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In a recent publication, we reported results of a multi-frequency VLBI campaign of observa-

tions of the Active Galactic Nucleus (AGN) in galaxy M 81, phase-referenced to the supernova

SN 1993J. We were able to extract precise information on the relative astrometry of the AGN ra-

dio emission at different epochs and frequencies. We found strong evidence of precession in the

AGN jet (i.e., a systematic evolution in the jet inclination at each frequency) coupled to changes

in the overall flux density at the different frequencies. In these proceedings, we summarise the

main contents of our previous publication and we report on (preliminary) new results from our

follow-up VLBI observations, now phase-referenced to the young supernova SN2008iz. We also

briefly discuss how these results match the picture of our previously-reported precession model.
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Monitoring the jet precession in the AGN of M81 I. Marti-Vidal

1. Introduction

The galaxy M 81 (NGC 3031), located at a distance of 3.63±0.34 Mpc (Freedman et al. [9]),

hosts the next closest active galactic nucleus (AGN) after Centaurus A. Its high declination (J2000.0

coordinates α = 09h55m33.173s and δ = 69◦03′55.062′′) also makes the AGN in M 81 (hereafter

M 81*) a perfect target for global VLBI observations using the most sensitive radio telescopes in

the Northern Hemisphere.

The explosion of the radio-luminous supernova SN 1993J in M 81, which happened around

28 March 1993 (e.g., Weiler et al. [20]), triggered an intense campaign of VLBI observations in

which M 81* was selected as the phase calibrator of the SN 1993J visibilities (e.g., Marcaide et al.

[14],[15]; Bartel et al. [1]; Bietenholz et al. [3]; Marcaide et al. [16]; Marti-Vidal et al. [17],[18]).

These observations allowed us to study, as a byproduct, the structure and evolution of M 81* at

different frequencies (Marti-Vidal et al. [19]). Since the central position of the radio-emitting

shell of a supernova does not depend on the observing frequency, this is the ideal study case for

multi-frequency astrometry of an AGN jet.

Results for some of the M 81* observations at 8.4 GHz between years 1993 and 1997 are re-

ported in Bietenholz et al. [2], and results for the astrometry analysis of a subset of observations at

all frequencies between years 1993 and 2002 were reported in Bietenholz et al. [4]. These authors

concluded that the proper motion of M 81*, relative to the shell center of SN 1993J, was consis-

tent with zero. The contributions of galactic rotation and/or any peculiar motion of the SN 1993J

progenitor were also discarded to contribute to a detectable proper motion of M 81* relative to the

supernova. These authors also reported a frequency-dependent shift of the peak of brightness of

M 81*.

In Marti-Vidal et al. [19], we reported the analysis of the combined dataset of all the VLBI

observations of SN 1993J at frequencies from 1.4 to 8.4 GHz, phase-referenced to M 81*, that were

publicly available at the time of the analysis. The time sampling of this combined dataset1 is

more dense and extended than those of the results previously reported in Bietenholz et al. [2] and

Bietenholz et al. [4] (see Fig. 2). Hence, any systematic evolution in the source position should be

more clearly revealed in our analysis, as it is, indeed, the case (see Sect. 2).

2. Summary of Previous Results

In Marti-Vidal et al. [19], we confirmed the main results reported in Bietenholz et al. [2] and

Bietenholz et al. [4]; on the one hand, the position of the intensity peak in the AGN jet (namely, its

core) depends on the observing frequency, and is shifted along the jet towards larger distances from

the jet base (i.e., the AGN central engine) as we decrease the observing frequency. On the other

hand, the core region is slightly resolved at all frequencies, and its size increases with decreasing

frequency.

The chromatic shift in the position of the peak intensity of an AGN jet (also known as the

core-shift effect) was serendipitously discovered in the pair of quasars 1038+528 A-B (Marcaide

[13]) and has been extensively studied in many sources during the last years (e.g., Kovalev et al.

1Observations from a project lead by N. Bartel at Univ. York in Toronto (Canada) and observations from a project

lead by J.M. Marcaide at Univ. Valencia (Spain)
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[11]). This apparent shift in the source position is caused by Synchrotron Self-absorption (SSA)

of the jet plasma, due to the strong magnetic fields and the large particle densities (and energy

gradients) close to the jet base (Blandford & Königl [5]).

An increasing source size with decreasing frequency, coupled to the core-shift effect described

in the previous paragraph, maps into a direct measurement of the opening angle in the jet of M 81*,

which of course has to be corrected for geometric projection effects (e.g., Sect. 5.4 in Marti-Vidal

et al. [19]).

Besides the confirmation of the main results reported by other authors, the larger amount of

data available allowed us to to better constrain proper motions and to estimate core-shifts with a

higher precision. We were able to constrain the proper motion of the AGN core (relative to the

frame of SN 1993J, located in the same galaxy), with a precision of a few µas per year (depending

on frequency). We were also able to determine the normalised core-shift, Ω (see Lobanov [12]),

from a combined fit of all the available shifts for the different frequency pairs, with an uncertainty

of only 11%. With this precise estimate of the core shift, we could derive the coordinates of the

jet base of M 81* with precisions ranging from 20µas (at 8.4 GHz) to 100µas (at 1.7 GHz). Our

results were indeed compatible with the estimates given in Bietenholz et al. [4], who used a com-

pletely different approach to derive the coordinates of the jet base. Last but not least, we could

also estimate the mass of the central black hole, by assuming a strongly-magnetised BH scenario

(Kardashev [10]). The resulting black-hole mass (2× 107 M⊙) is in agreement with other inde-

pendent mass estimates (coming from spectroscopic observations of the central rotating star disk

and from the stellar-velocity dispersion in the bulge) and makes M 81* an interesting intermediate

object between Sgr A* and the more powerful AGN.

2.1 The precessing jet in M 81*

There are strong signatures of a systematic change in the orientation of the jet, both from

the phase-referencing to SN 1993J (Fig. 1, left) and from the evolving inclination of the core, as

estimated from model-fitting to the visibilities2 (Fig. 1, right).

This change in the orientation of the jet seems to be coupled to long-term changes in the

VLBI flux density at the different frequencies. This is probably due to jet bending effects or to

inhomogeneities in the jet path as it changes direction. In Fig. 3, we show the large flare (4 years

long) reported in Marti-Vidal [19], which happens roughly when the jet increases its position angle

from North to East.

3. New Observations

The serendipitous discovery of supernova SN2008iz in M 82 (Brunthaler et al. [6]), targeted

an intense VLBI monitoring at different frequencies, to characterise its structure evolution and

expansion (e.g., Brunthaler et al. [7],[8]).

2The position angle of the core major axis is almost independent of the underlying model used in the fit (disc,

Gaussian, sphere, etc.), as long as the source is only marginally resolved. In such a case, we are only able to sample

the first lobe of the visibility function, which has the shape of a paraboloid with minor axis aligned to the major axis of

the source intensity distribution. Given that any symmetric model of a small source has a main lobe with a paraboloidal

shape, the position angle of the minor axis in visibility space (i.e., the position angle of the major axis of the source)

shall be independent of the specific model used to estimate it.

3



P
o
S
(
1
1
t
h
 
E
V
N
 
S
y
m
p
o
s
i
u
m
)
0
6
5

Monitoring the jet precession in the AGN of M81 I. Marti-Vidal

−0.4−0.20.00.20.40.60.8
Relative RA (mas)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

R
e
la

ti
v
e
 D

e
c 

(m
a
s)

1.7 GHz
2.3 GHz
5.0 GHz
8.4 GHz

1994 1996 1998 2000 2002 2004 2006
Epoch (year)

1996 1998 2000 2002 2004 2006
Epoch (year)

55

60

65

70

75

Co
re

 p
os

iti
on

 a
ng

le
 (d

eg
)

1.7 GHz
5.0 GHz
1.7 GHz model
5.0 GHz model

Figure 1: Left, position of the peak intensity of M 81* for each frequency (different symbols) and epoch

(different colors). The core-shift effect can be appreciated from the gathering of the different symbols

around different coordinates, whereas the jet precession can be appreciated from the gathering of symbols

with similar colors. Right, position angle of the core at 5 GHz and 1.7 GHz as a function of time. A simple

sinusoidal precession model is over-plotted.

Given that M 81* was again selected as phase calibrator, we can use these new observations

to continue our study of the evolving jet in M 81*. We show in Fig. 2 the time distribution of all

the epochs used so far in our analysis. These are those previously reported in Bietenholz et al. [4]

(red), Marti-Vidal et al. [19] (red and blue), and the new observations (green), phase-referenced to

SN 2008iz and first reported in these proceedings, that will be discussed in deeper detail elsewhere

(Marti-Vidal et al. in preparation).
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Figure 2: Time sampling of our VLBI monitoring. Red points are epochs also reported in Bietenholz et al.

[4]; blue points are epochs from the project led by J.M. Marcaide; green points are the new observations,

phase-referenced to SN 2008iz.

4. New Preliminary Results

We have generated hybrid images of M 81* for all the new epochs of observation of SN 2008iz

(i.e., those corresponding to the green points shown in Fig. 2), and have performed model-fitting

to the visibilities in a subset of epochs. The model structure and the fitting algorithm used are

described in Marti-Vidal et al. [19] (see their Sect. 3.1).
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We show in Fig. 3 the preliminary results (overall VLBI flux density of the core at bottom;

core inclination at top) for these new epochs, together with the results reported in Marti-Vidal et al.

[19]. Since we are still working on the relative astrometry between M 81* and SN 2008iz, it is not

possible to show information on the core-shift, for the new epochs, in these proceedings. In any

case, it can be seen that the position angle at 5 GHz for the new epochs matches well the prediction

by the simple model reported in Marti-Vidal et al. [19]. The difference between the position angles

around year 2001 and year 2011 is obvious.

For clarity reasons, we have over-plotted two dashed lines marking the epochs of years 1997.5

and 2001. As reported in Marti-Vidal et al. [19], the long flare can be related to the increase of

position angle of the core (i.e., when the core turns from North into East direction). In the case of

a periodic precession, we would expect to see a second long flare roughly between years 2005 and

2008. Unfortunately, there is lack of observations just in this time range. We notice, though, that the

core flux densities at 1.7 GHz seem to reach a minimum short after year 2010, which corresponds

to the time when the jet reaches its minimum position angle. The interpretation of these results

in the frame of the precessing jet, together with the report of a more complete set of observations

(now being reduced) will be discussed in a future publication.
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Figure 3: Top, position angle of the M 81* core vs. time. Bottom, lightcurve of the M 81* core, obtained

from the hybrid imaging of all our available VLBI epochs.

5. Summary

We report new multi-frequency VLBI observations of M 81*, phase-referenced to the super-

nova SN 2008iz in M 82, which will allow us to extend the analysis reported in Marti-Vidal et al.

[19]. We also report preliminary results on the flux-density evolution of the jet core at each fre-

quency (8.4, 5.0, and 5.0 GHz) and the position angle of the slightly-resolved elongated core. On

the one hand, the new core position angles are in agreement with the extrapolation of the simple

model reported in Marti-Vidal et al. [19]. On the other hand, we lack observations in the time
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range when a second long flare would have been observed. Continued observations will allow us

to finally confirm and improve, or reject, the periodicity of the precession model for the AGN jet

in galaxy M 81.
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