mask for each face and
commit physical pages. If the requested resolution is small, in our
implementation below 64× 64 texels, we use an ordinary physical
cube map instead.

In practice, allocating textures is a slow operation in OpenGL, and
we instead pre-allocate a pool of cube textures. We create enough
textures of each resolution to match the peak demands of our applica-
tion. Since the textures are virtual (or small), the memory demands

0

5

10

15

20

25

30

35

40

45

0 100 200 300

Ti
m

e
 [

m
s]

(a) Shadow Maps (PMCD-EB).
0 100 200 300

Shading

DrawShadowMaps

CullBatches

LightAssignment

FindUniqueClusters

RenderModel

(b) Ray Tracing.
0 100 200 300

(c) Hybrid (PMCD-EB).

Figure 8: Timings from the NECROPOLIS scene animation. The performance is broken down into the principal stages of the algorithms. Note
that for (b) and (c), the ray tracing time forms part of the shading.

of this pool is small. At run time, we pick a cube map of the correct
resolution from this pool and proceed as before.

5.3.1 Workarounds

Unfortunately, committing physical storage is very slow on current
drivers2. As a fall back, we therefore implemented an additional
pool of physical textures, and pick the next free one of the closest
matching resolution. For the physical pool, we cannot allocate all
the needed resolutions up-front, as the memory requirements are
prohibitive, e.g. a single 8K cube map requires 750Mb of memory
(this, in fact, being the raison d’être for the virtual shadow maps).
Consequently, this method will suffer from very poor and varying
shadow quality but enables us to measure the performance of all the
other parts of the algorithm.

On game consoles, where the developers are able to directly manage
resources, the straightforward implementation might be expected
to work well. Also, extensions such as the explicit page-pool man-
agement proposed by AMD (AMD_texture_tile_pool) [Sellers et al.
2013] indicate that the page-allocation performance problem is pos-
sible to address. For our purposes, going yet further and allowing
pages to be managed fully on the GPU, for example using some
manner of indirect call, similar to that used for draw commands,
would seem ideal.

5.4 Rasterizing Shadow Caster Geometry

With the set up work done previously, the actual draw-
ing is straightforward. For each shadow map, we invoke
glMultiDrawElementsIndirect once, using the count and offset
shipped back to the CPU during the culling. To route the batches to
the needed cube map faces, we use layered rendering and a geom-
etry shader. The geometry shader uses the instance index and the
cube-face mask (which we supply as a per-instance vertex attribute)
to compute the correct layer.

The sparse textures, when used as a frame buffer target, quietly
drop any fragments that end up in uncommitted areas. This matches
our expectations well, as such areas will not be used for shadow
look ups. Compared to previous work on software virtual shadow
maps, this is an enormous advantage, as we sidestep the issues of
fine-grained binning, clipping and copying and also do not have to
allocate temporary rendering buffers.

We did not implement support for different materials (e.g. to support
alpha masking). To do so, one draw call per shadow material type
would be needed instead.

2The NVIDIA beta driver version 327.24 was used in our measurements.

6 Results and Discussion

All experiments were conducted on an NVIDIA GTX Titan GPU
and an Intel Core i7-3930K CPU. We used three scenes (see Fig-
ure 1). HOUSES is designed to be used to illustrate the scaling in a
scene where all lights have a similar size and uniform distribution.
NECROPOLIS is derived from the Unreal SDK, with some lights
moved slightly and all ranges doubled. We added several animated
cannons shooting lights across the main central area, and a number
of moving objects. The scene contains 275 static lights and peaks at
376 lights. CRYSPONZA is derived from the Crytek version of the
Sponza atrium scene, with 65 light sources added. Each scene has
a camera animation, which is used in performance graphs (see the
supplementary video).

We evaluate several algorithm variants with different modifications:
Shadow maps with projection map culling (PMC), and with added
depth culling (PMCD); with or without explicit bounds (EB); only
using cluster face mask culling (CFM); Ray Tracing; and Hy-
brid, which uses PMCD-EB. Unless otherwise indicated, four cube
shadow maps per light is used.

7% 7% 49% 1% 14% 3% 19%

BatchHierarchyTraverse UpdateBatches BuildBatchHierarchy
CalcShadowMapRes ClearBuffers ProjectionMapCull
BuildCubeMapProjections

15%

27%

27%

5%
8%
7%

11%

NECROPOLIS (3.5ms)

18%

18%

28%
2%

12%
5%

17%

HOUSES (2.0ms)

7% 7%

49% 1%
14%
3%

19%

CRYSPONZA (1.8ms)

Figure 9: Timing breakdown of the steps involved in culling batches.
The displayed percentage represents the maximum time for each of
the steps over the entire animation.

As noted in Section 5.3.1, current API and driver performance for
committing physical memory is very poor. All performance mea-
surements are therefore reported using the fall-back implementation,
which uses a pool of physical pre-allocated shadow maps. We per-
formed the same measurements on the full implementation to ensure
that they produce representative figures. The pool will run out of
high-resolution shadow maps at times, which results in too low
sample density and affects the shadow map rendering times. These
variations are within 100% of the reported figures and do not affect
the peak times reported. It was found that other factors such as
re-binding render targets had greater performance impact.

0

10

20

30

40

50

60

0 100 200 300

Ti
m

e
 [

m
s]

(a) NECROPOLIS.

0

10

20

30

40

50

60

0 100 200 300

CFM

RayTrace

Hybrid

PMCD-EB

PMCD-EB-Pcf

PMCD-EB-LOD

(b) HOUSES.

0

5

10

15

20

25

0 100 200 300

(c) SPONZA.

Figure 10: Wall-to-wall frame times from the scene animations, for different algorithm variations.

All reported figures are using a batch size of up to 128 triangles.
We evaluated several other batch sizes and found that performance
was similar in the range 32 to 512 triangles per batch, but was
significantly worse for larger batches. This is expected, as larger
batches lead to more triangles being drawn, and rasterization is
already a larger cost than culling in the algorithm (see Figure 8(a)).

Performance We report the wall-to-wall frame times for our main
algorithm variants in Figure 10. These are the times between con-
secutive frames and thus include all rendering activity needed to
produce each frame. From these results, it is clear that virtual shadow
maps with projection-map culling offer robust and scalable perfor-
mance and that real-time performance with many lights and dynamic
scenes is achievable.

As expected, ray tracing offers better scaling when the shadows
require fewer samples, with consistently better performance in the
first part of the zooming animations in NECROPOLIS and HOUSES
(Figure 10). When the lights require more samples, shadow maps
generally win, and also provide better quality (as we are ray tracing
a fairly coarse voxel representation).

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300

M
ill

io
n

s

PMCD

CFM

Hybrid

PMC-EB

PMCD-EB

Figure 11: Triangles drawn each frame in the NECROPOLIS ani-
mation with different culling methods. The naı̈ve method, that is,
not using the information about clusters to improve culling, is not
included in the graph to improve presentation. It renders between
40 and 126 million triangles per frame and never less than six times
the number of PMCD.

The hybrid method is able to make use of this advantage and pro-
vides substantially better performance early in the NECROPOLIS
animation (Figure 8(c)). However, it fails to improve worst-case per-
formance because there are always a few small lights visible, and our
implementation runs a separate full-screen pass in CUDA to shade
these. Thus, efficiency in these cases is low, and we would likely see
better results if the ray tracing better integrated with the other shad-
ing. An improved selection criterion, based on the estimated cost of
the methods rather than just shadow-map resolution, could also im-
prove performance. For example, the LOD version of the HOUSES
scene (Figure 10(b)) highlights that the cost of shadow mapping is

correlated to the number of polygons rendered. The LOD version
also demonstrates that there exists a potential for performance im-
provements using traditional polygon LOD, as an alternative or in
addition to ray tracing.

Shadow filtering, in our implementation a simple nine-tap
Percentage-Closer filter (PCF), has a quite high proportion of the to-
tal cost, especially in the scenes with relatively many lights affecting
each sample (Figure 10). Thus, techniques to reduce this cost, by
restricting filtering or using pre-filtering, could be a useful addition.

Culling Efficiency Culling efficiency is greatly improved by our
new methods exploiting information about shadow receivers inherent
in the cluster, as shown in Figure 11. Compared to naı̈vely culling
using the light sphere and drawing to all six cube faces, our method
is at least six times more efficient.

When adding the max depth culling for each cube face, the addi-
tional improvement is not as significant. This is not unexpected
as the single depth is a very coarse representation, most lights are
relatively short range, and the scene is mostly open with little oc-
clusion. Towards the end of the animation, where the camera is
inside a building, the proportion that is culled by the depth increases
somewhat. The cost of adding this test is very small (see Figure 9:
’ProjectionMapCull’).

Memory Usage As expected, using only a single shadow map per
light has very high worst case for NECROPOLIS (Figure 12:’PMCD-
EB-1SM’). With four shadow maps per light, we get a better cor-
respondence between lighting computations (i.e., the number of
light/sample pairs shaded) and number of shadow maps texels allo-
cated. This indicates that peak shadow map usage is correlated to the
density of lights in the scene, which is a very useful property when
budgeting rendering resources. The largest number of shadow-map
texels per lighting computation occurs when shadow maps are low
resolution, early in the animation, and does not coincide with peak
memory usage. We tested up to 16 shadow maps per light, and above
eight, the number of texels rises again.

Explicit bounds The explicit bounds provide improved efficiency
for both the number of shadow-map texels allocated and number of
triangles drawn by 8− 35% over the NECROPOLIS animation. The
greatest improvement is seen near the start of the animation, where
many clusters are far away and thus have large implicit bounds in
view space (Figure 11).

Quality As seen in Figure 3, there exist sampling artifacts due to
our choice of resolution calculations. However, as we recalculate the
required resolutions continuously and select the maximum for each
shadow map, we expect these errors to be stable and consistent. In

0

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

300

350

400

450

0 100 200 300

M
ill

io
n

s

M
ill

io
n

s

PMCD-EB-1SM

PMCD-EB-4SM

PMCD-EB-U2

PMCD-EB-U4

LightingComputations

0

5

10

15

20

25

0 100 200 300

#S
M

 T
ex

e
ls

 /
 L

ig
h

ti
n

g
C

o
m

p
u

ta
ti

o
n

PMCD-EB-1SM

PMCD-EB-4SM

PMCD-EB-U2

PMCD-EB-U4

Figure 12: Allocated shadow-map texels for various scenarios over
the NECROPOLIS animation. Shows the performance with a varying
number of shadow maps per light, the effect of the global undersam-
pling parameter (u2|u4 suffix), and also plots the number of Lighting
Computations for each frame (secondary axis).

the supplementary video, it is difficult to notice any artifacts caused
by switching between shadow-map resolutions.

We also added a global parameter controlling undersampling to
enable trading visual quality for lower memory usage (see Figure 12).
This enables a lower peak memory demand with uniform reduction
in quality. For a visual comparison, see the supplementary video.

7 Conclusion

We presented several new ways of exploiting the information in-
herent in the clusters provided by clustered shading, which enable
very efficient and effective culling of shadow casting geometry.
With these extensions, we have demonstrated that using hardware-
supported virtual cube shadow maps is a viable method for achieving
high-quality real-time shadows, scaling to hundreds of lights.

In addition, we show that memory requirements when using virtual
cube shadow maps as described in this paper remains proportional
to the number of shaded samples. This is again enabled by utilizing
clusters to quickly determine both the resolution and coverage of the
shadow maps.

We also demonstrate that using ray tracing can be more efficient
than shadow maps for shadows with few samples and that a hybrid
method building on the strength of both is a promising possibility.

The implementation of ARB_sparse_texture used in our evaluation
does not offer real-time performance. However, we expect that
future revisions, perhaps combined with new extensions, will make
this possible. In addition, on platforms with more direct control over
resources, such as game consoles, this problem should be greatly
mitigated.

8 Future Work

In the future, we would like to explore more aggressive culling
schemes, for example using better max-depth culling. We also would
like to explore other light distributions, which might be supported
by pre-defined masks, yielding high flexibility in distribution.

Acknowledgements

The Geforce GTX Titan used for this research was donated by the
NVIDIA Corporation. We also want to acknowledge the anonymous
reviewers for their valuable comments, and Jeff Bolz, Piers Daniell
and Carsten Roche of NVIDIA for driver support. This research was
supported by the Swedish Foundation for Strategic Research under
grant RIT10-0033.

References

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A.K. Peters.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG,
D. P. 2001. Adaptive shadow maps. In Proc., SIGGRAPH ’01,
387–390.

FERRIER, A., AND COFFIN, C. 2011. Deferred shading techniques
using frostbite in ”battlefield 3” and ”need for speed the run”. In
Talks, SIGGRAPH ’11, 33:1–33:1.

HARADA, T., MCKEE, J., AND YANG, J. C. 2013. Forward+:
A step toward film-style shading in real time. In GPU Pro 4:
Advanced Rendering Techniques, W. Engel, Ed. 115–134.

HARADA, T. 2012. A 2.5D culling for forward+. In SIGGRAPH
Asia 2012 Technical Briefs, SA ’12, 18:1–18:4.

HOLLANDER, M., RITSCHEL, T., EISEMANN, E., AND
BOUBEKEUR, T. 2011. ManyLoDs: parallel many-view level-
of-detail selection for real-time global illumination. Computer
Graphics Forum 30, 4, 1233–1240.

KARRAS, T., AND AILA, T. 2013. Fast parallel construction of
high-quality bounding volume hierarchies. In Proc., HPG ’13,
89–99.

KELLER, A. 1997. Instant radiosity. In Proc., SIGGRAPH ’97,
49–56.

KÄMPE, V., SINTORN, E., AND ASSARSSON, U. 2013. High reso-
lution sparse voxel dags. ACM Trans. Graph. 32, 4. SIGGRAPH
2013.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007.
Resolution-matched shadow maps. ACM Trans. Graph. 26, 4
(Oct.).

OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. Journal
of Graphics, GPU, and Game Tools 15, 4, 235–251.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clus-
tered deferred and forward shading. In Proc., EGGH-HPG’12,
87–96.

PERSSON, E., AND OLSSON, O. 2013. Practical clustered de-
ferred and forward shading. In Courses: Advances in Real-Time
Rendering in Games, SIGGRAPH ’13, 23:1–23:88.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008. Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans.
Graph. 27, 5 (Dec.), 129:1–129:8.

SELLERS, G., OBERT, J., COZZI, P., RING, K., PERSSON, E.,
DE VAHL, J., AND VAN WAVEREN, J. M. P. 2013. Rendering
massive virtual worlds. In Courses, SIGGRAPH ’13, 23:1–23:88.

SWOBODA, M., 2009. Deferred lighting and post processing on
playstation 3. Game Developer Conference.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K. 2008.
Fast agglomerative clustering for rendering. In IEEE Symposium
on Interactive Ray Tracing, 2008. RT 2008, 81–86.

Paper IV: An Efficient Alias-free Shadow Algorithm for
Opaque and Transparent Objects using per-triangle

Shadow Volumes
Erik Sintorn, Ola Olsson and Ulf Assarsson

Abstract: This paper presents a novel method for generating pixel-accurate shadows
from point light-sources in real-time. The new method is able to quickly cull pixels that
are not in shadow and to trivially accept large chunks of pixels thanks mainly to using
the whole triangle shadow volume as a primitive, instead of rendering the shadow quads
independently as in the classic Shadow-Volume algorithm. Our CUDA implementation
outperforms z-fail consistently and surpasses z-pass at high resolutions, although these
latter two are hardware accelerated, while inheriting none of the robustness issues as-
sociated with these methods. Another, perhaps even more important property of our
algorithm, is that it requires no pre-processing or identification of silhouette edges and so
robustly and efficiently handles arbitrary triangle soups. In terms of view sample test and
set operations performed, we show that our algorithm can be an order of magnitude more
efficient than z-pass when rendering a game-scene at multi-sampled HD resolutions. We
go on to show that the algorithm can be trivially modified to support textured, semi-
transparent and colored semi-transparent shadow-casters and that it can be combined
with either depth-peeling or stochastic transparency to also support transparent shadow
receivers. Compared to recent alias-free shadow-map algorithms, our method has a
very small memory footprint, does not suffer from load-balancing issues, and handles
omni-directional lights without modification. It is easily incorporated into any deferred
rendering pipeline and combines many of the strengths of shadow maps and shadow
volumes.

ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2011,
Volume 30, Issue 6, Article No. 153, December 2011

63

ACM Reference Format
Sintorn, E., Olsson, O., Assarsson, U. 2011. An Effi cient Alias-free Shadow Algorithm for Opaque and Trans-
parent Objects using per-triangle Shadow Volumes. ACM Trans. Graph. 30, 6, Article 153 (December 2011),
10 pages. DOI = 10.1145/2024156.2024187 http://doi.acm.org/10.1145/2024156.2024187.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2011 ACM 0730-0301/2011/12-ART153 $10.00 DOI 10.1145/2024156.2024187
http://doi.acm.org/10.1145/2024156.2024187

An Efficient Alias-free Shadow Algorithm for Opaque and Transparent Objects
using per-triangle Shadow Volumes

Erik Sintorn∗

Chalmers University Of Technology
Ola Olsson†

Chalmers University Of Technology
Ulf Assarsson‡

Chalmers University Of Technology

(a) (b) (c)

Figure 1: Images rendered with the novel shadow algorithm. All images rendered in 1024x1024, time taken to generate shadow buffers
in parenthesis. (a) Pixel accurate hard shadows in a game scene (7.29ms, 60k triangles). (b) Alpha-textured shadow casters (13ms, 35k
triangles). (c) Colored transparent shadows. Image rendered using depth peeling of 8 layers (75.66ms, 5-19 ms per layer, 60k triangles).

Abstract

This paper presents a novel method for generating pixel-accurate
shadows from point light-sources in real-time. The new method is
able to quickly cull pixels that are not in shadow and to trivially ac-
cept large chunks of pixels thanks mainly to using the whole trian-
gle shadow volume as a primitive, instead of rendering the shadow
quads independently as in the classic Shadow-Volume algorithm.
Our CUDA implementation outperforms z-fail consistently and sur-
passes z-pass at high resolutions, although these latter two are hard-
ware accelerated, while inheriting none of the robustness issues as-
sociated with these methods. Another, perhaps even more impor-
tant property of our algorithm, is that it requires no pre-processing
or identification of silhouette edges and so robustly and efficiently
handles arbitrary triangle soups. In terms of view sample test and
set operations performed, we show that our algorithm can be an or-
der of magnitude more efficient than z-pass when rendering a game-
scene at multi-sampled HD resolutions. We go on to show that
the algorithm can be trivially modified to support textured, semi-
transparent and colored semi-transparent shadow-casters and that
it can be combined with either depth-peeling or stochastic trans-
parency to also support transparent shadow receivers. Compared
to recent alias-free shadow-map algorithms, our method has a very
small memory footprint, does not suffer from load-balancing issues,
and handles omni-directional lights without modification. It is eas-
ily incorporated into any deferred rendering pipeline and combines
many of the strengths of shadow maps and shadow volumes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: shadows, alias-free, real time, transparency

∗e-mail: erik.sintorn@chalmers.se
†e-mail:ola.olsson@chalmers.se
‡e-mail:uffe@chalmers.se

Links: DL PDF

1 Introduction

Generating accurate shadows from point light-sources for each
pixel sample remains a challenging problem for real-time appli-
cations. Despite generations of research, we have yet to see a
pixel-accurate shadow-algorithm for point lights that requires no
pre-processing, works on any arbitrary set of triangles and that runs
at stable real-time frame rates for typical game-scenes on consumer
level hardware. Traditional shadow mapping [Williams 1978] tech-
niques generate shadows from a discretized image representation
of the scene and so alias when queried for light visibility in screen
space. Real-time techniques based on irregular rasterization [Sin-
torn et al. 2008] tend to generate unbalanced workloads that fit cur-
rent GPUs poorly and consequently, frame rates are often very un-
stable. Real-time ray tracing algorithms rely heavily on geometry
pre-processing to generate efficient acceleration structures. Finally,
robust implementations of the Shadow-Volume algorithm require
pre-processing the mesh to find edge connectivity, work poorly or
not at all for polygon soups without connectivity, and have frame
rates that are all but stable as the view of a complex scene changes.
Nevertheless, the idea of directly rasterizing the volumes that rep-
resent shadows onto the view samples remains compelling. In the

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

upcoming sections, we hope to convince the reader that this basic
idea is sound and that choosing the right manner of rasterization is
the key to efficiently generate shadows using shadow volumes.

Figure 2: A point lies in the shadow volume of a triangle if it lies
behind all planes CAB, DAC, BAD and BCD. To optimize culling of
tiles, let E be the eye position and test against the planes EDA and
EAB, in order to get a less conservative tile-test (see Section 3.5) .
These two planes are depicted with red dashed lines.

The basic algorithm described in this paper can be easily summa-
rized. We render the shadow volume of each triangle, see Figure 2,
onto a depth buffer hierarchy generated from the standard depth
buffer after rendering the camera view of the scene. A node in
this hierarchy is a texel at some level, containing the min and max
depths and defines a bounding box in normalized device coordi-
nates (see Section 3). To avoid confusion with traditional shadow
volumes, which represent shadows from an object, we will refer to
our single triangle shadow volumes as shadow frustums. A shadow
frustum can either intersect a node, in which case the child-nodes
must be inspected; completely envelop a node, in which case the
node and all its child-nodes are in shadow and can be flagged as
such; or the node can lie completely outside the frustum, in which
case all child-nodes can be abandoned. We have implemented this
algorithm in CUDA, where it takes the form of a hierarchical ras-
terizer operating on shadow frustum primitives. The algorithm has
many things in common with the traditional Shadow-Volume algo-
rithm, but by considering every shadow frustum separately (as op-
posed to forming the shadow volume from the silhouette edges of an
object) and by maintaining the complete frustum throughout traver-
sal (as opposed to splitting it into per-edge shadow-quads), we man-
age to elegantly steer clear of the many quirks and robustness issues
that are associated with other Shadow-Volume algorithms.

Our main contribution is an accurate and efficient algorithm for de-
termining light source visibility for all view samples which:

• works for any arbitrary triangle-soup without pre-processing.

• is demonstrated to be very efficient in the amount of work
performed per shadowed view sample.

• has a very low memory footprint.

• trivially extends to allow for textured shadow-casters.

• trivially extends to allow for semi-transparent and colored
semi-transparent shadow-casters.

• is easy to integrate into any deferred rendering pipeline.

We show that the shadow frustum–depth hierarchy traversal, as well
as interpolation of per-vertex attributes, can be done entirely in
homogeneous clip space, thereby eliminating any potential prob-
lems with near and far clip planes. Additionally, we suggest a
novel method where binary light visibility is recorded stochasti-
cally per view sample with a probability equal to the opacity of
the shadow-casting triangle. This allows us to store a single bit
of visibility information per sample in Multi-Sample Anti Alias-
ing (MSAA), Coverage-Sample Anti Aliasing (CSAA) or Super-
Sample Anti Aliasing (SSAA) rendering contexts and still get a
correct-on-average visibility result when the pixel is resolved. We

also propose a scheme to anti-alias the shadow-edges without ac-
tually using more than one depth-value per pixel in the depth-
hierarchy. This method is equivalent to PCF filtering of an infinite
resolution shadow map and like PCF filtering gives occasionally
incorrect but visually pleasing results.

2 Previous Work

For a thorough overview of real-time shadow algorithms, we refer
the reader to [Eisemann et al. 2009]. Below, we will review the
work most relevant to the algorithm presented in this paper. Al-
gorithms for rendering hard shadows in real-time can be roughly
sorted into three categories:

Shadow mapping Today shadow mapping [Williams 1978] and
related techniques constitute the de-facto standard shadowing algo-
rithm for real-time applications, despite suffering from quite severe
aliasing artifacts. This widespread adoption has come about due to
good hardware support, ability to handle arbitrary geometry, and
low variability in frame times.

Another reason for the popularity is that the shadow map can be fil-
tered to hide artifacts, mimicking the effect of an area light-source.
Filtering during lookup usually requires a large number of sam-
ples [Reeves et al. 1987; Fernando 2005], whereas pre-filtering re-
quires additional attributes, which increases storage and bandwidth
requirements [Donnelly and Lauritzen 2006; Annen et al. 2008].
Filtering can enable the use of relatively low resolution shadow
maps while producing visually pleasing results.

However, without resorting to a very high-resolution shadow map,
sharp shadows cannot be produced, leaving shadows artificially
blurred or with obvious discretization artifacts. Several algorithms
attempt to improve precision where it is most needed, without ab-
horrent memory requirements, either by warping or by partitioning
the shadow map. Warping techniques [Stamminger and Drettakis
2002; Wimmer et al. 2004; Lloyd et al. 2008] can yield impres-
sive results but suffer from special cases where they degenerate to
ordinary shadow maps. Partitioning approaches can produce high-
quality sharp shadows quickly for some scenes [Arvo 2004; Zhang
et al. 2006; Lefohn et al. 2007; Lauritzen et al. 2011], but have dif-
ficulties if the scenes are very open with widely distributed geome-
try, leading to aliasing re-appearing, unpredictable run-time perfor-
mance, or escalating memory requirements.

Alias-free shadow maps Alias-free shadow-mapping algo-
rithms are exact per view sample [Aila and Laine 2004; Johnson
et al. 2005; Sintorn et al. 2008]. To our knowledge, the only pixel
accurate alias-free shadow algorithm that runs in real-time on cur-
rent GPUs for complex scenes is [Sintorn et al. 2008]. While this
algorithm runs admirably on some scenes and is likely to perform as
well as or better than ours on views with a very high variance in the
depth buffer, it breaks down in other configurations (e.g. when all
view samples project to a single line in light space). Like our algo-
rithm, these exact methods could trivially support semi-transparent
and textured shadow casters.

Shadow volumes The Shadow-Volume algorithm, introduced
by Crow in [1977], was implemented with hardware acceleration
in 1985 [Fuchs et al. 1985] but did not see widespread use until a
version was suggested that could be hardware accelerated on con-
sumer grade graphics hardware with the z-pass algorithm [Heid-
mann 1991]. The idea is to isolate the silhouette-edges and extrude
these away from the light-source, forming shadow-quads that en-
close the shadow volume for an object. These shadow volumes are

153:2 • E. Sintorn et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

rendered onto the camera’s depth buffer and the stencil buffer is in-
cremented for front-facing quads and decremented for back-facing
so that, when all quads are processed, the stencil buffer value will
be 0 only for those pixels that do not lie in shadow. This essentially
creates a per-pixel count of the number of shadow volumes that are
entered by a ray cast from the eye to the view sample. Alternatively,
the counting can be performed from the view samples to infinity, a
method called z-fail [Bilodeau and Songy 1999; Carmack 2000].

Z-pass classically suffers from the eye-in-shadow problem, i.e. if
the camera lies within one or more shadow volumes, or if the near-
plane clips any shadow quad, the values in the stencil buffer will
be incorrect. This is partly solved by Hornus et al. [2005] where
the lights’ view is aligned with that of the camera and the light’s
far plane is set to equal the camera’s near plane. Since the light is
not in shadow, the scene can then be rendered from the light with a
projection matrix set up to match that of the camera, and the stencil
buffer is updated with all shadow quads that lie between the light
and the camera near plane in a first pass. The algorithm has some
robustness issues that get worse as the lights’ position approaches
the cameras near plane. With the advent of depth-clamping, the
solution to the eye in shadow problem is reduced to evaluating how
many shadow casters lie between the camera and light, but to date
no fully robust solution has been presented to this problem.

While the z-fail algorithm can be made practically robust [Everitt
and Kilgard 2002], it is typically significantly slower due to higher
overdraw [Laine 2005] and the need for near- and far capping ge-
ometry. An eight-bit stencil buffer (still the maximum allowed on
current GPUs) can overflow, and resorting to using higher-precision
color buffers will accentuate the rasterization cost significantly.

Several papers exist that aim to reduce fill rate requirements. In
[Lloyd et al. 2004], the authors consider the objects in a scene
graph and discuss a number of ways to prune the set of objects
to find potential shadow-casters (for the current light view) and po-
tential shadow receivers (for the current camera view). They also
suggest a way to limit the distance a shadow caster has to extend
its shadow volume in order to conservatively reach all potential
shadow receivers. All of the optimizations in this paper are equally
applicable to our algorithm (if we were to include a far plane for
our shadow frustums), but as our rasterization already culls re-
ceiving tiles much more efficiently than the z-pass or z-fail algo-
rithms, the overdraw reductions would probably not be large. Aila
and Akenine-Moller [2004] suggest an optimization that in some
ways resemble ours. In the first stage of their algorithm, 8x8 pixel
tiles that lie on the shadow-volume boundary are identified (a min-
imum and maximum z for each tile is maintained, and thus, the 3D
bounding box for the tile can be tested against each shadow-quad)
and other tiles are classified as either fully in shadow or fully lit.
One such shadow buffer (containing a boolean boundary flag and
an eight-bit stencil value) is required per shadow volume. In the
second stage, the per pixel shadow is calculated for boundary tiles
whereas non-boundary tiles can be set to the shadow state of the
tile. The authors suggest two hardware modifications to make the
algorithm more efficient: a hierarchical stencil-buffer that would
make classification of tiles faster and a so called Delay Stream that
would help the rasterizer keep track of when the classification of
a shadow volume is complete and final stencil buffer updates can
begin. Nevertheless, this solution would be infeasible for a larger
amount of shadow volumes.

Chan and Durand [2004] use a shadow map to fill in the hard shad-
ows and also identify shadow-silhouette pixels. Then, shadow vol-
umes are used to generate correct shadows at these silhouette pix-
els. However, the algorithm relies on custom hardware to reject
non-silhouette pixels and cannot guarantee not missing small sil-
houettes due to the discrete shadow map sampling.

Textured and semi transparent shadows Materials that are
semi-transparent are common in real-time applications and present
a problem for most shadow algorithms. A semi transparent surface
is given an alpha or opacity value, α, which is defined as the ratio
of received light that is absorbed or reflected at the surface (1 − α
is the ratio that continues through the surface). This same model
is commonly used to represent both materials that have partial cov-
erage (e.g. a screen door) and materials that transmit light (e.g.
thin glass) [McGuire and Enderton 2011]. For shadow-map based
methods, these materials are difficult because a visibility lookup is
no longer a binary function and so, a single depth value is not suf-
ficient to define the visibility along a ray from the light towards the
point being shadowed. Several techniques have been suggested to
solve this by rendering shadow maps with several layers, the most
common being Deep Shadow Maps [Lokovic and Veach 2000] for
which the scene has to be rendered several times in the absence
of a hardware accelerated A-buffer [Carpenter 1984], or by sam-
pling visibility at discrete depths [Kim and Neumann 2001; Yuksel
and Keyser 2008; Sintorn and Assarsson 2009] which works well
for ”fuzzy” geometry such as smoke or hair, but not so well for
polygons where strong transitions in visibility happen at every sur-
face. Recently, a different method was proposed [Enderton et al.
2010; McGuire and Enderton 2011] in which, when generating the
shadow map, a triangle fragment is simply discarded with probabil-
ity (1 − α). A PCF lookup into this map will return a value that
is correct on average. However, if too few taps are taken from the
filter region, the result will be noisy and so, to achieve sharp and
noise free shadows, very many taps will be required from a very
high resolution shadow map.

Semi-transparent shadows have been considered for shadow-
volume type algorithms as well. A straightforward approach was
suggested in [Kim et al. 2008], where the stencil buffer is re-
placed by a floating point buffer and the stencil increment/decre-
ment operations are replaced by adding or removing log(1 − α),
where α is the opacity of the object that generated the shadow
quad. This elegantly produces a final stencil value, s, such that
exp(s) =

∏
i(1 − αi), where αi is the opacity value of a shadow

caster that covers the sample point, which is exactly the visibility
at that point. The method produces pixel-accurate sharp shadows
and can easily be extended to support colored shadow-casters, but
requires opacity to be constant per object. Needless to say, the addi-
tional math and blending operations exacerbate the overdraw prob-
lem inherent in the traditional Shadow-Volume algorithm. Also,
textured shadow casters are not supported.

In [Hasselgren and Akenine-Moller 2007] the problem is instead
solved simply by handling semi-transparent or textured objects sep-
arately, so that every triangle shadow volume is rendered for such
objects. Despite the optimizations discussed in that paper, this will
cause very much overdraw and will be prohibitively slow for com-
plex geometry. The realization from that paper, that transparent
and textured shadow casters are easily supported when the trian-
gles’ shadow volumes are handled separately, is, however, the ba-
sis for these extensions to our algorithm which renders per-triangle
shadow volumes very efficiently. It should also be mentioned that a
similar idea was used for textured soft shadows [Forest et al. 2009].

In games and other real-time graphics applications, complex ge-
ometry is often approximated by mapping a binary alpha mask to
simple geometry. A common example is the leaves on the tree in
Figure 1(b). Casting shadows from such objects is simple when us-
ing shadow-mapping type algorithms, where, when rendering the
shadow map, a fragment can simply be discarded if the alpha value
is below some threshold. Unfortunately, as the filtered opacity value
will not be binary even if the original alpha mask is, this technique
introduces even more aliasing to the shadow-map algorithm. The
problem with shadow casters of this kind, when using shadow-

An Efficient Alias-free Shadow Algorithm for Opaque and Transparent Objects using per-triangle Shadow Volumes • 153:3

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

volume type algorithms, is that when a shadow-quad is rendered
over a view sample, we know only that the sample lies within the
shadow volume of some object but we have no means of determin-
ing which triangle covers the sample, and so, we cannot do a lookup
into the alpha mask to see if the point is truly in shadow. If we ren-
der triangle shadow volumes individually however (as in [Hassel-
gren and Akenine-Moller 2007]), we may pass along the uv coordi-
nates of each vertex, as well as the vertices themselves, and then do
a ray-triangle intersection test prior to updating the stencil buffer,
or by some other means find the uv coordinates on the triangle.

Figure 3: Every texel in the second level of the depth hierarchy de-
fines a bounding box in normalized device coordinates and, equiv-
alently, a world space frustum which contains all view samples in-
side.

3 Algorithm

We start out with as basic an approach to shadow volumes as we
can imagine. The scene has been rendered to an off-screen set
of buffers containing the ambient light component, direct lighting
and the depth buffer. The depth buffer, along with the model-view-
projection matrix, implicitly gives us the position of a point on a ray
shot from the camera through the mid-sample of each pixel, at the
closest triangle intersection. We call these positions view samples
and they are the points for which we want to evaluate shadow (i.e.
we want to evaluate whether these points are visible from the light
source or not). We can do this by testing, for every view sample,
whether it lies within the shadow frustum (i.e. the shadow volume
of the triangle). If so, the sample is marked as shadowed in a sep-
arate buffer requiring a single bit per pixel. We will call this buffer
the shadow buffer in the discussion below. To evaluate whether the
sample is within the volume or not is a matter of testing the point
against the four planes that make up the volume (See Figure 2).

While exhaustively testing all view samples against all triangle vol-
umes is obviously not a good idea in practice, it is worthwhile to
note a few things about this naive algorithm:

• It works without modification for any arbitrary triangle soup.

• It will be robust as long as some precautions are taken (see
paragraph on robustness below)

• It requires a very small amount of extra memory storage (a
single bit per view sample).

• It requires no pre-processing nor does it matter where the
light, camera near or far planes are situated.

• When a pixel has been marked as in-shadow, it need no longer
be considered by other triangle shadow volumes.

Let’s consider what could be done to alleviate the overdraw prob-
lems in an imaginary customized stamp rasterizer with a two-level
hierarchical depth buffer and an equally sized two-level hierarchi-
cal shadow buffer (which can be thought of as a one bit stencil
buffer). Let’s say the upper level of the hierarchical depth buffer
contains the min and max of the 4x4 depth-values of the lower

level. A texel’s (x, y) coordinates and these two depths then de-
fine an axis aligned bounding box in normalized device coordinates
(or a bounding-frustum in world space, see Figure 3), for the view
samples contained within. We will refer to such bounding-frustums
as tiles from here on.

Our imaginary rasterizer takes a triangle and a light-source position
as input and rasterizes the projected shadow volume. The main
difference in how our rasterizer works, compared to how shadow
quads are traditionally rasterized, lies in the way that we cull against
the hierarchical depth buffers. Where a traditional rasterizer will
cull a number of fragments of a shadow quad only if they all lie
in front of the min depth stored in the upper level of the hierarchy
(for z-fail), our rasterizer tests the tile against each plane of the
shadow frustum. If the tile is found to lie outside either plane, it
can be culled and no bits will be set for the contained view samples
in the shadow buffer. Additionally, if the tile is found to lie inside
all planes, we know that all contained view samples are covered
by this triangle, and so, we simply set a bit in the higher level of
our hierarchical shadow buffer and can then safely abandon the tile.
If the bounding-box can not be trivially rejected nor accepted, the
individual view samples will be tested against the shadow volume
planes and the lower level of the shadow buffer is updated.

Before the shadow buffer is used to determine whether a pixel
should be considered in shadow or not, the two levels must be
merged. This is done by, for each set bit in the higher level, also
setting the corresponding 4x4 bits in the lower level, regardless of
their current state.

For the algorithm to be perfectly robust, two things must be consid-
ered. First, if an edge is shared by two triangles, a view sample will
be tested against the same plane twice, only with opposite normals.
If the sample lies very close to the plane, we can get the erroneous
result that the sample lies outside both, unless we make sure that
the equations for these planes are constructed in exactly the same
way, which may not happen if we simply use the vertices in the or-
der they are submitted. Instead, when constructing a plane from the
light’s position and two edge vertices, the vertices are taken in an
order defined by their world space coordinates (any unique ordering
will do). Similarly, for a perfectly robust solution, testing whether a
sample lies below the plane formed by the triangle should be done
exactly in the same way as when the original depth buffer value
was created. A hardware vendor could ensure that this is the case,
but our software implementation must resort to adding a bias to the
triangle plane to avoid self shadowing artifacts. Unlike the bias re-
quired for shadow maps, this bias can be very small and constant
and in practice it does not introduce any noticeable artifacts.

3.1 A software hierarchical shadow-volume rasterizer

To evaluate the new algorithm, we have designed a hierarchical
shadow volume rasterizer and implemented the design in software
using NVIDIA’s CUDA platform. We chose a fully hierarchical ap-
proach because this is the most viable known approach to parallel
SIMD software rasterization [Abrash 2009], while for a hardware
implementation it is likely that a two-level stamp rasterizer would
prove more efficient.

The rasterizer extends the two-level approach presented earlier to be
fully hierarchical, with L = dlogsNe levels, for some branching
factor s and number of pixels, N , in both the hierarchical z-buffer
and shadow buffer. These hierarchies represent an implicit full tree
with branching factor s, which is traversed during rasterization of a
triangle shadow volume.

Our design broadly follows the approach used for the 2D triangle
rasterizer in Larrabee [Abrash 2009], which is illustrated in Fig-

153:4 • E. Sintorn et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

Algorithm 1 Basic parallel traversal algorithm, for a square tile size
T × T , which assumes SIMD with T × T lanes. The algorithm is
expressed as a program running on an individual SIMD lane, iden-
tified by simdIndex ∈ [0..T × T) and able to broadcast a single
bit to each other using BALLOT. We use ⊗ to denote element-wise
multiplication. Tiles are referenced using integer tuples defining
their location within the current hierarchy level.

1: procedure TRAVERSAL(level , parentTile, tri)
2: subTile ← (simdIndex mod T, simdIndex/T)
3: tile ← parentTile ⊗ (T, T) + subTile
4: if level is final level then
5: if TESTVIEWSAMPLE(tile ,tri) then
6: UPDATESHADOWBUFFER(level , tile)
7: return
8: tileIntersects ← TESTTRIVOLUME(level , tile, tri)
9: if tileIntersects = ACCEPT then

10: UPDATESHADOWBUFFER(level , tile)
11: else
12: queue ← BALLOT(tileIntersects = REFINE)
13: for each nonzero bit b i in queue do
14: child ← parentTile ⊗ (T, T) + (i mod T, i/T)
15: TRAVERSAL(level + 1, child , tri)

ure 4, as this is simpler to illustrate and exactly analogous to what
we do. The example shows 4 × 4 tiles, which would be suitable
for 16-wide SIMD, with each lane processing a tile at the current
level in the hierarchy. For each edge, a trivial accept corner and
a trivial reject corner are found. These are the tile corners with
greatest and least projection on the edge normal, as shown for tile
0 in the figure. If the trivial reject corner is outside any edge, then
the tile can be rejected (shown in green). Conversely, if the trivial
accept corner is inside all edges, then the tile can be trivially ac-
cepted (shown in blue). If neither of these conditions are satisfied
(white), then the tile must be recursively refined at the next level of
the hierarchy (Figure 4(b)). Note the single yellow tile shown (tile
9), which is obviously outside the triangle but cannot be rejected by
the algorithm because its trivial reject corners are not outside any
edge. This is sometimes called the triangle shadow [McCormack
and McNamara 2000], and produces false positives unless some ex-
tra test is employed that is capable of rejecting such tiles.

Figure 4: Hierarchical 2D triangle rasterization illustrated by two
levels. In (a), the green tiles are trivially rejected, white tiles need
more refining and the yellow tile (9) is in the triangle shadow. The
purple and blue dots show, for tile 0, the trivial reject and accept
corners, respectively, to use with the red edge. In (b), showing the
next level of refinement for tile 6, the blue tiles are trivially ac-
cepted.

Our suggested process for rasterizing shadow frustums is very sim-
ilar, with some notable differences. Firstly, as we are rasterizing

shadow frustums, the three edge equations defining a triangle are
replaced by four plane equations, which define the shadow frus-
tum. Secondly, the hierarchical shadow buffer enables much sim-
pler trivial accept handling; only a single bit needs to be updated
in the correct hierarchy level. Lastly, our rendering is fully hierar-
chical instead of tiled, with each primitive traversing the hierarchy
from the root and writing the results directly into the shadow-buffer
hierarchy. Certain other implementation details are also different as
we target an NVIDIA GPU rather than the Larrabee architecture.
This is further elaborated on in Section 3.4.

Using homogeneous clip space is advantageous since, by preced-
ing the perspective divide, it removes the need for clipping [Olano
and Greer 1997]. The intersection test between a tile and trian-
gle shadow volume is very similar to the frustum vs. AABB test –
commonly used for view frustum culling – with the shadow volume
being the frustum.

Traversing the hierarchy from the root, as opposed to using a tiled
approach, has the advantages of improved scaling with resolution
and that large shadow volumes can trivially accept or reject larger
tiles. Even though triangles in today’s complex scenes are often
very small, the projected shadow frustums generated from such tri-
angles can still be arbitrarily large, especially in the worst cases
(see Figure 5). Efficiently handling the worst cases is important if
we wish to construct a shadowing algorithm with low variability in
frame times.

The basic SIMD traversal algorithm is shown in Algorithm 1. Each
SIMD lane handles one sub-tile. They then exchange their results
as bits in a single word, before recursively descending to the next
level.

3.2 Textured and transparent shadows

As described in section 2, the original Shadow-Volume algorithm
relies on extending shadow quads from the silhouette edges only. In
that way, a large number of shadow quads can be culled away and
overdraw is reduced, but we lose the ability to determine which tri-
angles cover which view samples. If all we want is binary shadow
information, this is acceptable, as a sample will be in shadow re-
gardless of which or how many triangle shadow volumes it lies
within. If one intends to draw textured shadows or shadows cast
from semi-transparent triangles, however, all triangles that cover a
view sample must be considered individually.

In our approach, the triangle shadow volumes are always consid-
ered individually. Hasselgren et. al. [2007] show that if all tri-
angle shadow volumes are rendered separately, textured and semi-
transparent shadows are feasible, but they do not suggest any
method to render shadow frustums efficiently and so are limited
to rather low polygon counts. We incorporate their ideas into our
efficient rendering of shadow frustums and can render hundreds of
thousands of textured or semi-transparent shadows in real-time. Be-
low, we describe how textured and semi-transparent shadow-casters
can be taken care of with very small changes to the original algo-
rithm.

Semi-transparent shadow casters To incorporate semi trans-
parent shadows in our method, we modify the hierarchical shadow
buffer such that it contains a floating point value, instead of a bit, for
every tile and view sample. The shadow buffer is cleared to zero.
When updating the shadow buffer (UPDATESHADOWBUFFER in
Algorithm 1), instead of setting a bit, log(1 − α) is atomically
added. To merge the hierarchical shadow buffer into a single
shadow buffer with a transmittance value per view sample, we sim-
ply add the value of a parent node to all its children instead of OR-

An Efficient Alias-free Shadow Algorithm for Opaque and Transparent Objects using per-triangle Shadow Volumes • 153:5

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

0

1/1024

1/32

1

10

100

200

Figure 5: Visualizing the overdraw caused by different algorithms (according to the metric given in Section 4). From left to right (total
number of view sample test-and-set operations in parenthesis): The scene, z-pass algorithm (19.7 million), z-fail algorithm (18.3 million),
ours (1.2 million). The overdraw in the first two algorithms is proportional to the sum of the areas of projected shadow-quads, whereas in
our algorithm view-samples that lie outside the triangle shadow-frustums are quickly culled.

ing them. The leaf nodes will now contain, for every view sample,∑
log(1− αi) = log(

∏
1− αi) for every triangle i that lies be-

tween it and the light source. To get the transmittance, for each
view sample we simply raise e to the power of that value. This al-
lows us to efficiently render shadows from models with per-triangle
alpha values, which is often sufficient to generate compelling im-
ages (see Figure 1(c)). If the alpha-value needs to be interpolated
over the triangle or fetched from a texture, we can not trivially ac-
cept an internal node in this simple way, as explained in the next
paragraph. Colored transparent shadows are trivially supported by
applying the above scheme to each wavelength (e.g. to a shadow
buffer of RGB-tuples).

Textured shadow casters Computing interpolated texture coor-
dinates to support textured shadow casters is surprisingly simple
in our method. Recall from section 3.1 that to determine whether
a view sample is in shadow, we test its position against the four
planes that make up the shadow frustum and evaluate the sign of
the results. Though perhaps not immediately obvious, it can be
shown that the distances obtained from each of the planes generated
from the triangle edges (d0, d1, d2), are indeed a scaled version of
the barycentric coordinates on the triangle. Scaling these distances
such that d′0 + d′1 + d′2 = 1, we have the true barycentric coordi-
nates and can obtain the texture coordinates for the view sample.
Moreover, this same approach holds in clip space, so no transfor-
mations are required. Given the texture coordinates, we can get the
alpha-mask value, opacity value, or colored opacity value from a
texture and proceed to update the shadow buffer for a view sample.

Note that while it is simple for us to introduce support for textured
shadow casters, we are forced to abandon the trivial accept opti-
mization described in section 3.1. It is simply not the case any more
that if a tile lies entirely within the shadow volume of a triangle, all
sub-tiles will have the same shadow value. Indeed, the triangle may
cast no shadow if its texture is empty. Instead, when a tile is trivially
accepted, we flag it as such and immediately traverse all sub-tiles
without testing, until we reach the individual samples, for which we
evaluate the texture and update the final level of the shadow buffer.
This gives worse performance, of course, than when trivial accept
is as simple as updating a shadow-buffer node, but still works at
acceptable frame rates for complex models. There is a large drop in
performance in our implementation, however, when the shadow of
a single or very few triangles cover a large part of the screen. In this
case, only one or a few multiprocessors will have any work to do
and load-balancing becomes a problem. To alleviate this, we could
instead employ the method described in [Abrash 2009] to trivially
accept a tile. The tile and shadow frustum pair would then simply
be pushed to a work queue that could be processed efficiently in a

separate pass.

As noted previously, alpha-masked shadow casters are trivially
supported by the shadow-mapping algorithm. When rendering
the shadow map, a fragment can simply be discarded if the al-
pha value is below some threshold. Real valued alpha textures,
however, are not easily supported, and one has to use more com-
plex shadow-mapping techniques for this to work (e.g. Stochas-
tic Transparency [Enderton et al. 2010]). Even when rendering
alpha-masked shadow casters, the projection of a fragment onto the
shadow map rarely covers a single texel, and so, filtering should
be employed, and then the simple alpha-mask texture again re-
turns a real valued result which will be thresholded. Our method
trivially handles filtered lookups into an alpha-mask texture, and
consequently, produces higher quality shadows (this too was noted
by [Hasselgren and Akenine-Moller 2007]).

Algorithm 2 Testing a shadow frustum against a tile. The algorithm
first constructs the normalized device coordinate representation of
the tile, and then tests the trivial-reject and trivial-accept corners
against each of the four planes that define the shadow frustum. The
xy extents of the tiles at a level, in normalized device coordinates,
are available through the constant tileSizelevel.

1: procedure TESTTRIVOLUME(level , tile, tri)
2: tileMin.xy ← (−1.0,−1.0) + tile ⊗ tileSizelevel

3: tileMin.z ← fetchMinDepth(level, tile)
4: tileMax.xy ← tileMin.xy + tileSizelevel

5: tileMax.z ← fetchMaxDepth(level, tile)
6: numInside ← 0
7: for each plane pi in tri do
8: if TESTPLANEAABB(pi, tileMin , tileMax) > 0 then
9: return REJECT

10: else
11: numInside ← numInside + 1
12: if numInside = 4 then
13: return ACCEPT
14: else
15: return REFINE

Stochastic transparent shadows When the shadow buffer con-
tains a float per node instead of a single bit, the memory require-
ments are obviously much higher. Especially for high quality an-
tialiased render targets (MSAA, CSAA or SSAA buffers) where ev-
ery pixel has several depth samples, each of which should be tested
against the shadow volumes for correct shadows, the memory foot-
print may be a limiting factor to the usefulness of our algorithm (or
any other sample-accurate transparent shadows algorithm). For ex-

153:6 • E. Sintorn et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

ample, a 1920x1080 buffer with 16 depth samples per pixel and 32-
bit float transmittance values would require 130MB of memory for
the final level. Therefore, we suggest a different approach, where
every pixel sample still holds a single bit of shadowing information.
When updating the shadow buffer with a semi transparent shadow
caster, the bit is simply set stochastically with a probability equal to
α. The shadow buffer is used as per usual to decide whether each
sample shall be considered lit or in shadow. When resolving the
final pixel color the result will be noisy but correct on average (see
Figure 6(a)). The proofs to why this works are equivalent to those
in [Enderton et al. 2010], and, while we have not implemented it,
the same scheme to stratify samples over a pixel as is presented in
that paper should work well to reduce the noise.

Transparent shadow receivers We have shown that semi-
transparent shadow casters present no problems to our algorithm.
Since it is, like the original shadow-volume algorithm, essentially a
deferred rendering algorithm, transparent shadow receivers are not
quite as trivial, though. Since the light-visibility calculations do
not (as with e.g. shadow maps) happen during fragment shading,
but in a post-processing pass, simple techniques where polygons
are sorted on depth before rendering will not work with our algo-
rithm. Oftentimes, these approaches are not sufficient anyways, as
they are prone to errors (two triangles may span the same depth and
cannot be uniquely sorted). Our algorithm works well with depth-
peeling [Everitt 2001], where layers of transparent objects are ren-
dered in several passes and with Stochastic Transparency [Enderton
et al. 2010], although the latter produces z-buffers with a high vari-
ance which causes a hierarchical z-buffer to be less than optimal.

(a) (b)

Figure 6: Stochastic (a) and Real valued (b) transparent shadows.

3.3 Antialiasing

Hard shadow edges often mean that two neighboring pixels will
have vastly different intensities, and so, anti-aliasing can greatly
improve image quality. Our algorithm works well with full screen
anti-aliasing schemes like MSAA, CSAA or SSAA as long as the
pixel-sample positions’ can be obtained. For the shadow calcula-
tions, such a buffer is simply considered a large render target, and
when the shadow buffer has to be updated for a view sample, the
pixel sample positions offset is fetched from a table.

We also suggest a novel anti-aliasing scheme that requires no extra
depth-samples per pixel. When the scene is rendered from the cam-
era, an additional color buffer is rendered that contains the x and y
derivatives of the fragment’s depth. Building the depth buffer hi-
erarchy works exactly as before, except the derivatives are used to
find a minimum and a maximum depth already at the lowest level.
The shadow buffer hierarchy is allocated with one additional level
(so that a view sample will have a number of shadow bits instead of
one single bit), and when traversing the shadow frustums through
the hierarchical depth buffer, we simply traverse as though there
were an additional level of the depth hierarchy, but the final view

samples to be tested are generated from the samples (x, y) positions
in the pixel and the depth derivatives. The final shadow value used
for the pixel will be the ratio of set bits to clear bits in the shadow
buffer. Note that this is equivalent to projecting a fragment on a
shadow map of infinite resolution and taking a number of PCF taps
within this region.

3.4 Implementation

We have implemented our algorithm using CUDA, where the native
SIMD group (called a warp) is 32 threads wide. One warp is issued
per shadow frustum (with enough warps in each CUDA block to
fully utilize the hardware), and the threads in each warp cooper-
ate in rasterization of the frustum. The threads in a warp can effi-
ciently exchange bit flags using the __ballot intrinsic (available on
NVIDIA GPUs of compute capability 2.0 and above). On devices
that lack this instruction, a parallel reduction in shared memory will
yield the same result, at some cost in performance. Choosing a
branching factor that matches the SIMD width allows the traversal
to entirely avoid divergence (threads within a warp executing differ-
ent code paths, for example if shadow frustums traverse the tree to
different depths). A branching factor of 32 also matches the 32-bit
word width, which makes updating bit masks simple and efficient.

However, 32 items cannot tile a square region. To construct a tree
from a square frame buffer, we instead alternate between 8× 4 and
4× 8 at each level. The implementation is otherwise faithful to the
traversal algorithm (Algorithm 1) presented earlier. To accumulate
results in the shadow-buffer hierarchy, we use atomic operations,
e.g. the atomicOr intrinsic. While atomic operations are often held
to be slow, we were not able to observe any penalty from using
them, which may be because of the relatively low load the depth
first traversal places on the memory subsystem.

In order to support transparency, we need to use 32 floating point
numbers per tile instead of 32 bits used for binary shadow. Updat-
ing these is done by using atomic add from each SIMD lane. To
handle colored transparent shadows, we simply use three atomic
adds, one per component.

3.5 Optimizations

Culling against shadow frustum silhouette As described in
section 3.1, our shadow frustum vs. tile test is conservative, and
can thus produce false positives leading to tiles refined unneces-
sarily. This problem is the 3D equivalent of the triangle-shadow
problem for 2D rasterization (see Section 3.1), and causes traver-
sal to refine tiles that are outside the projected shadow volume. To
improve culling efficiency, we also test two additional edges that
define the 2D projection of the shadow volume (illustrated using
red lines in Figure 2). The new edges are defined in 2D homo-
geneous clip space, and are tested in a very similar fashion to the
planes already used. Adding this test helps ensuring that we do not
visit any tiles not actually within the on-screen shadow.

Front face culling When rendering closed objects, we can
choose to use only the triangles that face the light or the back-facing
triangles as shadow casters [Zioma 2003]. This is also employed in
shadow mapping, where rendering only back facing triangles can
reduce self shadowing artifacts. For our algorithm, there is an even
more compelling reason to use this approach. Consider what hap-
pens when a front-facing triangle that is visible from the camera is
used as a shadow caster. This triangle will have to traverse the hi-
erarchical depth buffer all the way down to the view samples that
belong to that triangle, since all of these will lie exactly on the trian-
gle plane. Unlike the traditional shadow-volume algorithm, using

An Efficient Alias-free Shadow Algorithm for Opaque and Transparent Objects using per-triangle Shadow Volumes • 153:7

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

this optimization does not require that the model is actually mod-
eled as a two manifold mesh. As long as the object will render
correctly to screen with backface-culling, it will work robustly as a
shadow caster with front-face culling. For example, unclosed back-
drop geometry will cast shadows properly.

Remove unlit depth samples We want to avoid computing light
visibility for view samples that are already unlit, either because of
the sample not facing the light, or being unlit for other reasons like
being part of the background. To achieve this, we flag unlit view
samples and do not include their depths when building the hierar-
chical depth buffers.

Maintaining an updated shadow buffer When traversing all
shadow frustums through the hierarchical depth buffer, we set bits
in the hierarchical shadow buffer representing completely shad-
owed tiles or view samples. Naturally, once a tile or view sample is
found to be in shadow, given some triangle frustum, its state cannot
change. Therefore an obvious optimization to our traversal algo-
rithm is to stop traversal as soon as we reach a node that is already
marked as being in shadow. It is simple to modify Algorithm 1
to AND the bitmask queue with the inverse of the current shadow
buffer value for the node. This, however, will only stop the shadow
frustum from being traversed through nodes that have previously
been trivially accepted by some shadow frustum (not tiles that have
been filled by several different shadow frustums), so the gain in effi-
ciency is modest. Alternatively, a thread that fills a node can either
recursively propagate that change up the hierarchy or simply up-
date the one level above and rely on the changes to propagate due
to other threads over time. Neither method improves performance
in our implementation however, probably due to the increased cost
of reading the shadow-buffer and the potentially long latency be-
fore an update is visible to other threads. An even more efficient
optimization would be to keep the hierarchical depth buffer dynam-
ically updated (by removing shadowed tiles from the hierarchy), but
this seems less likely to be feasible.

4 Results and Discussion

To evaluate the performance of our algorithm, we have imple-
mented carefully tuned versions of the z-pass and z-fail algorithms.
Our implementations are similar to those suggested by [Aldridge
and Woods 2004], except they are implemented using shaders and
run entirely on the GPU. Since the stencil buffer can only be in-
cremented or decremented by one, shadow quads shared by two
triangles are rasterized twice, as this is much faster than replacing
the stencil buffer with a color buffer (which, using blending, can be
incremented by two or more). In the z-fail implementation, we ren-
der the near and far caps, while in the z-pass we need only render
the shadow quads. Both implementations rely on depth clamping
to avoid clipping artifacts. In the z-pass algorithm, we initialize the
stencil buffer with a value corresponding to the number of shadow
volumes the camera is in. As mentioned, establishing this value ro-
bustly is still an unsolved problem and occasionally causes grave
artifacts. Both z-pass and z-fail can also fail if the eight-bit stencil
buffer overflows.

The time taken to render the shadow volumes is plotted for a fly-
through of a game-scene (see supplementary video), in Figure 7.
We show results for two resolutions, 1024x1024 and 4096x4096.
This latter resolution may seem extravagant, but really corresponds
to approximately the same number of samples that would be pro-
cessed for an image rendered in 1080p with 8xMSAA. The timings
reported for our algorithm are those measured for generating the
shadow buffer (build depth hierarchy, triangle-setup, rasterization

and final merging) and omit any redundant buffer copies that hap-
pen when mixing OpenGL and CUDA. The timings presented for
z-pass omit the time taken to evaluate how many shadow casters
lie between the light and the camera. The graphs show the per-
formance with and without the front-face culling (FFC) optimiza-
tion described in section 3.5. The scene used is a part of the freely
available Epic Citadel [Epic Games 2011] (∼ 60k triangles) which
contains many open edges, in what are really closed objects, and
so would not have worked with the simpler shadow-volume algo-
rithms. The scene has been slightly modified to contain no one-
sided geometry (the cloth in the original model). All timings were
measured on an NVIDIA GTX480 GPU.

100

150

200

ZPASS
ZFAIL
New, with FFC
New, no FFC

0

50

100

150

200

0 50 100

400

500

600

700

800

900

0

100

200

300

400

500

600

700

800

900

0 50 100

Figure 7: Comparing z-pass, z-fail and the new algorithm, with
and without Front Face Culling (FFC), in a fly-through of the
citadel scene. Above: Time taken (in ms) to generate per–view-
sample shadow information. Below: Millions of test-and-set oper-
ations required. Left is for a render target of size 1024x1024, right
4096x4096.

As can be seen from Figure 7, when front-face culling is enabled,
our software GPU implementation outperforms z-fail even at the
lower resolution, and performs with a similar average as z-pass at
the higher resolution, though with much lower variability. With-
out front-face culling, z-pass is still faster than our algorithm at
the higher resolution but, as noted previously, the z-pass algorithm
is not entirely robust and so our algorithm is a compelling alter-
native. Moreover, for meshes without connectivity information or
with short silhouette loops (e.g. destructible buildings, or a flock of
birds) our frame times stay low while z-pass rendering times would
increase significantly.

To further examine the performance of our algorithm we have mea-
sured the total number of test-and-set operations per view sample.
For the shadow-volume algorithms, we have ignored the work re-
quired by the rasterizer and early z-culling (as we lack information
to properly evaluate that), and so the number of test-and-set opera-
tions reported is simply the total number of stencil updates required
for a frame. For our algorithms, we have counted the total number
of tile/shadow frustum and sample/shadow frustum tests performed.

Figure 7 shows the number of test-and-set operations for the same
scene and animation as before. Clearly, the new hierarchical al-
gorithm is more efficient, even at relatively low resolutions, while
at the high resolution it is especially effective. As expected, our

153:8 • E. Sintorn et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

hierarchical approach scales well with increasing resolutions: rais-
ing the number of view samples sixteenfold only requires between
about two to four times as many test-and-set operations, while for
z-pass the increase is around 16 times. The results also demon-
strate the low variability of the new algorithm which is due to our
algorithms ability to trivially accept large tiles that lie within the
shadow frustum and to trivially reject tiles that lie outside. Observe
that, when front-face culling is disabled, the number of required
test-and-set operations is more than doubled (roughly 2.2 times for
the lower, and around 2.4 times for the higher resolution). This is
the expected behavior, as visible front faces must be refined all the
way to the sample level (see Section 3.5), and shows that front-face
culling ought to be enabled whenever possible.

Another important consideration for a shadowing algorithm is ro-
bustness and the artifacts it may produce. The z-pass algorithm is
generally not robust, because of the camera in shadow problem, and
because of stencil buffer overflow, which also affects the z-fail algo-
rithm. When these failures are encountered, the shadow computed
for the entire screen may be incorrect – a highly disturbing artifact.
Our algorithm, on the other hand, has no inherent robustness issues,
and will at worst produce light leakage if the mesh is not properly
welded.

The amount of memory required by our basic (non transparent) al-
gorithm, is very low. For a 4096x4096 rendertarget our hierarchi-
cal shadow buffer requires only 2.1MB, besides the resident depth
buffer, our hierarchical depth buffers require an additional 2.1MB
for a total of 4.2MB. An eight-bit stencil buffer, which is a bare
minimum for shadow-volume algorithms requires ∼ 16MB for the
same resolution. The alias-free shadow-map implementation de-
scribed in [Sintorn et al. 2008] stores all view sample positions
(three floats) in a compact array of lists per light space pixel which
would take ∼ 200MB at this resolution. Additionally, they require
a shadow map where each texel needs to store as many bits as are
the maximum list size. For a shadow map of 1024x1024 and a max
list size of 512 that would mean an additional 16MB of memory.
For comparison, a 4096x4096 omnidirectional shadow map would
require 384MB.

The results of the stochastic shadow buffer described in section 3.2
are demonstrated in Figure 6. The images are rendered at a reso-
lution of 4096x4096 and downsampled to 1024x1024. Again, this
is to illustrate how the algorithm could work with images rendered
using high quality MSAA or CSAA. While it is quite noisy, the
stochastic image renders slightly faster than using a float value per
sample and, more importantly, requires only a single bit of visi-
bility information per view sample. The memory footprint of our
algorithm is thus reduced from the original∼ 64MB in Figure 6(b),
to only ∼ 2MB in Figure 6(a).

Figure 8: The results of rendering a scene with different variants
of our algorithm.

Figure 8 shows the tree from figure 1(b) rendered with different

variants of our algorithm. The algorithm and the time taken to gen-
erate the shadows were (from left to right): standard binary visibil-
ity (7.9ms), semi-transparent shadow casters where all leafs have
constant α = 0.5 (8.6ms), semi-transparent textured shadow cast-
ers (12.9ms), stochastic semi-transparent textured shadow casters
(12.9ms), and colored semi transparent shadow casters (10.4ms).

The choice of 32 as a branching factor for the hierarchical depth
and shadow buffers is natural, as this matches both native word size
and SIMD width. However, a high branching factor results in more
wasted work; for example, all shadow frustums that are not culled
in the setup phase will need to test all 32 tiles in the first level of
the hierarchy, whereas a binary tree would only need to test two.
Lower branching factor, on the other hand, results in deeper trees
and more divergence. We have not explored this trade-off.

5 Future Work

The optimization where unlit samples are removed enables the use
of a two-pass approach, where a first pass runs the algorithm only
on those triangles that are expected to be good blockers by some
heuristic, then refreshes the hierarchy by removing yet more un-
lit samples, and finally traverses the remaining triangles [Olsson
and Assarsson 2011]. As constructing the depth hierarchy is cheap,
this optimization may yield a significant increase in efficiency, es-
pecially if blocker geometry (i.e. conservative simple geometry) is
placed manually or generated.

The algorithm could be extended to handle soft shadows quite sim-
ply, in a manner similar to that of [Sintorn et al. 2008]. The triangle
frustums would then be expanded to include the whole influence
region of the triangle, given an area light source, and the shadow
buffer could contain, for each view sample, a bit per light sam-
ple. Also, our novel antialiasing scheme resembles PCF filtering in
many ways. It seems likely that this algorithm could be modified
to support samples taken outside the pixels’ bounding box, to sup-
port PCF style blurred shadows in our algorithm. Several problems
remain to be solved in these areas, though.

6 Conclusion

We have presented a novel shadow algorithm based on individual
triangle shadow volumes, which combines many of the strengths
of shadow maps and shadow volumes. We also demonstrated a
GPU software implementation of a hierarchical rasterizer that sup-
ports the algorithm. Despite running entirely in software, it com-
petes well against highly tuned implementations of shadow vol-
umes which rely heavily on hardware acceleration, and offers real-
time performance. Meanwhile, the new algorithm is completely
robust, works for any aribtrary collection of triangles and integrates
easily into a deferred rendering pipeline making it a compelling
choice for rendering pixel accurate shadows, especially at high res-
olutions.

References

ABRASH, M. 2009. Rasterization on larrabee. Dr. Dobbs Journal.

AILA, T., AND AKENINE-MÖLLER, T. 2004. A hierarchical
shadow volume algorithm. In Proc. of the ACM SIGGRAPH/EU-
ROGRAPHICS conf. on Graphics hardware, HWWS ’04, 15–23.

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc.
of EGSR 2004, 161–166.

ALDRIDGE, G., AND WOODS, E. 2004. Robust, geometry-
independent shadow volumes. In Proc. of 2nd international conf.

An Efficient Alias-free Shadow Algorithm for Opaque and Transparent Objects using per-triangle Shadow Volumes • 153:9

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

on Computer graphics and interactive techniques in Australasia
and South East Asia, GRAPHITE ’04, 250–253.

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E.,
AND KAUTZ, J. 2008. Exponential shadow maps. In Proc.
of graphics interface 2008, GI ’08, 155–161.

ARVO, J. 2004. Tiled shadow maps. In Proc. of Computer Graphics
International 2004, 240–246.

BILODEAU, W., AND SONGY, M., 1999. Real time shadows. Cre-
ativity 1999, Creative Labs Inc. Sponsored game developer con-
ferences, Los Angeles, California, and Surrey, England.

CARMACK, J., 2000. Z-fail shadow volumes. Internet Forum.

CARPENTER, L. 1984. The a -buffer, an antialiased hidden surface
method. SIGGRAPH Comput. Graph. 18 (January), 103–108.

CHAN, E., AND DURAND, F. 2004. An efficient hybrid shadow
rendering algorithm. In Proc. of the EGSR, 185–195.

CROW, F. C. 1977. Shadow algorithms for computer graphics.
SIGGRAPH Comput. Graph. 11 (July), 242–248.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proc. of i3D 2006, I3D ’06, 161–165.

EISEMANN, E., ASSARSSON, U., SCHWARZ, M., AND WIMMER,
M. 2009. Casting shadows in real time. In ACM SIGGRAPH
Asia 2009 Courses, SIGGRAPH Asia 2009.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. IEEE TVCG 99.

EPIC GAMES, 2011. Unreal development kit: Epic citadel. http:
//www.udk.com/showcase-epic-citadel.

EVERITT, C., AND KILGARD, M. J., 2002. Practical and robust
stenciled shadow volumes for hardware-accelerated rendering.
Published online at http://developer.nvidia.com.

EVERITT, C., 2001. Interactive order-independent transparency.
Published online at http://www.nvidia.com/object/
Interactive_Order_Transparency.html.

FERNANDO, R. 2005. Percentage-closer soft shadows. In ACM
SIGGRAPH 2005 Sketches, SIGGRAPH 2005.

FOREST, V., BARTHE, L., GUENNEBAUD, G., AND PAULIN, M.
2009. Soft textured shadow volume. Computer Graphics Forum,
EGSR 2009 28, 4, 1111–1121.

FUCHS, H., GOLDFEATHER, J., HULTQUIST, J. P., SPACH, S.,
AUSTIN, J. D., BROOKS, JR., F. P., EYLES, J. G., AND POUL-
TON, J. 1985. Fast spheres, shadows, textures, transparencies,
and image enhancements in pixel-planes. SIGGRAPH Comput.
Graph. 19 (July), 111–120.

HASSELGREN, J., AND AKENINE-MOLLER, T. 2007. Textured
shadow volumes. Journal of Graphics Tools, 59–72.

HEIDMANN, T. 1991. Real shadows, real time. Iris Universe 18,
28–31. Silicon Graphics, Inc.

HORNUS, S., HOBEROCK, J., LEFEBVRE, S., AND HART, J. C.
2005. ZP+: correct Z-pass stencil shadows. In ACM symp. on
Inter. 3D Graphics and Games, I3D, April, 2005, 195–202.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. on Graphics 24, 4, 1462–1482.

KIM, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. In
Proc. EG Workshop on Rendering Techniques, 177–182.

KIM, B., KIM, K., AND TURK, G. 2008. A shadow-volume algo-
rithm for opaque and transparent nonmanifold casters. journal
of graphics, gpu, and game tools 13, 3, 1–14.

LAINE, S. 2005. Split-plane shadow volumes. In Proc. of Graphics
Hardware 2005, 23–32.

LAURITZEN, A., SALVI, M., AND LEFOHN, A. 2011. Sample
distribution shadow maps. In Proc., I3D ’11, 97–102.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007. Reso-
lution matched shadow maps. ACM TOG 26, 4, 20:1–20:17.

LLOYD, B., WEND, J., GOVINDARAJU, N. K., AND MANOCHA,
D. 2004. Cc shadow volumes. In EGSR/Eurographics Workshop
on Rendering Techniques, 197–206.

LLOYD, D. B., GOVINDARAJU, N. K., QUAMMEN, C., MOL-
NAR, S. E., AND MANOCHA, D. 2008. Logarithmic perspective
shadow maps. ACM TOG 27 (November), 106:1–106:32.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In Proc.
SIGGRAPH 2000 (Aug.), SIGGRAPH 2000, 385–392.

MCCORMACK, J., AND MCNAMARA, R. 2000. Tiled polygon
traversal using half-plane edge functions. In Proc. of ACM work-
shop on Graphics hardware, HWWS ’00, 15–21.

MCGUIRE, M., AND ENDERTON, E. 2011. Colored stochastic
shadow maps. In Proc. of i3D’11 (Februari.).

OLANO, M., AND GREER, T. 1997. Triangle scan conversion
using 2d homogeneous coordinates. In Proc. of ACM workshop
on Graphics hardware, 89–95.

OLSSON, O., AND ASSARSSON, U. 2011. Improved ray hier-
archy alias free shadows. Technical Report 2011:09, Chalmers
University of Technology, may.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. In Proc., SIG-
GRAPH 87, 283–291.

SINTORN, E., AND ASSARSSON, U. 2009. Hair self shadow-
ing and transparency depth ordering using occupancy maps. In
Proc., i3D ’09, 67–74.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008.
Sample-based visibility for soft shadows using alias-free shadow
maps. CG Forum (EGSR 2008) 27, 4 (June), 1285–1292.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. In Proc., SIGGRAPH 2002, 557–562.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12 (August), 270–274.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004.
Light space perspective shadow maps. In Rendering Techniques
2004 (Proc. EGSR), 143–151.

YUKSEL, C., AND KEYSER, J. 2008. Deep opacity maps. Com-
puter Graphics Forum (Proc. of EUROGRAPHICS 2008) 27, 2.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In Proc.
of the 2006 ACM international conf. on Virtual reality continuum
and its applications, VRCIA ’06, 311–318.

ZIOMA, R. 2003. Reverse extruded shadow volumes. In ShaderX2:
Shader Programming Tips & Tricks with DirectX 9, W. Engel,
Ed. Wordware Publishing, 587–593.

153:10 • E. Sintorn et al.

ACM Transactions on Graphics, Vol. 30, No. 6, Article 153, Publication date: December 2011.

Paper V: Per-Triangle Shadow Volumes Using a
View-Sample Cluster Hierarchy

Erik Sintorn, Viktor Kämpe, Ola Olsson and Ulf Assarsson

Abstract: Rendering pixel-accurate shadows in scenes lit by a point light-source in
real time is still a challenging problem. For scenes of moderate complexity, algorithms
based on Shadow Volumes are by far the most efficient in most cases, but traditionally,
these algorithms struggle with views where the volumes generate a very high depth
complexity. Recently, a method was suggested that alleviates this problem by testing
each individual triangle shadow volume against a hierarchical depth map, allowing
volumes that are in front of, or behind, the rendered view samples to be efficiently culled.
In this paper, we show that this algorithm can be greatly improved by building a full 3D
acceleration structure over the view samples and testing per-triangle shadow volumes
against that. We show that our algorithm can elegantly maintain high frame-rates even
for views with very high-frequency depth-buffers where previous algorithms perform
poorly. Our algorithm also performs better than previous work in general, making it, to
the best of our knowledge, the fastest pixel-accurate shadow algorithm to date. It can
be used with any arbitrary polygon soup as input, with no restrictions on geometry or
required pre-processing, and trivially supports transparent and textured shadow-casters.

I3D ’14: Proceedings of the 2014 symposium on Interactive 3D graphics and games, to
appear, March, 2014

75

Per-Triangle Shadow Volumes Using a View-Sample Cluster Hierarchy

Erik Sintorn∗ Viktor Kämpe∗ Ola Olsson∗ Ulf Assarsson∗

Chalmers University of Technology

(a)

Level 1 Level 2

Level 3 Level 4

(b) (c)

Figure 1: a) A challenging scene for most real-time shadow algorithms, rendered in 4.2ms with our cluster hierarchy, 7.46ms with the original
PTSV, and 12.16ms with ZPASS. b) The final four levels of our view-sample acceleration structure visualized. c) Top: Level 3 without explicit
bounds. Bottom: The corresponding level when using the original PTSV algorithm.

Abstract

Rendering pixel-accurate shadows in scenes lit by a point light-
source in real time is still a challenging problem. For scenes of
moderate complexity, algorithms based on Shadow Volumes are by
far the most efficient in most cases, but traditionally, these algorithms
struggle with views where the volumes generate a very high depth
complexity. Recently, a method was suggested that alleviates this
problem by testing each individual triangle shadow volume against
a hierarchical depth map, allowing volumes that are in front of,
or behind, the rendered view samples to be efficiently culled. In
this paper, we show that this algorithm can be greatly improved by
building a full 3D acceleration structure over the view samples and
testing per-triangle shadow volumes against that. We show that our
algorithm can elegantly maintain high frame-rates even for views
with very high-frequency depth-buffers where previous algorithms
perform poorly. Our algorithm also performs better than previous
work in general, making it, to the best of our knowledge, the fastest
pixel-accurate shadow algorithm to date. It can be used with any
arbitrary polygon soup as input, with no restrictions on geometry
or required pre-processing, and trivially supports transparent and
textured shadow-casters.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture;

Keywords: shadows, alias-free, real-time

∗e-mail:erik.sintorn|kampe|olaolss|uffe@chalmers.se

1 Introduction and Previous Work

In this paper, we suggest a novel method for rendering pixel-accurate
shadows from point-light sources in real time. While an abundance
of very fast shadow algorithms are available (see, e.g., Real Time
Shadows [Eisemann et al. 2011] for a recent overview of shadow
algorithms in general), the vast majority are image-based approx-
imative approaches, based on Shadow Mapping [Williams 1978].
In these algorithms, a discrete image (a shadow map) that contains
point samples of the closest distance to the shadow casters from the
light is generated. This shadow map is then queried while shading
to determine whether an arbitrary point is in shadow or not. As
the shadow map is generated without taking the actual points to be
shaded into account, the result of the query can only be approxi-
mate and has to be filtered to reduce aliasing artifacts. To avoid
having to use too large shadow maps and too large filter kernels, it
is common practice to partition the view frustrum and use different
shadow-maps for each partition (e.g. [Zhang et al. 2006]). With
proper filtering and a good partitioning scheme, it is possible to
obtain very high quality shadows that may be sufficient for many
real-time applications, such as video games, but pixel-perfect shad-
ows cannot be guaranteed. With virtual texturing, extremely high
resolutions are possible, however [Lefohn et al. 2007], at the cost of
view-dependent performance and memory requirements.

A second class of algorithms are those where the actual view samples
to be considered are first collected and organized in some form of
acceleration structure [Aila and Laine 2004; Johnson et al. 2005].
The shadow-casting polygons are then rendered over these irregular
samples to determine light visibility for each view sample. While
GPU-based implementations of these algorithms exist (e.g. [Sintorn
et al. 2008]), the irregular rasterization process often leads to very
unbalanced workloads, which results in uneven and potentially very
poor performance.

A third class of algorithms are those based on Shadow Vol-
umes [Crow 1977]. Here, for each shadow-casting object, a polygo-
nal mesh (the shadow volume) that encloses the space that is blocked
from the light by that object is generated. The shadow volumes are

then tested against all view samples, and a view sample is con-
sidered in shadow if it lies within any of the volumes. Shadow
volumes were for a while frequently used in practice after a version
of the original shadow-volume algorithm was introduced in which
these inclusion tests could be performed efficiently on graphics hard-
ware [Heidmann 1991]. We will refer to this algorithm as ZPASS in
the remainder of this text. The basic idea is to extract all sillhouette
edges from the mesh, each frame, and extrude these infinitely far
away from the light source to form a shadow quad. The scene is first
rendered from the camera’s point of view into a depth buffer. Then,
the shadow quads are rasterized as polygons onto a cleared stencil
buffer while testing against this depth buffer. The stencil buffer is in-
cremented for every front-facing polygon and decremented for every
back-facing polygon. The resulting stencil value will be zero only
when the view sample does not lie within any shadow volume. This
algorithm only works well as long as the camera itself is not inside
a shadow volume. To avoid that problem, the ZFAIL algorithm was
introduced [Carmack 2000; Bilodeau and Songy 1999]. The only
difference here is that the standard depth test is reversed so that all
shadow quads that lie behind the z-buffer are rendered instead. This
algorithm is more robust, but typically slower due to a higher fill
rate.

The main problem with the traditional shadow volume algorithms lie
in that they cull view samples only on their two-dimensional position
in view space. Thus, a shadow quad must be tested against the
potentially very large number of samples that lie within the volume
formed by the quad and the camera position. Sintorn et al. [2011]
alleviate this significantly by building a min-max hierarchy over the
depth buffer and testing individual triangle shadow volumes against
this hierarchy. A shadow volume can then be culled as long as it
does not intersect the frustum formed by a node (or if the entire node
is within the shadow volume). The authors show that the number of
actual test-and-set operations required are dramatically reduced and
that performance of their implementation is on par with, or better
than, previous algorithms. Additionally, since each view sample
can be tested against each triangle shadow volume, this algorithm
trivially supports textured and semi-transparent shadow casters, and
it can robustly handle any arbitrary set of shadow-casting polygons,
without connectivity information. We will refer to this algorithm
as Per Triangle Shadow Volumes (PTSV) in the remainder of this
paper.

There are several other papers that attempt to reduce the fill-rate
problems inherent in the traditional shadow-volume algorithm. In
the work by LLoyd et al. [2004], the shadow volumes are culled
and clamped per object in the scene graph, to reduce unnecessary
overdraw. These methods are orthogonal to our algorithm. Aila and
Akenine Möller [2004] identify tiles that lie on the shadow boundary
and need to perform full per pixel tests only for these tiles. Chan and
Durand [2004] attempt to find umbra regions and identify shadow
boundaries using a shadow map before reverting to standard shadow
volumes for only the pixels that lie on these boundaries. Finally, in
Split Plane Shadow Volumes [Laine 2005], the number of stencil
updates are reduced by locally (per tile) choosing whether to use the
ZPASS or ZFAIL algorithm.

In this paper, we improve on PTSV by building a complete three-
dimensional acceleration structure over the view samples, allowing
clusters of samples that have the same two-dimensional bounds to
be considered separately when they lie at different depths. Figure 1
illustrates a case where all previous work will perform very badly.
A house in the far distance is viewed through a nearby gate, and
a number of trees cast complex shadows that intersect the volume
in between. The ZPASS algorithm [Heidmann 1991] will need to
consider all view samples that have a depth which is further away
than the shadow quad, i.e., essentially all view samples that do not
lie on the gate. The ZFAIL algorithm [Bilodeau and Songy 1999;

Carmack 2000], in contrast, must consider all samples that lie in
front of the shadow quad. Unfortunately, the PTSV algorithm cannot
do much better in this case, since most 8× 4 tiles in the image will
contain view samples from both the foreground and the background
(see Figure 1c).

A very similar problem exists in the realm of real-time shading with
many lights, where tiled shading algorithms have recently become
popular [Olsson and Assarsson 2011; Harada 2012]. Similarly to
PTSV, tiled-shading algorithms are sensitive to depth discontinuities.
Our proposed algorithm is inspired by a recent solution to that prob-
lem, called Clustered Shading [Olsson et al. 2012]. The problem in
tiled shading is analogous to that of PTSV, with the difference that
the volumes considered are not shadow volumes but the bounding
volumes of lights with a finite range (as is common in real-time
applications). Olsson et al. observe that depth discontinuities can
lead to many false positives where light volumes intersect tile vol-
umes but none of the samples within, and that this problem is highly
view dependent, leading to high variability in rendering times. They
show that by clustering samples into three-dimensional subdivisions,
as opposed to two dimensions for tiled, light-culling efficiency be-
comes much higher and view dependence lower, especially when
considering many small light sources.

The main contributions in this paper are:

• A better view-sample acceleration structure for PTSV, which
has a much smaller total volume and improves efficiency and
performance significantly, making our algorithm the fastest
real-time alias-free shadow method to date.

• A two-pass algorithm which removes performance spikes that
are due to poor load balancing, at no extra cost.

• An improved set of culling planes over PTSV, which signifi-
cantly reduces the number of false positives during traversal.

Meanwhile, our algorithm still maintains all the good properties of
the PTSV algorithm. Shadow casters can be any arbitrary triangle
soup with no additional connectivity information and we also inherit
the ability to trivially support textured or semi-transparent shadow
casters.

2 Algorithm

The goal of our algorithm is to establish, for every view sample in
the G-buffer, whether that view sample is directly visible by a point
light source or not. Samples that are blocked from the light source
will be in shadow and the rest will have direct lighting applied in a
final shading pass. We accomplish this by generating an acceleration
structure over the view samples and then testing the shadow volume
of each triangle against this structure. This approach has been
attempted several times before (e.g. [Aila and Laine 2004; Sintorn
et al. 2008; Sintorn et al. 2011]) but in this paper we will suggest
that the quality of the acceleration structure is critical to obtaining
good and reliable performance, and so we will generate a tightly
fitting, fully three-dimensional hierarchy.

To this end, the view frustum will be divided into a coarse three-
dimensional grid and each view sample will be processed to mark
those grid-cells that are occupied. From this grid we then build a
hierarchy against which we can traverse triangle shadow-volumes.
A shadow volume can be tested against any node in the hierarchy
as the bounds of the corresponding AABB are implicitly defined.
When a leaf node is found to be intersecting with a shadow volume,
all view samples that reside in the same two-dimensional tile as
that node are tested. We show that performance can be further
improved by calculating the explicit bounds of each node, and that
these can be efficiently calculated while building the hierarchy. The

main improvement over previous work comes from this much tighter
acceleration structure, with which a shadow volume will only need
to traverse down to the leaf nodes if it actually lies very close to the
samples contained therein.

We will begin by describing the basic steps of our algorithm, starting
with an overview and then discussing the different parts in detail. We
will then discuss some shortcomings of our initial implementation
and how they can be overcome. Our algorithm and implementation
closely follow the steps of the PTSV algorithm detailed by Sintorn
et al. [2011]. We have implemented the algorithm in CUDA, and it
runs entirely on the GPU, without reading any data back to the CPU.
The steps of the algorithm are:

• Building a Hierarchy Using the current G-Buffer, build an
acceleration structure that groups view samples that are close
to each other.

• Triangle Setup For each shadow casting triangle, create its
shadow volume, i.e., a set of planes that enclose the volume of
space that is in shadow due to that triangle.

• Traversal Traverse each triangle shadow volume through the
hierarchy, culling nodes that lie completely outside and mark-
ing those that are completely inside the volume as in shadow.
Only when a node might intersect the shadow-volume planes
do we traverse into its children.

Building the acceleration structure As in the PTSV algorithm,
we choose to build a tree that has a branching factor of 32. This
allows the SIMD lanes of one multiprocessor of the GPU to work
in parallel with the intersection tests that make up the bulk of our
traversal algorithm, and so we can utilize the hardware efficiently.
Using another fanout is a trivial change to the algorithm, however,
so it could easily be varied for different hardware.

We chose to group view samples into clusters that are 8× 8 pixels.
Thus, a single cluster can contain a maximum of 64 view samples.
Given a view sample whose pixel coordinates are (x, y) and which
has a view space depth z, we calculate the cluster coordinate, x′, as:

x′ =

x′

y′

z′

 =

bx/8c
by/8c⌊

log(−z/near)

log(1+ 2tanΘ
Sy

)

⌋

 , (1)

where near is the distance to the near plane, Θ is the field-of-view,
and Sy is the number of cluster divisions in height. The cluster
coordinate’s z′ component is chosen as in the work by Olsson et
al. [2012], i.e., we subdivide the frustum exponentially in depth to
obtain leaf nodes whose implicit bounds are frustums with a depth
that is roughly equal to their width and height in world space.

We interleave these integer coordinates to produce a key in mor-
ton order [Morton 1966], which we call the cluster key. This key
uniquely defines a leaf node in our hierarchy, and several view sam-
ples may have the same key. For now, we will consider a screen
resolution of 1024×1024, and so we only need seven bits for the x′

and y′ coordinates. The number of bits needed for the z′ component
depends on the ratio between the near and far distances used in the
projection. At this resolution, we found nine bits to be more than
sufficient for all of our scenes. We therefore rearrange the cluster
key somewhat, as shown in Figure 2, to allow for a more shallow
tree as discussed below.

We now need to build an acceleration structure over these keys. In
our initial attempts, we followed the approach of Olsson et al. [2012],
building a list of cluster keys and compacting this list so that we had a

�0
′ �0

′�0
′�1

′ �1
′�1

′�2
′ �2

′�2
′�3

′ �3
′�3

′�4
′ �4

′�4
′�5

′ �5
′�5

′�6
′ �6

′�6
′�7

′ �7
′�7

′�8
′ �8

′�8
′�9

′ �9
′�9

′0 0

�0
′ �0

′�0
′�1

′ �1
′�1

′�2
′ �2

′�2
′�3

′ �3
′�3

′�4
′ �4

′�4
′�5

′ �5
′�5

′�6
′ �6

′�6
′�8

′ �7
′00 000 000 0

�0
′�1

′�2
′�3

′�4
′�5

′�6
′�7

′�8
′�9

′

�0
′�1

′�2
′�3

′�4
′�5

′�6
′�7

′�8
′�9

′

�0
′�1

′�2
′�3

′�4
′�5

′�6
′�7

′�8
′�9

′
�′ =

morton order

node index child index

node index child index

node index child index

n. idx child index

Level 4:

Level 3:

Level 2:

Level 1:

ch. idxLevel 0:

Figure 2: The cluster coordinate is packed into a 23-bit integer us-
ing a slightly rearranged morton order. This key can then efficiently
be used to populate a full tree hierarchy.

minimal set of clusters from which to build the tree. However, when
building a hierarchy on top of these clusters, we need to maintain a
pointer from each node to where its children are stored, along with a
bitmask that tells us which of the children exist. While we were able
to build this compact list and hierarchy very quickly (< 1ms for a
resolution of 1024× 1024), both building the tree and traversing it
is significantly faster if we choose to sacrifice some memory and
store a full tree instead.

The five levels of our hierarchy are represented by five arrays of
32-bit words. Each word is a child mask, where a set bit indicates
that the corresponding child exists in the tree. To build the final level
of the tree (where a set bit indicates the existence of a leaf node, or
cluster), we can simply process all view samples and calculate their
cluster keys. The 18 most significant bits of the key give us the index
to the node in the level-four array in which the view sample resides.
The five least significant bits tell us which of the bits of this node
shall be set to indicate that this cluster exists. Having populated the
lowest level of our tree, we shift the cluster key 5 bits to the right
and repeat the process to populate the next level above. This goes
on until we have a single root node at level 0 represented by a single
32 bit word (see Figure 2).

Our initial implementation of this step is to simply start a thread per
view sample and let that thread atomically update all the nodes in
which it resides (in Section 2.1, we will add optimizations).

Triangle Setup For each triangle, we calculate the four planes that
enclose a triangle shadow volume. Care must be taken to ensure that
two triangles that share an edge will calculate exactly the same plane
for that edge, and when not using light front-face culling, a small
bias must be added to the triangle plane to avoid self shadowing. We
transform these planes into clip space, using the camera’s model-
view-projection matrix, and store them in a list. This basic triangle
setup is exactly the same as is done in PTSV.

These four planes are sufficient to produce correct results, but will,
during traversal, produce a lot of false positives. In PTSV, tiles
are also culled against the two 2D silhouette edges of the shadow
volume, which alleviates the problem. We have found that this
method still produces a significant amount of false positives (see
Figure 6) and suggest another set of culling planes.

The problem with false positives occur when an Axis Aligned Bound-
ing Box (AABB) does not lie completely outside all shadow volume
planes. This can happen in the wedges formed by any two of the
planes (see Figure 4). For each vertex (and so, each wedge), we
add a plane that contains both the light source and the vertex. Any
rotation of that plane is legal as long as it does not intersect the

(a) CITADEL scene. (b) ZPASS (c) PTSV (d) Our algorithm

0

10

50

100

500

>500

Figure 3: Heat maps showing the number of times each pixel is tested against a shadow volume. The PTSV algorithm has a very unbalanced
workload around steep depth discontinuities, where the view-sample cluster hierarchy performs much better.

Figure 4: Left: False positives occur when a node that does not
intersect the triangle still does not lie completely outside any plane.
Right: We add new planes, attempting to cull nodes that fall within
the false-positive wedge.

shadow volume. We choose to create the half vector between the
two shadow-volume plane normals, make that orthonormal to the
vector pointing from the vertex to the light source, and use that as
the plane normal for our culling plane.

A node that lies completely outside any of these new planes is
guaranteed to lie outside the shadow volume, and testing against all
three planes improves culling (and performance) significantly. Note
that for degenerated triangles or triangles whose normals are close to
orthogonal to the light direction, these calculations can be unstable,
and so we simply skip these culling planes in such cases.

Traversal The traversal kernel is written in a persistent-threads
fashion, where we start enough warps to keep the machine fully
utilized and let each warp pick jobs from a list by atomically updating
a counter to get an index. Each job, in this case, is one triangle
shadow volume, which all threads in the warp will cooperatively
traverse against the hierarchy, starting with the root node. Each
thread will consider one child of the current node and test that child
against the four planes that make up the shadow volume. The thread
will first consult the child mask for the current node to make sure
that the child exists in the tree. If it does, but the child is completely
outside any of the shadow volume planes, it is rejected. If the child
lies completely inside all four planes, it can be trivially accepted,
which is noted by simply clearing the corresponding bit in the current
nodes child mask. If neither is true, the child is tested against the
extra culling planes described above and if it does not lie completely
outside any of those, it is considered intersecting.

After the intersection test, the results are broadcast (using CUDAs
ballot instruction) so that all threads know which children are inter-
sected. These will now be tested in turn in the same way. In order to
know where in the tree we are, we maintain a current key throughout
the process (as detailed in Algorithm 1).

When the leaf-node level is reached, the threads will instead coop-
erate in testing the individual view samples within the tile. At this
level, we have no information about which view samples actually
lie in the cluster and which lie in another cluster with the same 2D
bounds, so we simply test all samples and update the shadow buffer
if the sample lies within the shadow volume. We could of course
store this extra information while building the hierarchy, but as 32
intersection tests will always be done in parallel, it seems unlikely
that this would improve overall performance.

So far, our traversal algorithm does not differ much from that of Sin-
torn et al. [2011]. One difference is that their acceleration structure
is a full tree with samples in every node, whereas, while we store our
structure as a full tree, it is actually very sparse, and so we need to
fetch the child mask for each node in order to know which children
to test. Another difference lies in how the clip-space coordinates
for the AABBs of the nodes are calculated. Unlike their algorithm,
in which the z-components are fetched from a texture, we get all
coordinates implicitly from the cluster keys. The traversal algorithm
is outlined in Algorithm 1. We have implemented this algorithm
in CUDA, both in an iterative fashion, using a small stack, and as
written in Algorithm 1, using template metaprogramming for the
recursion. The latter performs slightly better, probably due to better
optimization opportunities.

After traversal, we will know for each pixel whether it is in shadow
or not, except for pixels that have only been trivially accepted as
part of some node. We must therefore run one final pass where we
start one thread per view sample. Each thread will perform almost
exactly the same job as when building the hierarchy (as explained
above), except that this time, instead of updating the hierarchy, it
will just make sure that all the nodes it resides in are still marked
as existing. Otherwise, the node has been trivially accepted and the
view sample is set as shadowed.

Remaining problems The algorithm, as described so far, works
well and we can see from our measurements that we have mostly
eliminated the problem where the amount of work increases signifi-
cantly at steep depth discontinuities (see Figure 6). Unfortunately,
we can also see that the total number of test and set operations that
we need to do each frame is overall significantly higher than in PTSV.
This is partly due to us having a deeper tree but also because the size
of our nodes is completely unaffected by the actual view samples
within. In PTSV, tiles that do not contain depth-discontinuities will
have a fairly well fitting bounding box, while ours will be fixed size
and potentially very conservative.

Another problem, which we share with PTSV but which will be
more exaggerated in our case, is the possibility of poor load bal-
ancing. Even with our persistent threads model, we see that some

0

15

30

45

60

Frame
0

2

4

6

8

10

12

m
s

Frame
0

1

2

3

4

5

6

Frame
ZPASS PTSV (with FFC) Ours (without FFC) Ours (with FFC) Traversal Merge TA Triangle Setup Build Hierarchy

Figure 5: Time taken by each part of our algorithm, along with total time taken for ZPASS and PTSV, for three different animations. Total
performance of our algorithm is presented with and without Front Face Culling (FFC). From left to right, VILLA (88k triangles), CITADEL
(60k triangles) and FUZZY (400k triangles).

multiprocessors have to wait for a long time, while a few finish
processing triangles that generate much more work than the average.
This problem is illustrated in Figure 7.

Finally, where PTSV only has to build a small mip-map hierarchy
over the depth buffer, we have to build a much larger hierarchy.
Initially, we did this as explained above, with one thread per view
sample, which proved to be a less than optimal solution. We will
discuss these three problems in the upcoming sections.

2.1 Explicit bounds

In our hierarchy, the existence of a node is indicated by a single
bit in its parent’s child mask. The size of each node is implicitly
defined by its position in the tree. This makes for a very memory-
efficient representation, but, as explained above, does not give us
much opportunity to cull shadow volumes. We will now explore the
possibility of storing a complete AABB with each node to improve
culling performance. Building the hierarchy with AABB information
is not much more complicated than without (although doing so
efficiently takes some extra thought, as detailed below). We can
simply let each view sample atomically update all of its parents
bounding boxes. As we currently store a full tree, the memory
requirements are however significantly increased (see Section 3 for
details).

With explicit bounds, the performance of the traversal is dramatically
improved (see Figure 8). This is partly due to the traversal kernel
becoming much simpler, as we no longer have to calculate the im-
plicit trivial-reject and trivial-accept points for each node, but much
more due to the significant decrease in volume of our acceleration
structure (see Figure 1c). Previously, a node which only contained
a few samples could still be very large, and a shadow-volume that
touched that node would have to traverse all of its children. Now,
each node will have a bounding box which tightly fits the contained
view samples. The number of test-and-set operations required are
now almost always fewer than in PTSV, despite our deeper tree. In
frames with steep depth discontinuities, we often perform better than
a factor of 2× fewer operations (see Figure 6).

2.2 Load Balancing

As illustrated in Figure 7, a small fraction of the triangles may
require much more work than the average, which leads to very poor
load balancing with our method. To combat this, we simply split the
traversal step into two parts. In a first pass, each warp will pick one
triangle as before and will then traverse down to a predefined level,
L. Every time the traversal reaches that level, it will atomically
push a new job onto a list and then return to traverse the rest of the
upper part of the tree. This job is simply a tuple (t, k) where t is
the triangle ID and k is the key of the node in which traversal was
aborted.

In a second pass, each warp will instead pick a job from the newly
created list and start traversal where the previous pass left off. Note
that we do not have to retrace the path taken to reach the node, but
can immediately continue traversal. Therefore, the only additional
work that is required by this two-pass method is writing and reading
the intermediate job list which fortunately turns out to be quite
modest in size even if we let the first pass go all the way down
to the leaf-node level. The performance gain from improved load
balancing is sometimes very large (as can be seen in Figure 8), and
the two-pass method has a much more stable performance.

2.3 Efficiently building the hierarchy

Building the hierarchy in the way described so far (by launching
one thread per view sample) leads to very high contention, as many
threads will attempt to update the same node. We also perform a lot
of redundant work, as several threads will consider view samples
that lie in the same cluster and will all mark that cluster as existing.
In fact, after having implemented the optimizations described above,
building the hierarchy is actually often the most time-consuming
part of the algorithm. We reduce the amount of redundant work by
launching one warp per 8 × 8 pixel tile. While all view samples
in this tile could lie in different clusters, they will usually occupy
only a few. The threads within the warp will cooperate in finding
the bounding box of each occupied cluster, and then, a single thread
can atomically update the nodes in global memory. To reduce the

0

20

40

60

80

100

M
ill

io
n

te
st

an
d

se
to

ps

Frame
0

50

100

150

200

250
M

ill
io

n
te

st
an

d
se

to
ps

Frame

Baseline Additional 2D planes Additional planes Explicit bounds PTSV

Figure 6: Number of test-and-set operations required by various versions of our algorithm and by PTSV, for animations in two different
scenes (left is VILLA and right is CITADEL). Culling of shadow-casting triangles that face the light source is enabled in these experiments.

0

50

100

150

200

250

300

350

0 256 512 768 1024

It
er

at
io

ns

Complete

Expand

Finish

Figure 7: Number of traversal iterations performed in the 1024
largest jobs. The red line shows the original algorithm where each
triangle is processed by a single warp. When we turn to a two-pass
algorithm, no single warp will have to do many more iterations than
the average.

amount of contention in the top of the tree, we perform the hierarchy
construction in two passes. A first pass will build the tree up to
an intermediate level (as described above), and in a second pass,
we launch a warp per node at this intermediate level to perform
the atomic insertion of bits, and updating of AABBs, upwards to
the root. As can be seen in Figure 5, building the hierarchy is now
extremely fast. In fact, it takes about the same time as building the
hierarchical depth buffer in PTSV.

3 Discussion and Results

We have measured the performance of our algorithm using animated
fly-throughs of three different scenes. CITADEL is the scene used
to measure performance in the PTSV paper, with 60k triangles.
VILLA is a scene designed to stress shadow volume algorithms,
with 88k triangles. Finally, FUZZY is a more complex scene with
400k very dense shadow-casting triangles. All experiments were
done on an NVIDIA Titan GPU with a screen resolution of 1024×
1024 unless otherwise stated. In Figure 5, we show the total time
taken by each part of our algorithm, and we can see that we pay
a fairly low and constant price for building the hierarchy (Build
Hierarchy), calculating the shadow volume planes (Triangle Setup)
and finding view samples that have been trivially accepted as part of
some node (Merge TA). The cost for traversing the shadow volumes
against the hierarchy is naturally view dependent, but the worst-case
performance seems to be much more stable than in previous work.
In the same plot, we see the performance of the PTSV algorithm
and our carefully tuned ZPASS implementation. We can see that our
algorithm outperforms both, except in views where there are very

few shadow volumes on screen, where ZPASS performs better. It
is interesting to note that, unlike the measurements provided in the
PTSV paper (which were done on a GTX480 GPU), PTSV seems
to perform as well as ZPASS throughout the CITADEL sequence.
This is probably due to ZPASS being entirely limited by the pixel
throughput of the GPU, which has not changed much between the
GTX480 and the Titan GPUs. We measured the performance of
our ZPASS implementation on a GTX480 as well and found that
performance was indeed very similar.

As in PTSV, we can use Front Face Culling (FFC) of shadow-casting
triangles when objects are closed, which improves performance
significantly. In Figure 5, we also present the total time taken by our
algorithm when this optimization is turned off. All timings reported
for PTSV are as obtained with the optimization applied.

0

10

20

m
s

Frame 0

4

8

12
m

s

Frame

Baseline Additional planes Two passExplicit bounds

Figure 8: Time taken by the traversal part of our algorithm when ap-
plying different optimizations (left is VILLA and right is CITADEL).

In Figure 8, we show the time taken by the traversal stage of our algo-
rithm with different optimizations applied. The Baseline is where we
only test implicit bounding boxes against the basic shadow-volume
planes. We then add the additional culling planes, as described in
Section 2. We improve performance significantly again by calculat-
ing the explicit bounding boxes for each node, and finally remove
spikes that are due to poor load balancing by performing the traversal
in two passes.

The problem with load balancing is illustrated in Figure 7. The
lines here show the number of iterations performed in the traversal
algorithm for the 1024 most demanding jobs when rendering the
view shown in Figure 1. For the original algorithm (Complete), we
can see that there are a few triangles that have much more work to
do (∼ 10× average), and therefore, most multiprocessors will have
to idle until one multiprocessor has finished the last of these. When
we instead divide the work into two passes (Expand and Finish),
the number of iterations are more evenly distributed and we avoid
sudden unexpected spikes in rendering time.

We have measured the number of test-and-set operations required by
our algorithm, as it provides an implementation-independent metric
of the efficiency of the algorithm. In Figure 6, we have plotted this
metric for our algorithm (with different optimizations applied) and
for the PTSV algorithm. As expected, we see that our algorithm
is much less sensitive to high-frequency depth buffers and that it
performs an equal amount of work as, or less work than, the PTSV
algorithm throughout the animations. While the improvement from
our additional culling planes is modest in the CITADEL scene, it
helps significantly in the VILLA scene, which contains many more
small shadow casting triangles.

0

1

2

3

4

m
s

Frame

Build Hierarchy Triangle Setup Merge TA Traversal
1080p 1024x1024 720p

Figure 9: Time taken by various parts of our algorithm when
rendering the CITADEL animation to resolution 1080p and the total
time when rendering to resolutions 720p and 1024×1024.

When rendering to higher resolutions, we must make a few small
changes to the algorithm. First, our implementation as described so
far has fairly high memory requirements due to storing bounding
boxes for the hierarchy as a full tree. With a maximum resolution of
1024×1024, a cluster size of 8×8, and with the maximum number
of z′ bits in the cluster key set to 9, the total number of nodes in a
full tree is 8.65 million. The hierarchy information, with a single
bit per node, costs only about 1 MB of memory. But if we store
six floats per bounding-box, the cost is 198MB, which might be too
much in some cases. We have implemented an alternative version,
where we only store a pointer per node (33MB) and a compact list
of only the existing bounding boxes. The compact list never exceeds
52000 elements in our tests (but the worst case size is 1 million
elements), and this version runs almost as fast as the original (at
most 5% slower). With this alternative version, then, the expected
working memory requirements are around (33 + 1)MB and worst
case is (33 + 25)MB. We can now support a full HD resolution with
expected (66 + 2)MB and worst case (66 + 50)MB.

Secondly, to support resolutions larger than 1024 pixels wide or
high, we must store a longer morton key than the one described in
Figure 2. When rendering to 1080p, we simply add one bit each for
the x, y and z components, which increases the largest supported
resolution to 2048×2048, with the same depth range. With a 32-bit
morton code we could support resolutions up to 8192× 8192.

In Figure 9 we show the same timings as in Figure 5, but when
rendering to a resolution of 1920×1080. For reference, we have also
plotted the total time taken when rendering to resolutions 1280×720
and 1024 × 1024. All timings use the more compact memory
layout for bounding boxes described above. As expected, building
the hierarchy takes approximately twice as long as for the lower
resolutions, since it will contain roughly twice the number of nodes.
Traversal scales much better however, since many more nodes can
be trivially accepted. The slight differences in running time when
comparing the two lower resolutions are mostly due to the images
having different horizontal field-of-views.

Acknowledgements

This work was supported by the Swedish Foundation for Strategic
Research under Grant RIT10-0033. The TITAN GPU used for this
research was donated by the NVIDIA Corporation. The CITADEL
scene is a part of the Epic Citadel level distributed with the Unreal
Development Kit by Epic Games.

References

AILA, T., AND AKENINE-MÖLLER, T. 2004. A hierarchical
shadow volume algorithm. In Proc. of the ACM SIGGRAPH/EU-
ROGRAPHICS conf. on Graphics hardware, HWWS ’04, 15–23.

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc.
of EGSR 2004, 161–166.

BILODEAU, W., AND SONGY, M., 1999. Real time shadows. Cre-
ativity 1999, Creative Labs Inc. Sponsored game developer con-
ferences, Los Angeles, California, and Surrey, England.

CARMACK, J., 2000. Z-fail shadow volumes. Internet Forum.

CHAN, E., AND DURAND, F. 2004. An efficient hybrid shadow
rendering algorithm. In Proc. of the EGSR, 185–195.

CROW, F. C. 1977. Shadow algorithms for computer graphics.
SIGGRAPH Comput. Graph. 11 (July), 242–248.

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A.K. Peters.

HARADA, T. 2012. A 2.5D culling for forward+. In SIGGRAPH
Asia 2012 Technical Briefs, ACM, New York, NY, USA, SA ’12,
18:1–18:4.

HEIDMANN, T. 1991. Real shadows, real time. Iris Universe 18,
28–31. Silicon Graphics, Inc.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. on Graphics 24, 4, 1462–1482.

LAINE, S. 2005. Split-plane shadow volumes. In Proceedings of
Graphics Hardware 2005, Eurographics Association, 23–32.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007. Reso-
lution matched shadow maps. ACM TOG 26, 4, 20:1–20:17.

LLOYD, B., WEND, J., GOVINDARAJU, N. K., AND MANOCHA,
D. 2004. Cc shadow volumes. In EGSR/Eurographics Workshop
on Rendering Techniques, 197–206.

MORTON. 1966. A computer oriented geodetic data base and a
new technique in file sequencing. Tech. Rep. Ottawa, Ontario,
Canada.

OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. Journal
of Graphics, GPU, and Game Tools 15, 4, 235–251.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clus-
tered deferred and forward shading. In Proceedings of the
Fourth ACM SIGGRAPH / Eurographics conference on High-
Performance Graphics, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, EGGH-HPG’12, 87–96.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008. Sample-
based visibility for soft shadows using alias-free shadow maps.
CG Forum (EGSR 2008) 27, 4 (June), 1285–1292.

SINTORN, E., OLSSON, O., AND ASSARSSON, U. 2011. An
efficient alias-free shadow algorithm for opaque and transparent

objects using per-triangle shadow volumes. ACM Trans. Graph.
30, 6 (Dec.), 153:1–153:10.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12 (August), 270–274.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-split
shadow maps for large-scale virtual environments. In Proc. of the
2006 ACM international conf. on Virtual reality continuum and
its applications, VRCIA ’06, 311–318.

A Appendix

Here, we provide pseudocode that describes the traversal algorithm
suggested in this paper. This code is run cooperatively by all threads
in a warp. The TRAVERSENODE procedure is started for each trian-
gle shadow volume (SV), with level and key initially set to 0, and
childMask set to the root node childMask. MAXLEVELS is the total
number of levels of the tree (6 with our layout for 1024× 1024).

Algorithm 1 Pseudocode describing how the view-sample cluster
hierarchy is traversed for a triangle’s shadow volume. The symbols
� and � denote right and left shift. & denotes bitwise AND. !
denotes bitwise invert.

1: procedure TRAVERSENODE(SV , level , key, childMask)
2: if level = MAXLEVELS-1 then
3: TESTVIEWSAMPLES(SV , key)
4: return
5: nodeBitPos ← (MAXLEVELS − level + 1) ∗ 5
6: childBitPos ← (MAXLEVELS − level) ∗ 5
7: childKey ← key|(laneId � childBitPos)
8: intersect ← true
9: trivialAccept ← true

10: if TESTBIT(laneId, childMask) then
11: for each plane in SV do
12: p ← CLIPSPACETRPOINT(childKey, plane)
13: if p dot plane > 0 then
14: intersect ← false
15: trivialAccept ← false
16: break
17: p ← CLIPSPACETAPOINT(childKey, plane)
18: if p dot plane < 0 then
19: trivialAccept ← false
20: intersectionResult ← BALLOT(intersect)
21: TAResult ← BALLOT(trivialAccept)
22: if laneID = 0 and TAResult 6= 0 then
23: nodeIdx ← key � nodeBitPos
24: ATOMICAND(hierarchy [level] [offset] , !TAResult)
25: childMask ← intersectionResult&!TAResult&childMask
26: while childMask 6= 0 do
27: nextChild ←31-CLZ(childMask)
28: nextKey ← key|(nextChild � childBitPos)
29: nextNodeIdx ← nextKey � childBitPos
30: nextChildMask ← hierarchy [level+1] [nextNodeIdx]
31: TRAVERSENODE(SV , level+1 , nextKey, nextChildMask)
32: UNSETBIT(nextChild , childMask)

TESTVIEWSAMPLES is run when the final level is reached and
simply tests the individual view samples of a tile in parallel.
CLIPSPACETRPOINT and CLIPSPACETAPOINT find the trivial-
reject and trivial-accept points respectively of a node’s AABB. When
using implicit bounds, this is done by calculating the AABB from
the provided key, and with explicit bounds, the key is used to look
up a bounding box in memory. TESTBIT(a, b) returns true if bit a is
set in word b. UNSETBIT(a, b) clears bit a in word b. CLZ(a) is the

CUDA intrinsic that counts leading zeroes in word a. BALLOT(a) is
the CUDA warp vote function, which returns a word with bit b is set
if a is true for thread b.

