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Abstract

Density-functional theory (DFT) has been used to determine the structure and interface energy of different rigid body
translations (RBTs) of the (210)[001] grain boundary (GB) in BaZrO3. There exist several different stable structures
with almost equally low interfacial energy. Segregation energies of protons and oxygen vacancies have been determined
for the most stable (210)[001] grain boundary structure. The results suggest that both defect species favor segregation
to the same site at the boundary interface with minimum segregation energies of −1.45 eV and −1.32 eV for vacancies
and protons respectively. The segregation energies have been used in a thermodynamic space-charge model to obtain
equilibrium defect concentrations and space-charge potentials at a 10 % dopant concentration. Space-charge potential
barriers around 0.65 V were obtained at intermediate temperatures under hydrated conditions, where protons are the
main contributor to the excess core charge. The potential is slightly lower under dry conditions.
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1. Introduction

Acceptor-doped BaZrO3 is both chemically stable and
highly proton conducting and could therefore be suitable
as the electrolyte material in intermediate temperature
solid oxide fuel cells (SOFCs) [1, 2]. However, sintered
BaZrO3 is polycrystalline and the conductivity of that
material is orders of magnitude lower due to resistance
at the grain boundaries (GBs) [1, 3, 4]. Grain boundaries
in BaZrO3 do not contain secondary phases [5–8] and the
high resistance is therefore considered to be an intrinsic
effect.

The intrinsic blocking behavior of the grain boundaries
can be described within the framework of the space-charge
model. According to this model positively charged defects
segregate to the grain boundary core where they give rise
to an electrostatic space-charge potential. In turn, the po-
tential depletes the surrounding regions of mobile charge
carriers thus limiting the conductivity [9, 10]. The space-
charge model has been applied to BaZrO3 by several re-
search groups where the space-charge potentials have been
determined based on both experiments [6, 8, 11–16] and
theoretical modeling [17–21].

For segregation to occur the defect formation energies
need to be lower in the GB core. In previous work by
our group we studied proton and oxygen vacancy segrega-
tion in [1̄10] tilt grain boundaries as well as a symmetric
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(210)[001] tilt grain boundary in BaZrO3 using density-
functional theory (DFT). The results suggest that both
defect species do segregate to the GB core but the strength
of the segregation varied among the boundaries, favoring
vacancies in some and protons in others [18, 20]. We have
also studied oxygen vacancy segregation in more complex
structured low-angle [1̄10] tilt grain boundaries using in-
teratomic potentials, where we concluded that segregation
to all considered boundaries was favorable [19]. Further-
more, Polfus et al. [21] have studied defect segregation to
the (111)[1̄10] GB using DFT and their results regarding
oxygen vacancy and proton segregation are in agreement
with our results [20].

In this paper we extend our previous studies of grain
boundaries and defect segregation in BaZrO3 with a de-
tailed investigation of the (210)[001] grain boundary using
DFT. In order to find the most stable structures we con-
struct an energy surface of the grain boundary by calcu-
lating the interface energy for different rigid body trans-
lations (RBT) parallel to the boundary plane. For the
structure with lowest interface energy we calculate the
segregation energy of oxygen vacancies and protons at dif-
ferent distances away from the interface. Finally, we use
the defect segregation data together with a space-charge
model to determine equilibrium defect concentrations and
the corresponding space-charge potentials over a wide tem-
perature range, under both dry and hydrated conditions.
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Figure 1: A schematic view of the space-charge model. The curves
denoted [A′Zr], [OH•O] and [V••O ] corresponds to dopant, hydroxide
and oxygen vacancy concentration respectively. Figure borrowed
from Ref. [20].

2. Theory

To determine the distribution of defects in a mate-
rial the electrochemical potential is needed. For point
defects in a solid the electrochemical potential follows a
Fermi-Dirac-like distribution [22]. In space-charge theory
the assumption is made that the grain interior and the
grain boundary are in equilibrium, i.e. the electrochemical
potential is the same for both systems. The equilibrium
equation that follows from this assumption together with
Poisson’s equation yields a set of equations from which
defect concentrations and space-charge potential can be
obtained.

The defects we consider in this paper are oxygen vacan-
cies, protons (hydroxide ions) and acceptor dopants with
the charge states +2, +1 and −1 respectively. We assume
that the effect of other defect species, such as electron
holes, is negligible. Additionally, we make use of the Mott-
Schottky approximation which assumes a constant dopant
concentration throughout the material. A schematic view
of the space-charge model is shown in Fig. 1. A more
thorough description of the space-charge theory used in
this work is given in Ref. [20].

3. Computational details

3.1. Density-functional theory

The density-functional theory (DFT) calculations have
been carried out using the VASP code which uses a plane
wave basis set [23–26]. The generalized gradient functional
due to Perdew, Burke and Ernzerhof (GGA-PBE) [27]
have been employed to model exchange-correlation and
the projector augmented wave method (PAW) [28, 29] was
used to describe ion-electron interactions. All calculations
were performed non-spin polarized with periodic bound-
ary conditions in all directions. The plane wave cut off
was 470 eV for constant volume simulations while a larger

Table 1: The unrelaxed structure dimensions and the number of
atoms for the considered supercells. a0 = 4.25 Å.

Axes Dimensions No. of atoms

[1̄20], [001], [210]
√

5a0 × a0 × 4
√

5a0 100√
5a0 × 2a0 × 4

√
5a0 200√

5a0 × 3a0 × 4
√

5a0 300

Grain 1 Grain 2GB 1 GB 2

[210]
[001]

[120]
-

Ba Zr O

GB 2

Figure 2: The initial structure for the rigid body translations
(RBTs). Grain 1 was kept fixed while Grain 2 was translated in
the [1̄20] and [001] directions to create different structures.

value of 600 eV was used for volume relaxations. k-point
sampling has been done according to the Monkhorst-Pack
scheme, with a 3× 6× 1 grid for the supercells containing
100 ions while 3×3×1 and 2×2×1 grids were used for the
larger supercells containing 200 and 300 ions respectively.
The dimensions for the different supercells are given in Ta-
ble 1. The residual minimization method with direct inver-
sion in the iterative subspace (RMM-DIIS) was used for
ionic relaxation. Simulations were considered converged
when the residual forces were smaller than 0.03 eVÅ−1.
When calculations with charged defects were performed a
homogeneous background charge with the same magnitude
but opposite polarity as the defect was added to make the
supercell charge neutral.

3.2. γ-surface

For a given grain boundary orientation different struc-
tures can be constructed by fixing one of the grains and
then translating the other one in the grain boundary plane
(c.f. Fig. 2). This procedure will further on be referred to
as a rigid body translation (RBT). To find the most stable
structure of the (210)[001] grain boundary several different
RBTs needs to be considered.

We chose the symmetric structure given in Fig. 2 as
the non-translated structure. The structure is periodic in
the translational directions and we use this to define the
RBTs. The notation for a RBT is (X,Y ), where X is the
translation along the [1̄20] axis and Y is the translation
along the [001] axis. X and Y can take values between 0
and 1 where 0 corresponds to no translation at all and 1
corresponds to a translation of 1 periodic unit, which is
the same structure as no translation at all. The length of
one periodic unit is

√
5a0 along the [1̄20] axis and a0 along

the [001] axis, where a0 is the lattice constant.
To find the most stable structures of the (210)[001]

grain boundary we determine the γ-surface, which is an
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energy surface of the grain boundary interface. The γ-
surface is constructed by calculating the grain boundary
energy for different rigid body translations (RBT). The
grain boundary energy is defined as

γgb =
Etot

gb − Etot
bulk

2A
(1)

where Etot
gb is the energy of the grain boundary supercell,

Etot
bulk is the energy of the bulk supercell and A is the

area of the grain boundary interface. The factor of 1/2
is included because the grain boundary supercell contains
two grain boundaries due to periodic boundary conditions
(c.f. Fig. 2).

When relaxing the structure of different RBTs the ions
are only allowed to move perpendicular to the grain bound-
ary interface in order to keep the translation. At the same
time the supercell is allowed to change size in the same
direction. The change in supercell size corresponds to the
grain boundary expansion which is defined as

∆gb =
Vgb − Vbulk

2A
(2)

where Vgb and Vbulk are the volumes of the grain boundary
and bulk supercells.

3.3. Space-charge calculations

The space-charge calculations have been performed us-
ing a one-dimensional layer-by-layer model. This approach
differs from models used in previous theoretical studies
[17, 18, 21] due to that the grain boundary core is divided
into layers where each layer is associated with different de-
fect segregation energies (formation energies) as opposed
to a core with only one segregation energy for each de-
fect species. This kind of treatment is possible since we
obtain layer specific segregation energies from the DFT
calculations. The water partial pressure pH2O was set to
0.025 bar in all calculations and the relative dielectric con-
stant εr was chosen to be 75. For the free energy of hy-
dration the enthalpy ∆H◦

hydr = −0.82 eV and the entropy

∆S◦
hydr = −0.92 meVK−1 was chosen according to Ref. [1].

A more detailed description of this space-charge model and
the implementation of it can be found in Ref. [20].

4. Results and discussion

4.1. Grain boundary structures and segregation energies

To find the most stable structures we look at low en-
ergy configurations on the γ-surface. A γ-surface has been
constructed using supercells containing 100 ions, and it is
shown as two curves in Fig. 3 where each curve corresponds
to translations along the [1̄20] axis for a fixed translation
in the [001] direction. The γ-surface indicates that the
structures which correspond to the RBTs (1/5,0), (2/5,0)
and (0,1/2) are the most stable ones. Next, we consider
unconstrained ionic relaxation of these three low energy
structures.
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Figure 3: The grain boundary energy γgb of different rigid body
translations (RBTs) (X,Y ) of the (210)[001] grain boundary. The
x-axis corresponds to translations along the [1̄20] direction (X) and
the different lines corresponds to translations along the [001] direc-
tion (Y ) (c.f. Fig. 2). All values are calculated using a supercell
containing 100 ions where the ions only could move perpendicular to
the grain boundary interface.

Table 2: Grain boundary energy γgb and expansion ∆gb after un-
constrained relaxation for the three most energetically favorable rigid
body translations (RBT) given in Fig. 3. The RBT of the relaxed
structures is also given.

RBT RBT (Relaxed) γgb (Jm−2) ∆gb (Å)
(1/5,0) ( 0.21,0.00) 1.22 0.95
(2/5,0) ( 0.40,0.00) 1.14 0.27
(0,1/2) (-0.01,0.50) 1.09 0.60

The grain boundary energy and expansion for the fully
relaxed structures are given in Table 2. For two of the
structures a slight RBT of about 0.1 Å occurred during
the relaxation and these are also listed in the table. The
most stable structure is the one corresponding to the RBT
(0,1/2) with γgb = 1.09 Jm−2, and the atomic structure of
this grain boundary is shown in Fig. 4. This RBT has pre-
viously been found to be the most stable (210)[001] struc-
ture in the perovskite SrTiO3 with γgb = 0.98 Jm−2 [30].
The (0,1/2) grain boundary will be used to study defect
segregation. Furthermore, the structure corresponding to
the RBT (2/5,0) is almost as stable as the (0,1/2) GB with
γgb = 1.14 Jm−2. This structure is the symmetric grain
boundary which was studied previously by our group [20].

Next, we investigate if defects segregate to the (0,1/2)
grain boundary. The segregation energy of a defect D is
determined by

∆ED = Etot
gb,D − Etot

gb,Dref
(3)

where Etot
gb,D is the energy of a GB supercell with the de-

fect and Etot
gb,Dref

is the energy of a GB supercell with the
defect in the reference state. The reference state is chosen
so that the defect is as far away from the grain bound-
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Figure 4: The atomic structure of the (210)[001](0,1/2) grain
boundary. The dashed lines marks the region which is treated as the
grain boundary core in the space-charge calculations. The atomic
species are the same as in Fig. 2.

ary planes as possible. To reduce the possibility of the
defect to interact with itself larger supercells were used.
The supercell was increased by a factor of two in the [001]
direction for calculations for protons and a factor of three
in the same direction for oxygen vacancies.

The proton and oxygen vacancy segregation energies
for the (210)[001](0,1/2) grain boundary are shown in Fig. 5.
The are two segregation profiles for each defect species in
the figure which corresponds to different sites on the oxy-
gen sublattice located in the same plane. However, the
even numbered planes only contain one unique site and
at these planes the two profiles refer to the same oxygen
vacancy or proton. To create a protonic defect is not as
straightforward as creating an oxygen vacancy since the
starting position has to be chosen. The most favorable
proton sites in bulk BaZrO3 has been determined in previ-
ous work [31]. Although the grain boundary is structurally
different from the grain interior these bulk sites serve as
suitable starting positions for our calculations. For each
oxygen site we chose a few initial proton positions and
the values of the proton segregation energy given in Fig. 5
corresponds to the relaxed position with lowest energy.

In Fig. 5 it can be seen that both protons and oxygen
vacancies segregate to the grain boundary with minimum
segregation energies of −1.45 eV and −1.32 eV for vacan-
cies and protons, respectively. A similar vacancy segrega-
tion energy was obtained for the (112)[1̄10] grain boundary
using DFT [20], and for a set low angle [1̄10] grain bound-
aries using classical interatomic potentials [19]. The pro-
ton segregation is much stronger for this grain boundary
compared to structures previously studied by our group
[20] and Polfus et al. [21] where the segregation energy is
about −0.8 eV for all boundaries. Furthermore, in Fig. 5
it can also be seen that the site with lowest energy for each
defect corresponds to the same oxygen site. This was also
observed for the grain boundaries we considered previously
[20].

When we calculate the segregation energies we either
remove an oxygen ion or add a proton and then relax the
structure. If there is not a local energy minimum close to
the constructed defect then a substantial rearrangement
of the surrounding ions can occur before the structure is
relaxed. This is more likely to be a problem at the grain

boundary compared to in bulk since the grain boundary
structure is less ordered. The ionic rearrangement could
mean that the defect moves to a different site which means
that one needs to be careful when constructing these lay-
ered segregation profiles.

For the segregation profiles in Fig. 5 this kind of re-
arrangement occurs at a few defect sites. The vacancy of
type V1 in plane −3 and type V2 in plane 1 moved into
the low energy site in plane 0 during the relaxation which
means that energies of these sites does not correspond to
vacancies in these planes. Furthermore, the vacancy in
plane −2 and the V1-vacancy in plane −1 corresponds to
the same relaxed structure. When removing one of the
oxygen ions the other one moved into a position located
between the two initial sites during relaxation. For some
of the protonic defects there were substantial relaxation of
the surrounding ions as well resulting in protons moving to
other oxygen ions. However, as mentioned previously sev-
eral different starting positions were considered for each
protonic defect and in the cases were a proton switched
position to a different oxygen ion there were always an-
other starting position resulting in a locally relaxed posi-
tion. The values of the proton segregation energy given
in Fig. 5 correspond to the proton positions with lowest
energy that did not move from the initial oxygen ion.

4.2. Space-charge calculations

The space-charge simulations were performed using the
defect segregation data given in Fig. 5. The segregation
energies for defects located outside the planes±4 are all set
to zero in order to reduce the computational cost, which
is reasonable since the values are very small. As described
in the previous section some of the oxygen vacancy seg-
regation energies given in the figure do not correspond
to vacancies in the given planes. In order to not count
the same vacancy site more than once we use segregation
energies obtained from unrelaxed structures in the cases
where the vacancy moved significantly during relaxation.
We then have ∆EV = 0.12 eV for the V1 site in plane −3
and ∆EV = 0.65 eV for the V2 site in plane 1. Moreover,
the V1 site in plane −1 and the site in plane −2 have the
same structure and can thereby not be occupied simul-
taneously with same low segregation energy. To account
for this the segregation energy of the site in plane −2 was
changed to ∆EV = −0.26 eV based on unrelaxed structure
calculations.

The results from the space-charge calculations obtained
with a dopant concentration of 10 % can be seen in Fig. 6.
The space-charge potential is about 0.65 V below 900 K un-
der wet conditions which is consistent with experimental
results [6, 8, 11–16]. Under dry conditions the potential
is slightly lower by a value of 0.05-0.1 V. A similar dif-
ference in the potential barrier height between dry and
wet conditions was found experimentally by Shirpour et
al. [16]. The potential is slightly higher compared to the
symmetric tilt grain boundaries studied previously by our
group where a potential of about 0.6 V was found in all
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Figure 5: Oxygen vacancy and proton segregation energies of the (210)[001](0,1/2) grain boundary. The dashed lines marks the region which
is treated as the grain boundary core in the space-charge calculations. The superscripts refer to different oxygen sites in the same plane for
odd numbered planes while they in even numbered planes refer to the same site since those planes only contain one unique site. The planar
position of each defect in the figure corresponds to the planar position of the defect prior to relaxation.

three grain boundaries under wet conditions [20]. At first,
this result seems a bit odd since the proton segregation en-
ergy in the symmetric grain boundaries is −0.8 eV which is
about 0.5 eV higher than the segregation energy obtained
in this work and therefore should give rise to a lower po-
tential barrier. The reason for this is that there are fewer
low energy sites in this grain boundary compared to the
symmetric ones.

Fig. 6 also shows that the excess core charge is only
due to protons at temperatures below 900 K. This sug-
gest that protons are the origin of the space-charge effects
in this grain boundary under fuel cell operating condi-
tions. This is consistent with the symmetric (111)[1̄10]
and (210)[001](2/5,0) grain boundaries studied in our pre-
vious work [20], where the segregation energy for protons
and oxygen vacancies also is quite similar.

5. Conclusions

The (210)[001] tilt grain boundary in BaZrO3 has been
studied in terms of a γ-surface. Three different struc-
tures were found that are significantly more stable than
the other structures. Proton and oxygen vacancy segrega-
tion energies have been determined for the most stable of
the three structures. Both species were found to segregate
to the grain boundary core, with a minimum segregation
energy of −1.45 eV for vacancies and −1.32 eV for protons.
Additionally, the second most stable structure is the sym-
metric grain boundary studied previously by our group
[20].

An oxygen vacancy segregation energy of about−1.5 eV
has been found in other tilt grain boundaries of BaZrO3

[19, 20] suggesting that this is a typical value for vacancy
segregation. The proton segregation tendency is found
to be larger in the present study compared with some

previous investigations [20, 21], with segregation energy
−1.3 eV compared with −0.8 eV in [20, 21].

Furthermore, the defect segregation energies have been
used together with a 10 % uniform dopant concentration in
a thermodynamic space-charge model. Potential barriers
around 0.65 V were obtained at temperatures below 900 K
under wet conditions, which is consistent with experimen-
tal results [6, 8, 11–16]. At these temperatures the excess
core charge, and thereby the potential, is here found to be
due only to protons. Furthermore, the potential barriers
are slightly larger during wet conditions compared to dry
ones, which also has been observed experimentally [16].

To conclude, segregation of oxygen vacancies and pro-
tons plays an important role in the formation of space-
charge potentials at the grain boundary interface. Addi-
tionally, our results show that protons may be the main
source of the space-charge potentials under conditions rel-
evant for fuel cell applications.
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