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Abstract 

Biological systems can be very complex and consist of several thousand components that 
interact with each other in the cell. One of the goals of systems biology is to study 
biological systems from a systemic viewpoint in order to get an increased understanding 
of the behavior of the cell. Biological network reconstructions are important tools in 
systems biology in order to model the behavior of different biological systems. The 
biological networks can also be used as a scaffold for integrative analysis where high-
throughput data from different conditions or different strains are integrated into the 
biological network to reduce the dimension of the data and to group the response between 
conditions or strains into biological pathways or key metabolites etc. The biological 
interpretation and discovery using integrative analysis can be facilitated by constructing 
more comprehensive and diverse biological networks. 

In this thesis I expanded current biological network reconstructions for the yeast 
Saccharomyces cereveisae in three steps and used them as a scaffold for biological 
interpretation and discovery. First I constructed an up-to-date yeast genome-scale 
metabolic model. The model is a comprehensive description of yeast metabolism and 
contains more genes, reactions and metabolites than previous models. The model 
performs well in simulating the metabolism under different conditions. Second, I studied 
the transcriptional regulatory network of yeast in terms of topology and structure of the 
network and compared it to transcriptional regulation in E. coli, human and mouse. I also 
used high-throughput data from many different conditions to study the condition-
dependent response of the yeast transcriptional regulatory network. Third, I was involved 
in reconstruction of models of the protein secretion machinery in S. cerevisiae and for the 
high protein producer Aspergillus oryzae, describing protein folding, post-translational 
modifications and protein transport etc. High-throughput data from several different 
strains producing α-amylase were integrated into the models in order to get an insight in 
the mechanisms and bottlenecks of protein secretion in these organisms. 

The biological networks presented here were also used for data integration and the results 
and interpretation of the cellular behavior under different conditions can give us a deeper 
understanding and insight in for example condition-specific transcriptional regulation and 
protein production. 

 

Keywords: Biological networks, integrative analysis, genome-scale metabolic model, 
transcriptional regulation, protein secretion
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1. Introduction 
Biological systems are complex and involve many different processes such as 
metabolism, cell growth, cell division etc. The complexity of these processes arises 
from the interactions of several thousands of components, e.g. genes, proteins and 
metabolites (Sauer et al, 2007). The baker’s yeast Saccharomyces cerevisiae is one of 
the most studied organisms and individual components (genes, enzymes, proteins) 
have been characterized (Botstein et al, 1997). To fully understand the behavior of 
complex systems it is beneficial to study the system as whole rather than individual 
components. The systemic properties includes the connectivity of the system, and how 
components interact with each other and trying to understand the systemic properties 
will help to understand the complexity of biological systems. The term “emergent 
property” applies also to biological systems and it describes how a complex structure 
or system can emerge from relatively simple interactions of the involved components 
(Ideker et al, 2001). One example of an emergent property is the symmetrical pattern 
of a snowflake where the interactions of water molecules give rise to a snow crystal.   
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Figure 1- Systems biology uses mathematical modeling to be able to describe the 
biological system. Models that can predict the phenotype based on the genotype and 
the environment can be constructed from current biological knowledge (bottom-up 
systems biology) and knowledge can be created from analyzing high throughput data 
(top-down systems biology). 
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Biological networks capture the systemic properties of the system of interest on the 
genomic level, and serves as a structured description of the system. Systems biology is 
a field where mathematical models and biological networks are used to describe 
biological phenomena. Figure 1 shows the concept of systems biology where models 
are used to capture the properties of the cell and describe the cellular behavior in 
different conditions or after perturbations. The genome plays an important role in 
defining the components of the system by defining genes and gene products. Other 
components can be small molecules, for example metabolites or metal ions. By using 
information about functionality of genes, gene products and pathways and retrieving 
information from publications and text books etc models can be constructed from 
biological knowledge (bottom part of Figure 1). This is called the bottom-up approach 
to systems biology (Palsson, 2006). Recent developments in experimental methods 
have generated large amounts of high-throughput omics data including 
transcriptomics, proteomics and metabolomics data. Transforming this data into 
biological knowledge or conclusions using mathematical models or techniques is 
called top-down systems biology. 

Integrative analysis takes advantage of reconstructed biological networks and models 
by using the network structure and topology as a scaffold and using algorithms to 
integrate high-throughput data into the network. Many biological studies aim to 
understand the biology behind different diseases or effects of different cellular 
perturbations or stresses.  Transcriptome analysis is commonly used to identify genes 
that are involved in the response and to find mechanisms that are likely to occur in the 
cell. Due to the large amount of data produced, analysis methods that make it easier to 
draw conclusions from the data are needed. Different methods exist, such as clustering 
methods that make it possible to characterize biological meaningful groups of genes 
with similar changes in expression, i.e. co-regulation (Eisen et al, 1998). However, 
these methods do not include any known information about the biological network.  

To be able to extend the interpretation of the results from which genes that are 
involved in the response to which metabolites and pathways that are involved the 
information that a genome-scale reconstruction of the metabolic network contains can 
be included by integrating the transcriptome data into a genome scale metabolic model 
(GEM). The integrated analysis can be used as a tool to draw more general 
conclusions from the data in order to get as complete pictures as possible of the 
mechanisms going on in the cell. 

Methods for integrating omics data into genome scale metabolic models exist, e.g. the 
Reporter Metabolite algorithm (Patil & Nielsen, 2005). However, in order to get an 
increased understanding of the biology behind different perturbations or conditions in 
the cell we need to have a comprehensive genome scale models that describes as many 
pathways and cellular mechanisms as possible. 

The Reporter Metabolite algorithm was later extended to be able to integrate high-
throughput data into other biological networks, e.g. transcriptional regulatory 
networks, KEGG pathways and GO-term networks  (Oliveira et al, 2008). This makes 
integrated analysis a valuable tool both for reducing the dimensionality of the omics 
data by identifying interesting GO-terms or KEGG pathways that have key roles and 



3 
 

also for studying transcriptional regulation by using the topology and structure of the 
transcriptional regulatory network. 

This thesis focuses on biological network reconstruction and analysis. If we can 
construct comprehensive biological networks that describe the current biological 
knowledge using a systemic viewpoint, i.e. capturing the interactions and complexity 
between components in the network, we can use these networks as a scaffold for 
integrative analysis in order to analyze data from a systemic point of view and get an 
increased understanding of the complex biological system. 

The biological networks that are constructed and studied in this thesis are the 
following:  

• The metabolic network 
• The transcriptional regulatory network 
• The protein secretion network 

The metabolic network was constructed for Saccharomyces cerevisiae using 
previously constructed yeast metabolic networks as a starting point. The aims of this 
reconstruction were to construct a comprehensive description of yeast metabolism as 
possible and construct a high-quality genome-scale metabolic model that suits well for 
simulation of metabolism. The newly constructed yeast genome-scale metabolic model 
is called iTO977 and is presented in Paper II. 

The concept of metabolic network reconstruction was applied to the protein secretion 
machinery of S. cerevisiae which resulted in a protein secretion machinery model that 
describes protein folding and processing in the Endoplasmic Reticulum and Golgi and 
protein sorting and transport within the cellular compartments. The model is presented 
in Paper V. This model is the first model describing the protein secretion machinery 
and the comprehensive structure of the model makes it useful as a scaffold for 
integrative analysis. A model of the protein secretion machinery in the high protein 
producing filamentous fungi Aspergillus oryzae was also constructed using the 
S. cerevisiae model as a starting point. This model was used to integrate transcriptome 
data from three α-amylase producing strains to study the response of protein secretion 
on the secretory machinery (Paper VI). 

Both the metabolism and the protein secretory pathway are regulated at many different 
levels in the cell. One mechanism of regulation is transcriptional regulation where 
transcription factor regulate the activity of their target genes by identifying and 
binding to specific sequence motifs. The topology and structure of different 
transcriptional regulatory networks were analyzed using the concept of network 
controllability and the results are presented in Paper III. The condition-specific 
transcriptional regulation and response was studied for S. cerevisiae in Paper II and 
Paper III. Here we used transcriptome data from many different conditions and 
integrated into the different biological networks in order to identify transcriptionally 
controlled reactions and transcription factors that respond to environmental cues. 
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There are many applications of biological network reconstructions and different 
applications of genome-scale metabolic models for yeast are presented in paper I. In 
this thesis the focus is mainly on network reconstruction and the following two 
applications of biological network reconstructions. 

• Using the networks and models as tools for improved strain construction for 
industrial applications, e.g. metabolic engineering and protein production 

• Using the networks as a tool for biological interpretation and discovery. 

In paper IV is anaerobic and aerobic protein production in yeast studied using data 
integration into the metabolic network. Here we use the integrative analysis for 
biological interpretation and discovery, but for an industrial application (to get 
improved protein production). 

 

1.1. Thesis structure 
The thesis is divided into five chapters. In Chapter 2 - Genome-scale metabolic 
modeling of yeast the background and results for Paper I and part of Paper II are 
presented. In Chapter 3 - Condition-specific regulation of yeast metabolism the 
background and results for part of Paper II and Paper III are presented. And finally, 
background and results for Paper IV, Paper V and Paper VI are presented in Chapter 
4 - Systems biology for protein production. In Chapter 5 summary and perspectives of 
all the work is presented. 
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2. Genome-scale metabolic modeling of yeast 
 

A genome-scale metabolic model (GEM) is a collection of metabolic reactions, 
compounds and genes that can be used to simulate the behavior of the cell. This 
chapter will focus on the history of genome-scale reconstructions of the 
Saccharomyces cerevisiae metabolism and describe the reconstruction of a new, 
updated genome-scale metabolic model for S. cerevisiae called iTO977. 

 

2.1. Framework for genome-scale metabolic modeling and 
reconstruction 

 

The sequencing of whole genomes in the 1990s opened up the possibility for genome-
scale reconstruction of the metabolism of microorganisms in the post-genomic era 
(Schilling et al, 1999) and the first organisms with reconstructed genome-scale 
metabolic models were bacteria such as H. influenzae (Schilling & Palsson, 2000) and 
E.coli (Edwards & Palsson, 2000). The process of constructing a high-quality genome-
scale metabolic model (GEM) is described in Figure 2. A step-by-step guide for high 
qualitative GEM reconstruction has been published in Nature Protocols (Thiele & 
Palsson, 2010).  
 

2.1.1. Reconstruction of a draft metabolic network 
The first step of the reconstruction is to generate a draft metabolic network which 
describes the relationship between genes, reactions and metabolites. The metabolic 
genes in the genome are annotated to metabolic functions using information from 
biochemistry, literature and databases, e.g. KEGG (Kanehisa et al, 2006) and 
BRENDA (Schomburg et al, 2002) or by homology to related organisms that already 
have genome-scale reconstructions. The term “genome-scale” indicates that the 
reconstruction covers all parts of metabolism, not only the central carbon metabolism. 
Each reaction in the reconstruction should have a reference in the literature (or 
database) and be connected to an enzyme commission number (E.C. number) and to 
one or more ORFs coding for a metabolic enzyme or transporter. Enzyme complexes 
or isoenzymes can be described as AND/OR relationships for each reaction in the 
metabolic network.  
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Figure 2 Workflow for reconstruction of a high-quality genome-scale metabolic 
model, including network reconstruction, mathematical formulation, comparing 
simulations with data and model improvement.  

2.1.2. Mathematical formulation and simulation 
The next step of the GEM reconstruction process is to convert the draft metabolic 
network to a mathematical model that can be used for simulations. This can be 
obtained by mass balancing around each of the intracellular metabolites in the model. 
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Figure 3 - Example illustrating a very simple metabolic network with 3 metabolites 
and 5 reactions; uptake reaction: v1, intracellular reactions: v2, v3, and excretion 
reactions v4 and v5. 
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Figure 3 shows an example of a metabolic network. The mass balance equation around 
metabolite A in this network can be written as:  

𝑑[𝐴]
𝑑𝑡

= 𝑣1 − 𝑣2 − 𝑣3 −  𝜇[𝐴]  (1) 

where v1, v2 and v3 are the fluxes (reaction rates) of reaction 1, 2 and 3 respectively in 
the unit mol/(gDW*h), µ is the specific growth rate in h-1, [A] is the concentration of 
metabolite A in mol/gDW and d[A]/dt is the (infinitesimal) change in concentration of 
metabolite A in mol/(gDW*h). The reaction rates of the reactions producing 
metabolite A (v1) have a positive sign and the reaction rates of the reactions consuming 
metabolite A (v2 and v3) have a negative sign in the mass balance equation, reflecting 
the stoichiometry of the system. Similar mass balance equations can be set up for each 
of the internal metabolites in the system.  

The term -µ[A] is called the dilution term and represents the fact that the cell volume 
increases as the cell grows, and hence the concentration of metabolite A will decrease 
proportionally with the growth rate. However, we assume that this effect can be 
neglected in biological systems, since the fluxes affecting the intracellular metabolite 
concentrations are normally much larger than the metabolite concentration itself 
(Stephanopoulos et al, 1998). 

Another assumption often made when simulating genome-scale metabolism using for 
example Flux Balance analysis (FBA), is that we can ignore the dynamics of the 
system, i.e. we assume that the concentrations of the intracellular metabolites are in 
steady state and does not change over time. Normally the metabolism is a very fast 
process compared to other processes in the cell. Changes in metabolite concentrations 
occur faster than changes in environment or changes in growth. We can therefore 
assume that the concentrations of intracellular metabolites are in steady state, i.e. the 
metabolism will react relatively fast to changes in the environment (Varma & Palsson, 
1994).  

Following this two assumptions we get d[A]/dt=0 and the term µ[A] can be neglected, 
whereby the mass balance equation (1) in the example becomes, 

0 = 𝑣1 − 𝑣2 − 𝑣3                 (2) 

The mass balance equation for the whole system, using matrix notation, becomes, 

0 = 𝑆𝑖𝑛 ∙ 𝑣                                     (3) 

where Sin is the stoichiometric matrix for the intracellular metabolites with the rows 
representing metabolites and the columns representing reactions, and v is the flux 
vector. For the simple example in Figure 3 this becomes, 

 



8 
 

               𝑣1    𝑣2      𝑣3      𝑣4      𝑣5    

𝑺𝒊𝒏 =
𝐴
𝐵
𝐶
�

1 −1 −1 0 0
0 1 0 −1 0
0 0 1 0 −1

� (4) 

    𝑣 = ( 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5)𝑇 (5) 

The metabolic model can be used to estimate the intracellular fluxes by solving the 
linear equation (3) in order to get the values for the fluxes in the vector v. However, 
normally for metabolic systems the number of reactions is higher than the number of 
metabolites, i.e. the Sin matrix has more columns than rows, as in the example. The 
number of unknown variables is higher than the number of equations, which leads to 
an underdetermined system of equations, which does not have one unique solution, but 
many possible solutions that satisfy equation (3). One way to come around this is to 
use an objective function that should be maximized or minimized while all the other 
intracellular fluxes remain in steady state. For microorganisms such as bacteria or 
yeast the objective function is often set to maximize the growth (or biomass 
production) of the cell, following the assumption that microorganisms have evolved to 
grow as fast as possible (Ibarra et al, 2002). However, a recent study suggest that the 
flux distribution of microorganisms subject to several, competing cellular objectives 
(Schuetz et al, 2012). Flux balance analysis (FBA) (Varma & Palsson, 1994) can be 
formulated as following, 

Maximize 𝑐 ∙ 𝑣,  

subject to, 

 𝑆𝑖𝑛 ∙ 𝑣 = 0,   (6)  

  𝑣𝑖𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖𝑚𝑎𝑥  

where c is the vector of objective functions and 𝑣𝑖𝑚𝑖𝑛 and 𝑣𝑖𝑚𝑎𝑥 are additional 
constraints (upper and lower bounds) for each reaction rate. There are many other 
different methods for analysis of GEMs which have been reviewed by Lewis et al. 
(2012). Methods that does not require an objective function includes random sampling 
over the space of feasible steady state solutions (Bordel et al, 2010) and topology-
based methods, e.g. Elementary Flux Modes (Schuster & Hilgetag, 1994) 

2.1.3. Quality control and model validation 
Once the draft metabolic network has been converted to a mathematical model it is 
possible to use the simulation framework to find errors in the model. One important 
step is so-called gap-filling where dead-end reactions and orphan reactions (reactions 
without gene associations) can be identified, and the if there exist a missing reaction or 
gene this can be inserted to the model (Orth & Palsson, 2010). The RAVEN toolbox 
(Agren et al, 2013a) includes methods for quality control and gap-filling. The toolbox 
also offers a framework for automatic reconstruction of GEMs. Given the protein 
sequences for the organism of interest in FASTA format the toolbox can generate a 
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draft metabolic model by searching for similarities with genes in GEMs of closely 
related organisms, or enzymes coding for reactions in KEGG.  

The simulation capabilities of the model can be validated by comparing simulations 
with experimental data. The optimal flux distribution obtained from model simulations 
can be compared to experimentally measured flux distributions or phenotypic data, e.g. 
growth rate, glucose uptake rate, product formation rate etc. (Pramanik & Keasling, 
1997; Price et al, 2004). The model reconstruction process is an iterative process 
where the model is improved iteratively until the agreement with experiments is good.  

2.2. History of yeast genome-scale modeling 
During the last 10 years the yeast genome-scale metabolic network has been updated 
and improved leading to several large-scale reconstructions of the metabolism. The 
history and impact of genome-scale metabolic modeling of yeast is described in 
Paper I. An updated and comprehensive genome-scale model of yeast metabolism 
called iTO977 is presented in Paper II.  

The first genome-scale metabolic model for Saccharomyces cerevisiae was also the 
first metabolic network reconstruction for an Eukaryotic organism (Forster et al, 
2003). The model was named iFF708 where FF stands for the authors, Förster and 
Famili, and 708 is the number of genes included in the model. After the first 
reconstruction was made several updated versions followed which were all based on 
iFF708. Table 1 shows the different yeast GEMs published to date including number 
of compartments, reactions, metabolites and genes. 

Table 1 – Genome-scale metabolic models for yeast 
Name Scope Comps Rxns Mets Genes Reference 
iFF708 First genome-scale model 3 1145 825 708 (Forster et al, 2003) 
iND750 8 compartments 8 1149 646 750 (Duarte et al, 2004) 
iLL672 Model reduction 3 1038 636 672 (Kuepfer et al, 2005) 
iMH805/775 Transcript. Regulation 8 1149 646 775 (Herrgård et al, 2006) 
iIN800 Lipid metabolism 3 1446 1013 800 (Nookaew et al, 2008) 
iMM904 Applied metabolome 8 1577 1228 904 (Mo et al, 2009) 
Yeast 1.0 Consensus network 15 1761 1168 888 (Herrgard et al, 2008) 
Yeast 4 Updated consensus GEM 16 1865 1398 932 (Dobson et al, 2010) 
Yeast 5 Updated consensus GEM 16 2110 1655 918 (Heavner et al, 2012) 
iTO977 Comprehensive 4 1566 1353 977 (Österlund et al, 2013) 
Yeast 7 Updated fatty acid 

metabolism 
16 1882 1454 901 (Aung et al, 2013) 

Footnote: Yeast 2, Yeast 3 and Yeast 6 are intermediate versions of the yeast consensus model and were released 
online at http://www.comp-sys-bio.org/yeastnet/ 

However, the many different versions of the yeast model lead to a problem. The 
models differed in scope, in the way they were constructed, and they also had different 
naming of metabolites which made comparison and merging of different models 
problematic. To solve this several groups was meeting for a yeast metabolism 
jamboree in Manchester 2008 to construct a consensus yeast metabolic network. The 
yeast consensus network is called Yeast 1.0 and was also introducing a standard for 
naming and annotation of metabolites using e.g. ChEBI identifiers (Degtyarenko et al, 
2008) and InChI codes (Coles et al, 2005). The Yeast 1.0 network was not a GEM 
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ready for simulations due to missing information about reversibility of some reactions 
and missing biomass equations. Therefore it was further updated and yeast 4 was a 
GEM that also worked for simulations. Yeast 5 and 7 are updated versions of the 
yeast 4 model, and iTO977 is based on Yeast 1.0 and the iIN800 model.  

After the first yeast genome-scale model was reconstructed it was started to be applied 
for modeling yeast cells for different purposes. In Paper I we have divided the use of 
yeast GEMs into four different application categories which will be described more in 
detail in this section.  Figure 4 shows the cumulative number of publications that uses 
yeast genome-scale modeling between years 2003-2010. Several publications have 
showed the successful use of genome-scale metabolic modeling to suggest strategies 
for strain improvement in metabolic engineering (application category 1). Cases where 
the product yield has been improved as a result of metabolic modeling include for 
example ethanol production (Bro et al, 2006), succinic acid production (Agren et al, 
2013b), vanillin production (Brochado et al, 2010) and sesquiterpene production 
(Asadollahi et al, 2009).  

Figure 4 The cumulative number of publications applying yeast genome-scale 
modeling in each of the four different application categories between 2003-2010. Data 
from Österlund et al. (2012). 

The second category uses GEMs as a tool for biological interpretation and discovery. 
The reporter metabolite algorithm (Patil & Nielsen, 2005) allows integration of 
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transciptome data from microarray or RNA sequencing experiments into the metabolic 
network to identify metabolites around which the most significant transcriptional 
changes occur. Several studies have used data integration in order to investigate how 
different perturbations to the cell (for example gene knockout or over-expression) 
influence the metabolism (Cimini et al, 2009; Papini et al, 2010).  

The third category includes using yeast models for testing new computational methods 
and the fourth category uses yeast models to study evolution, e.g. function of gene 
duplication (Kuepfer et al, 2005) or gene evolution from bacteria to yeast (Mahadevan 
& Lovley, 2008). 

2.3. iTO977 – an updated model of yeast metabolism 

The iTO977 genome-scale metabolic model was constructed using the consensus 
network (Yeast 1.0) and the iIN800 model as starting points to make a draft metabolic 
network. The aim of the model was to construct a more comprehensive description of 
the yeast metabolism that also suits well for simulations. The iTO977 model is 
presented in Paper II. Figure 5A shows the relationships between the different yeast 
models and the construction of iTO977. 
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Figure 5 – (A) Pedigree showing the relationship between some of the yeast models. 
ITO977 was based on the consensus network and the iIN800 model. (B) The venn 
diagram shows the overlap of genes included in iTO977 and the Yeast 5 model. 

Information about reversibility was added to some of the reactions in the Yeast 1.0 
network during the reconstruction process. New reactions and pathways were added to 
the draft network after merging the two starting-point reconstructions in order to get a 
comprehensive description of the yeast metabolism. Gap filling and quality control 
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steps were implemented using the RAVEN toolbox (Agren et al, 2013a). Further, the 
simulation capabilities of the model was ensured both by checking that the model was 
functional, i.e. able to produce all metabolites and grow on different substrates when 
running in silico simulations, and by comparing simulations to experimental data.  

A summary of the number of genes, metabolites and reactions of the iTO977 model 
compared to other yeast models is present in Table 1 on page 9. Figure 5B shows a 
comparison in terms of number of genes between the iTO977 model and the Yeast 5 
model (Heavner et al, 2012). The iTO977 model includes 104 additional ORFs and 
many of the genes included in iTO977 but not in Yeast 5 belongs to newly added 
reactions and pathways, e.g. the biosynthesis of lipid-linked oligosaccharides (Burda 
& Aebi, 1999) and glycosylphosphaditylinositol (GPI) biosynthesis (Grimme et al, 
2001). These two example pathways included in the model will make it easier to 
merge the metabolism model with the model of protein secretion (Feizi et al, 2013) 
which is presented in section 4.2. 

Another difference between the iTO977 model and the Yeast 5 model is the number of 
compartments represented in the model. The iTO977 model has 4 compartments, 
namely cytoplasm, mitochondria, peroxisome and extracellular space, while the 
Yeast 5 model includes 15 different compartments. One advantage with including 
fewer compartments in the model is that the connectivity is improved without the need 
of including transport reactions, and the complexity of the model is reduced. This will 
improve the simulation capabilities of the model. Also, the four compartments 
included in the iTO977 model are the compartments with the highest confidence of 
localization of the enzymes in the Saccharomyces genome database (SGD) (Cherry et 
al, 2012).  

 
Figure 6 – Comparison of simulated growth rate (x-axis) and experimental growth 
rate (y-axis). Simulations and experiments were carried out under 4 different 
conditions, nitrogen and carbon limitation and aerobic and anaerobic growth 
conditions.  
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The iTO977 model was validated in two different ways when it comes to simulations. 
The first validation was the ability of the model to predict the growth rate in different 
conditions. Figure 6 shows the experimental and simulated growth rate under four 
different conditions.  

Experimental data was taken from chemostat cultures where the metabolism is in 
steady-state and the cells are controlled to grow with the same rate – the dilution rate. 
Data was collected from chemostats with different dilution rates and under four 
different conditions: carbon limited aerobic (Bakker et al, 2000; Gombert et al, 2001; 
Jewett et al, 2013; Overkamp et al, 2000; Vemuri et al, 2007), nitrogen limited aerobic 
(Aon & Cortassa, 2001; Tai et al, 2007; Usaite et al, 2006; Vemuri et al, 2007)  carbon 
limited anaerobic (Nissen et al, 1997; Tai et al, 2007) and nitrogen limited anaerobic 
(Lidén et al, 1995; Tai et al, 2005). The growth rate was maximized as an objective 
function for the simulations and the experimentally measured values for glucose 
uptake rate, ammonium uptake rate and oxygen uptake rate was used to constrain the 
model according to each experiment.  

The second type of validation that was performed was the ability of the model to 
predict viability, i.e. growth of single and double gene knock-outs. Figure 7 shows the 
result of the gene deletion analysis.  

2%
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Figure 7 – Performance of prediction of viability of single and double gene knockouts 
using the iTO977 model. The simulated growth phenotypes were compared to 
experimental growth phenotypes. (A) Single gene knock-outs, minimal media. (B) 
Single gene knock-outs, rich YPD media. (C) Double gene knock-outs, rich YPD 
media. 

In this analysis we compared the growth phenotype or fitness for simulated knock-outs 
with experimental values for single gene knock-outs (Cherry et al, 2012; Förster et al, 
2003; Mo et al, 2009) and double gene knock-outs (Costanzo et al, 2010). The gene 
deletion was simulated by constraining the flux of all reactions associated with the 
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deleted gene to zero. The mutation was considered as lethal if the growth rate was 
reduced with 10% or more as compared with the wild type growth rate. The 
simulations were performed both in a simulated minimal media allowing only uptake 
of glucose, ammonium, phosphate, sulfate and oxygen and in a simulated rich YPD 
media where also amino acid uptake and nucleotide uptake was allowed.   
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3. Condition-specific regulation of yeast metabolism 
 

False predictions using genome-scale metabolic models can be due to missing 
information about regulation in the models, i.e. the models assume that all enzymes are 
present at all times, in sufficient amounts to catalyze the reactions. In this chapter 
different types of regulation is discussed, and different methods for integrating 
regulation into genome-scale metabolic models are presented. Further, two examples 
are presented where transcriptional regulation in yeast is investigated under different 
growth conditions (Paper II and Paper III).  

3.1. Regulation of metabolism 
Understanding how the cell regulates different processes and especially metabolism is 
important for understanding most biological systems. However, understanding 
regulation is complicated, and regulation gets more complicated with increased 
complexity of the organism. Here different types of regulation and different ways to 
model regulation are presented. 

3.1.1.  Different types of regulation 
Regulation of enzyme activity in yeast and other Eukaryotes can occur at many 
different levels in the cell. Here are three examples: 

a) Transcriptional regulation: i.e. transcription factors that regulate the 
transcription of a gene. DNA-binding transcription factors can recognize and 
bind to specific sequence motifs, so called transcription factor binding sites, 
which can be located upstream of the coding sequence (Alberts et al, 2007).  
When the transcription factor is bound to the transcription factor binding site it 
can either activate or repress the transcription of the gene by interacting with 
for example the RNA polymerase complex (Hahn & Young, 2011).  
 

b) Post-translational modifications:  Signaling pathways can include e.g. 
phosphorylation (post-translational modifications) of a protein in order to 
activate it. Ubiquitination is another type of post-translational modification 
where a small protein, ubiquitin, is attached to the protein to regulate its 
activity. Acetylation is a reversible process where an acetyl group is attached to 
the protein. Examples of proteins that can be acetylated are histones and 
tubulines (Jensen, 2006). Performing post-translational modifications is 
generally a faster way for the cell to regulate the activity of enzymes and 
proteins than by transcriptional regulation. 
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c) Enzyme level regulation: Experimental assays can be set up to measure 

enzyme kinetics for a specific enzyme. Often one can simplify the kinetics of 
enzyme-catalyzed reactions with irreversible Michaelis Menten kinetics where 
the enzyme activity is dependent of the substrate concentration and the enzyme 
concentration according to Equation 7: 

𝑣 = 𝑣𝑚𝑎𝑥
[𝑆]

𝐾𝑚+[𝑆]
.   (7) 

Different isoenzymes can have different Km and vmax values. The rate vmax is the 
maximum reaction rate, i.e. when all enzymes are saturated with substrate. The 
constant Km corresponds to the substrate concentration that gives the reaction 
rate equal to vmax/2. The kinetic parameters vmax and Km  can be measured 
experimentally for the enzyme of interest by having a known amount of enzyme 
and substrate, and then measure the product at different time points 
(Stephanopoulos et al, 1998). 

In this chapter the focus is mainly on transcriptional regulation. 

3.1.2.  Modeling regulation of metabolism 
Different approaches have been taken to integrate transcriptional regulation into yeast 
metabolism. Table 2 shows different methods for integrating regulation into genome-
scale metabolic models in order to improve the prediction power of the simulations. 
Most of the methods implement the transcriptional regulatory network as Boolean 
rules. 

Table 2 – Methods for integrating regulation into genome-scale metabolic models 
Name Reference Scope 
Regulatory FBA (rFBA) Covert et al. (2001) Constrain reactions in FBA simulations (Boolean rules) 
Genetically-constrained 
metabolic flux analysis 

Cox et al. (2005) Constrain reactions in FBA simulations (Boolean rules) 

R-matrix Gianchandani et al. 
(2006) 

Constrain reactions in FBA simulations (Boolean rules) 

Steady-state rFBA (SR-
FBA) 

Shlomi et al.(2007) Constrain reactions in FBA simulations using MILP 

Integrated dynamic FBA 
(idFBA) 

Lee et al. (2008) signaling, regulation and metabolism 

Integrated FBA (iFBA) Covert et al. (2008) signaling, regulation and metabolism 

E-flux Colijn et al. (2009) constrain reactions directly from OMICS data (no 
transcriptional regulatory network is needed) 

GeneForce Barua et al. (2010) correct too stringent Boolean regulatory rules 

Probabilistic Regulation 
of Metabolism (PROM) 

Chandrasekaran & 
Price (2010) 

Constrain reactions in FBA simulations using 
probabilistic rules (not Boolean) 

TIGER Jensen et al. (2011) Constrain reactions in FBA simulations using MILP, 
correct too stringent Boolean regulatory rules 
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In addition to these methods which tries to predict the state of the transcriptional 
regulatory network and integrate it to existing genome-scale metabolic models there 
are also several methods that uses high-throughput information from transcriptomics, 
metabolomics and proteomics studies and use this data in the network reconstruction 
process in order to construct context-specific models. These methods have for example 
been used successfully to predict tissue-specific models of human metabolism using a 
generic human metabolic network as a starting point (Agren et al, 2012; Becker & 
Palsson, 2008; Jensen & Papin, 2011; Shlomi et al, 2008; Yizhak et al, 2010). 

The Boolean modeling approach, applied in rFBA and other methods, model each TF 
as either on or off (1 or 0) depending on environmental factors, for example 
extracellular metabolites that can be either present or absent, or on the state of other 
TFs (Covert et al, 2001). The formulation of the rFBA problem where the regulation is 
implemented as Boolean rules is stated in Equation 8. 

Maximize cTv  

Subject to  

– Sinv=0   (8) 

– 𝑣𝑖𝑚𝑖𝑛𝑦𝑖 ≤ 𝑣𝑖 ≤ 𝑣𝑖𝑚𝑎𝑥𝑦𝑖  

yi ∈ {0,1 

yi=f(Xext,TF) 

 

Figure 8 shows how the solution space is reduced when introducing regulatory 
constraints. The regulatory network can be reconstructed based on ChIP-chip 
experiments (Iyer et al, 2001; Lieb et al, 2001; Ren et al, 2000) that reveal TF-DNA 
interactions. For yeast there are several sources of TF-DNA interaction data available 
(Harbison et al, 2004; Lee et al, 2002; Teixeira et al, 2006).  

 

Figure 8 – Concept drawing of regulatory FBA (rFBA), which uses regulatory rules 
as additional constraints to the FBA simulation in order to reduce the space of 
possible steady-state solutions and improve the prediction power of the model. The 
white hypercone in this figure represents the solution space (space of feasible 
solutions) and the shaded area represents the solution space after introducing 
regulatory constraints. 
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The rFBA framework has been implemented both for E. coli (Covert et al, 2004) and 
S. cerevisiae (Herrgård et al, 2006) where the Boolean rules were constructed from a 
large number of publications and from TF-DNA interactions from ChIP-chip 
experiments.  

One problem with the representation of the TF regulation as Boolean is that it is 
simplifying the transcription of a gene to be either 0 or 1, which is not always the case. 
Another observation is that introduction of Boolean constraints to the reactions in the 
FBA simulations can be too conservative and lead to unfeasible solutions, i.e. the 
model will predict growth if a reaction is modeled as off, but the cell should still be 
able to grow according to experiments. (Jensen et al, 2011). To come around these 
problems Chandrasekaran & Price (2010) developed the Probabilistic Regulation Of 
Metabolism (PROM) framework where the probability of TF binding for a TF-target 
gene pair is estimated from a large number of microarray experiments. Instead of 
having a value of the TF regulation of either 0 or 1 the probability of TF binding is 
continuous between 0 and 1. The method requires setting a threshold value in the 
microarray experiments saying if a gene is expressed or not.  

3.2. Identification of transcriptionally controlled reactions using 
random sampling 

The response of metabolism to different perturbations, e.g. gene deletions or change of 
environmental conditions may occur at different levels in the cell. As an example we 
have a reaction v1 which converts metabolite A to metabolite B:  

𝐴 
 𝑣1  �� 𝐵  (9) 

The reaction in Equation 9 is catalyzed by enzyme X. Assume that we can measure the 
change in transcription of enzyme X between condition 1 and condition 2 and also 
measure the change in flux of the reaction (v1) between the two conditions. We then 
have the following possible scenarios: 

a) The expression of enzyme X changes significantly between condition 1 and 
condition 2, and the flux v1 changes significantly in the same direction (i.e. up-
regulated or down-regulated) between the two conditions. We say that the 
reaction is transcriptionally controlled. 

b) The expression of enzyme X change significantly, but the flux of the reaction 
does not change 

c) There is no significant change in expression, but the flux of the reaction change 
significantly between the two conditions. 

In scenario b and c the metabolic flux might be post-translationally controlled and 
metabolically controlled, respectively.  

In metabolic engineering suitable over-expression targets (enzymes) should increase 
the flux of a reaction and direct the flux towards a desired product. Therefore it is good 
to find reactions of type a) above where the flux of the reaction can be increased by 
over-expressing the enzyme (transcriptionally controlled reactions).  
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Bordel et al. (2010) introduced a method for identification of these transcriptionally 
controlled reactions by comparing measured change in transcription with estimated 
intracellular fluxes using random sampling of the solution space. In paper II we used 
this algorithm (Bordel et al, 2010) together with high-throughput data from different 
conditions in order to find transcriptionally changed reactions in the iTO977 genome-
scale metabolic model. 

The workflow followed the following pattern: 

• Transcriptome data (microarrays) from 24 independent chemostat cultivations 
were collected from a previous study (Jewett et al, 2013). The cells were grown 
in a controlled environment under aerobic, anaerobic, carbon limited and 
nitrogen limited conditions. 

• The data was analyzed and genes that were regulated as a function of aerobic 
vs. anaerobic conditions and N-limited vs. C-limited conditions were identified. 

• Extracellular flux measurements (Jewett et al, 2013) was used to constrain the 
iTO977 model to represent the four different conditions, aerobic, anaerobic, N-
limited and C-limited. The CO2 production rate was not constrained.  

• Random sampling of the solution space gives a mean and standard deviation of 
the flux for each reaction in each condition. The change in flux of a reaction can 
be estimated between conditions and compared to the change in expression of 
the enzymes catalyzing that reaction. 

• Transcriptionally controlled reactions are identified, i.e. reactions where flux 
and transcription change in the same direction. 

Transcriptionally controlled reactions were determined for the aerobic-anaerobic and 
C-limited vs. N-limited comparisons and the results are shown in Figure 9. To test if 
the transcriptionally controlled reactions had any common regulators we performed a 
hypergeometric test where overrepresented TF regulations were identified among the 
significantly changed genes (adjusted p-value <0.05). The results for the 
hypergeometric test are presented in Table 3.  

Table 3 – Over-represented transcription factors in the different comparisons 
Comparison TF Hypergeometric p-value 
Anaerobic - Aerobic (C-limited) Opi1p 0.0009 
 Pip2p 0.0168 
 Gis2p 0.0278 
   
Anaerobic - Aerobic (N-limited) Opi1p 0.0215 
   
C-limited - N-limited (Anaerobic) Opi1p 0.0070 
   
C-limited - N-limited (Aerobic) Yap7p 0.0018 
 Opi1p 0.0021 
 Dal80p 0.0153 
 Dig1p 0.0290 
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Figure 9 – Transcriptionally controlled reactions in iTO977 identified by the random 
sampling algorithm in four different comparisons. Red color means that the reaction is 
up-regulated in both flux and transcription, blue color means that the reaction is 
down-regulated in both flux and transcription. 
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The transcription factor Opi1p is a negative regulator of phospholipid metabolism and 
it was overrepresented in all four comparisons, which indicates that phospholipid 
metabolism is significantly changed both in flux and in transcription of the involved 
enzymes in all four comparisons. In Figure 9 there are three reactions that are reported 
as transcriptionally controlled in all four comparisons, namely Phosphofructokinase 
(PFK1), Phosphoglycerate mutase (GPM1) and Pyruvate kinase (CDC19). These 
reactions are all glycolytic reactions and the glycolysis is shown in detail in Figure 10. 
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Figure 10  - Transcriptionally controlled reactions in the glycolysis/gluconeogenesis 
pathway (left) and in the ergosterol pathway (right). 

Since the data comes from chemostat experiments the growth rate of the cells is 
controlled to be the dilution rate 0.05 h-1. In batch experiments the aerobic cells would 
probably grow faster than the anaerobic cells, since aerobic growth (respiration) is 
more energetically efficient. In a chemostat when the growth rate is constrained, the 
anaerobic cells instead have to take up more glucose in order to be able to grow with 
the same speed as the aerobic cells and the glycolytic activity is higher. Figure 10 
shows that at least four steps in the glycolysis seems to be transcriptionally controlled 
and these reactions are upregulated both in flux and transcription of the enzymes when 
comparing anaerobic to aerobic conditions which is explained by a higher glycolytic 
activity in the anaerobic cells compared to the aerobic. 
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Similarly, the cells take up more glucose in N-limited conditions (glucose excess 
conditions) than in C-limited (glucose limited) conditions since there is more glucose 
available, and the glycolytic activity is higher. Several of the reactions in the 
Ergosterol pathway (the conversion of Acetyl-CoA to Ergosterol) seem also to be 
transcriptionally regulated, which is shown in the right part of Figure 10. 

3.3. Controllability of yeast Transcriptional Regulatory Network 
Transcriptional regulation is condition dependent where transcription factors (TFs) can 
respond to environmental cues and regulate the transcription of their target genes. The 
transcriptional regulatory network can be interconnected, meaning that TFs can form 
complexes with other TFs or regulate the transcription of other TFs. In Paper III we 
investigate the topology and organization of the yeast transcriptional regulatory 
network (TRN) by investigating the controllability of the network.  

3.3.1 Network Controllability  
The concept of network controllability originates from control theory and was 
introduced for real complex networks by Liu et al (2011). A dynamic system can be 
formulated as 

𝑑𝒙(𝑡)
𝑑𝑡

= 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡)   (10) 

where the vector x(t) represents the n internal variables of the system and u(t) are the 
m inputs to the system. A is a n x n matrix and B is a n x m matrix with coefficients. 
The controllability of the system is defined by the controllability matrix  
C = (B, AB, A2B,…,An-1B). The whole system can be controlled given the input vector 
u(t)if and only if the controllability matrix has full rank, that is rank(C) = n. 

How large part of the network that can be controlled given the input vector u(t) can be 
determined from the “maximum matching” graph, which is the longest non-
overlapping path in the graph. In the example in Figure 11 we only need to control one 
input node in the left graph to control the whole system since node A is controlling 
node B and node B is controlling node C. In the right graph we need to control two 
nodes to be able to control the whole system, i.e. the nodes A, B and C should be able 
to reach any state based on the input to the system. 

A

B C

A

B C

nD=2

u(t) u1(t)

u2(t)

nD=1  

Figure 11 – Network controllability for two small systems. In the left graph we can 
control the whole system by controlling only one input node (driver node). In the right 
graph we need two driver nodes to control the whole system.  
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The concept of controllability is taken from electrical engineering and automatic 
control theory and adapted to biological systems. Even if a biological system cannot be 
controlled in the same exact way as an electrical system the controllability analysis can 
be a useful tool to reveal topological structures and motifs in the control of the 
network.  

3.3.2 Controllability analysis reveals circular control motifs 
To study the topology and organization of the yeast transcriptional regulatory network 
(TRN) we applied controllability analysis to investigate how large part of the network 
that can be controlled when one transcription factor (TF) is controlled as input. If we 
also can identify TFs that respond to the environment we can investigate how large 
part of the network that can be controlled if we control the TFs responding to an 
environmental cue and in that way create a condition-specific transcriptional 
regulatory network.  

The TRNs used in this study were constructed using different ChIP-chip and ChIP-seq 
(Barski et al, 2007; Robertson et al, 2007) datasets as a starting point. For yeast TF-
DNA interactions were defined either by the Harbison et al. dataset (Harbison et al, 
2004) with two different probabilities for TF binding (p<0.001 and p<0.005) and from 
the Yeastract database (Teixeira et al, 2006) where both direct evidence of TF binding 
from ChIP-chip experiments and indirect evidence (i.e. change in transcription of the 
target gene in a microarray experiment where the TF is deleted) were included. The 
TRNs were constructed to contain only TF-TF interactions, i.e. non-TF genes were 
filtered out. 

The controllability analysis for the yeast TRN revealed information about the topology 
and structure of the regulatory network. For the Yeastract network it is possible to 
control 78 % of the network just by controlling one TF as input. The large 
controllability in this network is due to a big internal loop where the TFs control each 
other in a circular manner. This internal loop is referred to as a circular control motif 
(CCM). For the two Harbison networks analyzed we also find CCMs but they are 
smaller. For the p<0.005 network we can control maximum 36 % of the network by 
controlling one input node and for the p<0.001 the maximum controllability is 19 %. 
To see if this internal loop structure is specific for yeast we also performed the 
analysis for some other TRNs for other organisms. The results of this analysis are 
presented in Table 4. For the E.coli network (Gama-Castro et al, 2011) we don’t find 
any CCMs and the maximum controllability when controlling one node is 6 %. For the 
human and mouse networks (Lachmann et al, 2010; Zambelli et al, 2012) we find 
internal loops and a large part of the network can be controlled just by one input to the 
system. 
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Table 4 – Networks and maximum controllability when controlling one input node  

Network Number 
of TFs 

TF-TF 
interactions 

Average 
degree 

Maximum 
controllability 

S.cerevisiae Yeastract 182 1824 18.28 78 % 
S.cerevisiae Harbison (p<0.001) 102 231 7.26 19 % 
S.cerevisiae Harbison (p<0.005) 102 391 8.67 36 % 
E.coli Regulon DB 139 196 3.36 6 % 
M.musculus Chea v.1 51 547 18.43 98 % 
M.musculus Chea v.2 133 3125 34.99 92 % 
H.sapiens Chea v.1 33 103 6.06 64 % 
H.sapiens Chea v.2 97 1322 23.08 87 % 
H.sapiens Cscan 126 3930 26.46 46 % 
 

Figure 12 shows the network structure of two S. cerevisiae regulatory networks (A and 
B) and one E. coli regulatory network (C). The green nodes show the TFs that belong 
to the internal loop (CCM). 

Studying the three different yeast TRNs it seems like the maximum controllability of a 
network might be a function of the amount of information included in the network, or 
the average number of neighbors in the graph (average degree). The Harbison 0.001 
network is the most conservative in terms of what to consider as a TF binding event, 
and it has also the lowest controllability of the three yeast networks (19 %). The 
Yeastract network is the least conservative in terms of what to consider as TF binding, 
it has the highest average degree and it also has the highest controllability (78 %). In 
order to test if the controllability is a function of the average degree of the network we 
simulated random networks (Erdős & Renyi, 1961) and scale-free networks (Barabási 
& Albert, 1999) with different average degrees. The result of this analysis is plotted in 
Figure 13. For the simulated scale-free networks the maximum controllability of the 
network increases slightly with increased average degree, but it never exceeds 29 % 
for the networks simulated here. In contrast, the simulated random networks have a 
higher controllability and when the average degree is 8 or higher we can almost 
control 100 % of the network by only controlling one input node. This suggests that 
the high controllability for real networks might also be a consequence of more 
randomness in the organization of the networks. Based on the controllability analysis it 
seems like the E.coli network behaves more as a perfect scale-free network, the yeast 
networks behaves somehow in between a scale-free and random network and the 
behavior of the yeast and human networks are more random.  
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Figure 12 – Controllability of transcriptional regulatory networks (TRNs) when 
controlling only one input node (one driver node). The green nodes represents the 
circular control motif (CCM), an internal loop in the network where all nodes in the 
CCM can be controlled just by controlling one input node. (A) S.cerevisiae yeastract 
network (B) S.cerevisiae Harbison network with p<0.001 (C) E.coli Regulon DB 
network. 
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Figure 13 – Maximum controllability for real and simulated networks as a function of 
the average degree of the network <k>. 

To investigate if the networks are scale-free or not it is possible to plot the degree 
distribution on a log-log scale and fit a power law distribution to the points. If the 
network is scale-free the degree distribution should follow a power law distribution, 
i.e. P(k) ~ k-α where k is the degree of a node and α is a parameter that normally have a 
value between 2 and 3 for a scale free network (Barabási & Albert, 1999). Figure 14 
shows that the S. cerevisiae Harbison network and the E. coli network show most 
scale-free behavior (i.e. the fit of the power law distribution is reasonable). The 
Yeastract network is not scale free since the number of nodes with low degree, e.g. 1, 
2 and 3 is less than expected for a scale free network. The graphs in Figure 14 show 
that the networks for mouse and human are not scale-free since the fit of the power law 
distribution is poor.  

For the S. cerevisiae networks we have three networks with different average degree 
(and different confidence in the included TF-DNA interactions). For these networks 
the controllability increases with increasing degree, suggesting that if we increase the 
average degree for the yeast networks the network behaves more random. 

Study transcriptional regulation in human and mouse might be problematic due to 
increased complexity and also incomplete transcriptional regulatory networks. For 
example there are around 1400 DNA binding transcription factors in the human 
genome (Vaquerizas et al, 2009), but the TF regulatory networks constructed from 
ChIP-seq involves maximum 97  transcription factors. 
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Figure 14 – Degree distribution plots on log-log scale for different networks. The red 
line and the formula represent the fitted power law distribution and the R2-value 
represents how good the fit is.   
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3.3.3 Yeast transcription factors responding to environment 
Yeast transcriptional regulation is condition specific. In order to investigate the 
condition-specific transcriptional response in yeast we investigated gene expression 
profiles from 233 chemostat experiments where the environment has been controlled. 
The gene expression for each gene was modeled with an ANOVA model including the 
environmental factors described in Table 5. 

Table 5 – Environmental factors  
Factor  Levels  
Oxygen availability  Aerobic, Anaerobic  
Nutrient limitation Carbon, Nitrogen, Zinc, Iron, Phosphorus, Sulfur  
Dilution rate  0.02, 0.03, 0.05, 0.1, 0.2, 0.25  
Carbon source  Glucose, Ethanol, Acetate, Maltose, Galactose  
Extra compound  None, Acetate, Benzoate, Propionate, Sorbate, Formate, 

CO2, Ethanol  
 

In order to find transcription factors that are affected by a specific environmental cue 
we did the following: 

1) Identify TFs whose target genes in the TRN change in expression between 
different conditions  

2) Identify TFs who does not change in expression between different conditions  
3) Find TFs in the iMH805/775 Boolean rules collected from primary literature 

that are reported to be affected by extracellular cues (Herrgård et al, 2006). 

 

In order to test if the target genes of a transcription factor are changed in expression as 
a function of a specific environmental cue a hyper-geometric test was performed for 
each transcription factor and each environmental factor. The idea is to test if the 
number significantly changed genes among the genes regulated by that transcription 
factor (the target genes) is over-represented among all significantly changed genes.  
The comparison of the hypergeometric test p-value and the adjusted ANOVA p-value 
for the transcription factor itself is presented for the different environmental factors in 
Figure 15.  

The results from the hyper-geometric test for the factors oxygen availability, nutrient 
limitation and dilution rate are presented in Figure 16. 
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Figure 15 – Transcription factors affected by environmental cues. The x-axis shows 
the p-value from the hyper-geometric test for the target genes and the y-axis shows the 
adjusted p-value for the transcription factor gene itself. The TFs marked with filled 
circles have a hyper-geometric p-value for the target genes < 0.05 and an adj. p-value 
for the TF gene > 0.8. 
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Figure 16 – Hypergeometric test – red color corresponds to up-regulation of the 
target genes and green color corresponds to down-regulation of the target genes. 
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4. Systems biology for protein production 
Proteins are part of the building blocks of the cell and they carry important cellular 
functions, e.g. enzymatic activity, signaling, immune response etc. Many 
pharmaceutical proteins and industrial enzymes, including insulin and amylase,  are 
produced by engineered production host cells (Demain & Vaishnav, 2009; Walsh, 
2010). When choosing the host organism for recombinant protein production it is 
important to consider properties of the secretory pathway in the production organism. 
Bacteria can be used for production of small simple proteins, but for production of 
proteins that requires complex post-translational modifications and proteins with many 
disulfide bonds a Eukaryotic production system is a better choice (Graf et al, 2009). 
Figure 17 shows an overview of the secretion pathway in yeast. If a newly translated 
protein has a signal peptide (SP) it will be recognized by the signal recognition particle 
(SRP) and translocated into the Endoplasmic reticulum. The protein will be folded and 
pass many steps of post-translational modification and sorting on the way to its final 
localization. Understanding the protein secretion pathway and its regulation can help 
engineering of recombinant protein production in yeast for improved protein 
production. (Hou et al, 2012) 
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Figure 17 – A schematic picture of the protein secretory machinery in yeast. Unfolded 
proteins enter the Endoplasmic reticulum (ER) where it is folded, glycosylated etc. 
Misfolded proteins can be degraded using for example the ER-associated degradation 
(ERAD) pathway. Otherwise it is vesiculated and transported to Golgi for further 
modifications and sorting. Depending on the localization of the protein it might be 
transported to other compartments, or be secreted.  
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In this chapter application of systems biology to study recombinant protein production 
in yeast is illustrated by several examples. First, it is shown that yeast can produce 
higher levels of recombinant α-amylase under anaerobic conditions than under aerobic 
cultivations, and the response of metabolism to protein secretion under anaerobic and 
aerobic conditions is investigated using integrated analysis (Paper IV). Further the 
framework for genome-scale modeling is used to reconstruct a detailed model of the 
protein secretion machinery in yeast, including classification of the different 
components of the secretory pathway into different subsystems (Paper V). Last but 
not least a model of the secretory machinery in Aspergillus oryzae is built based on the 
secretion model for yeast, and data from fermentations and transcriptome experiments 
is used for integrative analysis (Paper VI). 

4.1. Anaerobic α-amylase production in yeast 
In paper IV we investigate recombinant α-amylase production in Saccharomyces 
cerevisiae under aerobic and anaerobic conditions (Liu et al, 2013). Most of the 
studies investigating recombinant protein production have been performed under 
aerobic conditions. The protein folding occurs in the endoplasmic reticulum and might 
require the formation of a disulfide (S-S) bridge.  

R-SH + HS-R
𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛
�⎯⎯⎯⎯⎯�  R-S-S-R + 2 H+ +  2 𝑒−   (11) 

This process (Equation 11) is an enzymatic redox reaction and requires electron 
transfer to an electron acceptor (Sevier & Kaiser, 2002). In S. cerevisiae it is known 
that electrons are transferred to oxygen under aerobic conditions forming reactive 
oxygen species (ROS) (Nguyen et al, 2011; Tu et al, 2000). For amylase production 
under aerobic conditions it has been reported that the oxygen uptake rate and ATP 
consumption rate is 2-fold higher than in the wild type, suggesting that this is due to 
increased oxidation in connection with electron transfer from the ER (Tyo et al, 2012). 
However, under anaerobic conditions the final electron acceptor is unknown. This 
study focuses on studying the global response to protein production under anaerobic 
conditions compared to aerobic in order to understand the mechanisms for anaerobic 
protein folding and secretion.  

The two yeast strains used in this study are the AAC strain (α-amylase producing 
strain) and the NC strain (negative control strain). The AAC strain was constructed by 
transforming the starting strain CEN.PK530-1C with a plasmid containing the α-
amylase gene under control of the TPI1 promoter and TPI1 terminator. The plasmid 
also contains a copy of the POT1 gene from Schizosaccharomyces pombe. The starting 
strain has a TPI1 deletion which makes it unable to grow on glucose and grows slowly 
on other carbon sources. The S. pombe POT1 gene encodes for the same function as 
TPI1 which requires that the cell expresses the vector in order to grow (Liu et al, 
2012). The NC strain was constructed by transforming the starting strain with an 
empty plasmid.  

The two strains AAC and NC were grown under aerobic and anaerobic conditions and 
the levels of α-amylase were measured. Figure 18 shows the protein yield of α-
amylase production under aerobic and anaerobic conditions. The α-amylase production 
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in the AAC strain was around 3-fold higher under anaerobic conditions than aerobic. 
We therefore looked into anaerobic protein production compared to aerobic, trying to 
find mechanisms that can explain why anaerobic cultivations produced more α-
amylase than aerobic cultivations. In order to do this we performed microarray 
experiments to measure gene expression in the two strains under the two different 
conditions.  

 
Figure 18- The yield of α-amylase production under aerobic and anaerobic 
cultivations. 

When comparing anaerobic to aerobic conditions 2427 genes were significantly 
changed in transcription (adjusted p-value < 0.05) for the AAC strain and 2638 genes 
were significantly changed for the NC strain. To specifically look into the metabolism 
and to reduce the dimensionality of the data we used the reporter metabolite algorithm 
(Patil & Nielsen, 2005).  

 

Figure 19 – Significant reporter metabolites when comparing anaerobic to aerobic 
conditions for the AAC strain and NC strain respectively.  

Aerobic
Anaerobic
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The algorithm uses the metabolic network structure from the metabolic model 
described in chapter 1.1 to identify key metabolites in the network, i.e. metabolites 
where the neighboring genes change transcriptionally between the two conditions 
compared. Figure 19 shows the results of the reporter metabolite analysis.  

The metabolites fumarate and oxygen in the cytoplasm and ubiquinol and 
FAD/FADH2 in the mitochondria all appear as significant anaerobic-aerobic reporter 
metabolites for both strains. However all these are more significant (have a lower 
reporter p-value) in the amylase producing AAC strain than in the NC strain which 
means that the genes involved in the metabolism around these metabolites are more 
significantly changed (up- or down-regulated) in the AAC strain than in the NC strain 
when comparing anaerobic to aerobic conditions. Looking specifically at the 
anaerobic- aerobic response in the AAC strain we find a number of significantly 
regulated genes connected to these metabolites (Table 6). 

Table 6 – Significantly changed neighboring genes (adj. p-value < 0.05) for 
selected reporter metabolites when comparing anaerobic – aerobic cultivations in 
the AAC strain 
Reporter 
metabolite Gene Description Direction Log fold 

change 
Adjusted 
p-value 

Fumarate FRD1 Fumarate reductase ↑ 1.86842 1.32E-12 
 OSM1 Fumarate reductase ↑ 0.29533 8.54E-03 
 FUM1 Fumarase ↓ -1.25366 2.33E-09 
 SFC1 Mitochondrial succinate-

fumarate transporter 
↓ -0.33579 2.49E-04 

      
FAD/FADH2 FAD1 FAD synthesis ↑ 0.20803 5.75E-03 
 ERV2 Disulfide bond formation ↑ 0.58947 3.00E-07 
 SDH3 Succinate dehydrogenase ↓ -1.10214 1.41E-07 
 FLX1 FAD transporter ↓ -0.30566 2.13E-04 
      
Ubiquinol/  URA1 Pyrimidine synthesis ↓ -0.30293 3.82E-03 
Ubiquinone COQ1 Ubiquinone synthesis ↓ -0.61828 3.76E-07 
 COQ2 Ubiquinone synthesis ↓ -0.28939 5.58E-03 
 COQ4 Ubiquinone synthesis ↑ 0.18317 8.39E-03 
 COQ6 Ubiquinone synthesis ↑ 0.46284 1.13E-05 
 COQ9 Ubiquinone synthesis ↑ 0.57733 3.09E-05 
 

Based on this analysis, together with the macroscopic flux analysis, we proposed a 
model for the electron transfer from disulfide bond formation in the ER under 
anaerobic conditions which is presented in Figure 20. The protein Pdi1p is responsible 
for disulfide bond formation in the ER and can under aerobic conditions transfer two 
electrons per disulfide bond from thiol substrates to oxygen via Ero1p or Erv2p (Gross 
et al, 2006). Under anaerobic conditions there is no oxygen available to take care of 
the two electrons produced in Equation 7. Instead it can be transferred to free FAD in 
the ER forming FADH2 and the FADH2 can then be transported over the ER 
membrane.  
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Figure 20 – Model for electron transfer from disulfide bond formation in the ER with 
fumarate as the final electron acceptor in the cytoplasm. Orange lines indicate 
possible electron transfer routes/redox reactions. Dashed lines indicate alternative 
electron transfer routes. Red ellipses indicate enzymes that are transcriptionally up-
regulated in anaerobic conditions compared to aerobic. Green ellipse means down-
regulated in anaerobic conditions.  

The cytosolic FADH2 can then be oxidized in the cytosol by the reaction catalyzed by 
Frd1p converting fumarate to succinate. Fumarate could also be transported into 
mitochondrion and there be converted to succinate and at the same time oxidize 
FADH2 to FAD. The hypothesis that fumarate is working as an electron acceptor under 
anaerobic conditions was tested experimentally by adding fumarate to the growth 
medium when cultivating the cells in aerobic and anaerobic conditions (Figure 21). 

 

Figure 21 – Specific growth rate under aerobic and anaerobic conditions for the two 
strains NC and AAC and for the AAC strain under addition of fumarate.  

AnaerobicAerobic
AnaerobicAerobic
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The AAC strain (amylase producing strain) grows slower than the NC (control) strain 
since increased protein production might increase the stress in ER and oxidative stress. 
The results in Figure 21 show that the growth of the AAC strain was partly restored 
due to addition of fumarate to the media, especially under anaerobic conditions. This 
results strengthen the hypothesis that fumarate might act as an important player in 
connection with anaerobic protein folding and might work as the final electron 
acceptor for anaerobic disulfide bond formation. 

In summary, in paper IV we used microarrays as a tool to study gene expression in 
aerobic and anaerobic conditions. The data was integrated into the metabolic model 
using the reporter metabolite algorithm. Based on the results from transcriptome and 
fermentation experiments we suggest that fumarate act as the final electron acceptor 
from disulfide bond formation under anaerobic conditions.  

 

4.2. A genome-scale model of protein secretion in yeast 
The secretory pathway is an important pathway in Eukaryotic cells and is responsible 
for post-translational modifications (PTMs) and protein sorting etc. (Schekman, 2010). 
Figure 17 on page 31 shows an overview of the secretory pathway in yeast. In 
paper V we used a systems biology approach to model the protein secretion 
machinery in Saccharomyces cerevisiae. The idea of the reconstruction is to get a 
systemic view of the protein secretion network as well as capturing the protein specific 
functions of the protein secretion. Depending on the sequence and properties of the 
clients to the secretory machinery they may take different routes in the secretory 
pathway. The protein secretory model has the following features: 

1. Annotation of 162 protein components and 1 RNA component in terms of 
function in the protein secretion machinery. The 163 secretory machinery 
components are divided into 16 subsystems and 8 different compartments. The 
processes are represented by pseudo-chemical reactions, so called template 
reactions.  

2. Classification of 1197 client proteins based on their secretory features, 
including localization and PTMs. The client proteins can belong to one of 185 
theoretical secretory classes where each class contains a specific combination of 
PTMs, sorting and transport steps processed by the 163 components of the 
secretory machinery.  

3. An algorithm for simulating protein secretion in yeast based on the protein-
specific information matrix (PSIM) which is constructed from the template 
reactions and the secretory features.  

4. Possibility for future connection of the protein secretion model with other 
systems in the cell, e.g. the metabolic network due to cofactors and metabolites 
included in the model. 

The model is illustrated in Figure 22 where all the different routes a client protein can 
take are illustrated by arrows. The 16 different subsystems of the model are presented 
in Table 7. Different client proteins that enter the secretory machinery through the 
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translocation pathway (S1) will pass through different combinations of these 
subsystems. 

 

Figure 22 – Representation of the genome-scale model of protein secretion in yeast. 
The different subsystems denoted S1-S16 are explained in Table 7.  

Table 7 - Subsystems in the protein secretion model 
Subsystem Name Number of machinery proteins 
S1 Translocation 18 
S2 Dolichol pathway 15 
S3 ER glycosylation 15 
S4 Protein folding 10 
S5 GPI biosynthesis 20 
S6 GPI transfer 0 
S7 ERADC 3 
S8 ERADL 14 
S9 ERADM 0 
S10 COPII 22 
S11 COPI 10 
S12 Golgi processing 11 
S13 Low density secretory vesicle (LDSV) 9 
S14 High density secretory vesicle (HDSV) 1 
S15 CPY pathway 10 
S16 ALP pathway 5 
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Which subsystems that will process the client protein is decided by 7 different 
secretory features which are all contained in one way or another in the protein 
sequence (Table 8). The secretory features for each protein were extracted from three 
different databases: Uniprot (Bairoch et al, 2005), SGD (Weng et al, 2003) and KEGG 
(Kanehisa et al, 2006). 
 

Table 8 – Type of protein specific information used to generate the PSIM 
Secretory feature Values 
Signal peptide Yes, No 
Number of N-linked glycosylation sites 0,1,2,3… 
Number of O-linked glycosylation sites 0,1,2,3… 
Number of disulfide bonds 0,1,2,3… 
Localization ER, Cell membrane, Vacuole, Golgi, Extracellular 
GPI anchoring* Yes, No 
Number of transmembrane domains* 0,1,2,3… 
* For membrane proteins only 

After extracting the secretory features for each protein we could construct the protein 
specific information matrix (PSIM) which has dimensions 5882x7 where each row 
represents a yeast protein and each column represents one secretory feature reported in 
Table 8. The PSIM can be used to group the yeast proteins into secretory classes where 
each class has a specific combination of the secretory features.  
 

4.3. Modeling α-amylase production in Aspergillus oryzae 
 
Aspergillus oryzae, or Koji mold, is a species of filamentous fungus that is used for 
food and Asian beverage production from soy beans and rice (Knuf & Nielsen, 2012). 
The high secretion capabilities of this organism makes it suitable as a host for protein 
production and it has been used to express heterologous proteins (Lubertozzi & 
Keasling, 2009; Ward, 2012). In paper VI we investigate α-amylase production in 
A. oryzae by combining large-scale gene expression analysis with modeling for three 
different amylase producing A. oryzae strains grown in batch cultivations. The three 
strains CF1.1, CF32 and A16 were constructed in different ways by transforming 
different plasmids containing the TAKA-amylase gene and different promoters. The 
wild type A1560 strain can also produce amylase, but by engineering the strain we 
could make it produce higher amounts. 

Figure 23 shows the physiological parameters for the α-amylase production under 
batch cultivations. The CF32 strain has the highest amylase production but slow 
growth rate, and hence a relatively low productivity. The A16 strain has a high 
amylase yield and relatively high growth rate, and therefore the highest productivity. If 
we can investigate the global response to amylase production and understand why the 
CF32 strain grows slower than the other strains we might be able to engineer the CF32 
strain in order to achieve an even higher productivity.  
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Figure 23 – Growth and amylase production for the three amylase producing strains 
and the wild type A1560 strain in batch cultivations. A) Specific growth rate (h-1) 
B) Maximum amylase production (mg/L) C) Yield of α-amylase at the point of 
maximum biomass (mg/g DCW) D) α-amylase productivity at the point in C 
(mg/gDCW/h). 

We studied the transcriptional response to α-amylase production using microarrays. 
1709 genes changed in transcription (adj. p-value <0.05) when comparing the CF32 to 
the wild type A1560 strain. For the A16-A1560 comparison 1222 genes were 
identified as significantly changed and 655 genes for the CF1.1-A1560 comparison. 

We performed reporter GO-term analysis (Oliveira et al, 2008) in order to reduce the 
dimensions of the data and obtained an overview of which pathways or processes that 
are changed between the amylase producing strains and the wild type strain. Figure 24 
shows the results of the reporter GO-term analysis. Gene ontology terms 
(www.geneontology.org) are bioinformatic classifications of genes into processes and 
functions (Ashburner et al, 2000). 7699 of the genes in Aspergillus Genome Database 
(AspGD) has been classified into one or more GO-terms (Arnaud et al, 2012). The 
GO-terms with up-regulated genes (the red cluster in Figure 24) are mainly GO-terms 
related to protein secretion, indicating that up-regulation of components involved in 
the protein secretion machinery (PTMs, protein folding, trafficking etc.) plays an 
important role for improved production of α-amylase. This made us interested in 
investigating the protein secretion machinery of A. oryzae more in detail. 

The protein secretion machinery model for A. oryzae was constructed based on the 
yeast secretion model described in the previous section and in Paper V.  First we 
indentified homologs between the A. oryzae proteome and the 163 components of the 
yeast secretory machinery. A. oryzae has almost twice as many protein coding genes as 
S. cerevisiae, and based on this we would also expect the number of proteins involved 
in the protein secretion machinery to be larger. However, the A. oryzae genome is less 
studied than the S. cerevisiae genome and many of the genes in A. oryzae have 
unknown function. Also, if we do pairwise bidirectional blast comparisons between 
the two genomes we will only find maximum one homolog for each protein in the 
yeast secretory machinery. If we instead assume that A. oryzae should have a higher 
number of inparalogs, i.e. genes with similar functions due to gene duplications, we 
can use the OrthoMCL database (Chen et al, 2006) which consists of gene families and 
also includes the inparalogs. The list of A.oryzae components was further extended 
using PSI-blast best hits and genes with secretory function reported in (Wang et al, 
2010). 
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Figure 24 – Reporter GO-terms for the three amylase producing strains compared to 
the wild type A1560 strain. Red color indicates that the genes belonging to the GO-
term are up-regulated and blue color indicates that the GO-term genes are down-
regulated. An asterisk means that the reporter p-value is less than 0.0001. 

To define the client proteins of the A. oryzae secretory machinery we used the 
signalP 4.0 algorithm (Petersen et al, 2011) to predict the proteins with a signal 
peptide. The algorithm predicts 1107 proteins with a signal peptide and most of the 
cleavage sites for the signal peptides are predicted to be located 17-25 amino acids 
from the N-terminal.  Based on the information retrieved we could simulate the 
secretory machinery for A. oryzae. 
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5. Summary and perspectives 
Biological network reconstructions have been presented for S.cerevisiae and A. oryzae 
in this thesis, including the metabolic network, transcriptional regulatory network and 
protein secretion network. In order to understand the biological systems from a holistic 
view we need comprehensive descriptions of the biological systems. The biological 
network reconstructions can be used to model the cell and to integrate high-throughput 
data using the network structure in order to analyze the data in a context-specific 
manner.  

The genome-scale metabolic model presented here (iTO977) is larger in scope and 
more comprehensive than previous models and allows both simulation of the whole 
system and serves as a knowledge base for annotation of reactions and pathways, 
which can be used for integrative analysis. 

One disadvantage with the FBA modeling framework is that information about 
regulation is missing in the model formulation. False predictions using genome-scale 
metabolic models can therefore be due to missing information about regulation. 
Attempts have been done to integrate the regulatory network into the FBA modeling 
framework for S. cerevisiae and E.coli and the aim is to be able to make more accurate 
predictions of the metabolic fluxes. 

Here we used controllability analysis to unravel topological properties and hierarchical 
structures of the transcriptional regulatory network, and the analysis shows that the 
S. cerevisiae transcriptional regulatory network contains circular control motifs where 
the transcription factors can control each other in a circular fashion, in a big internal 
loop. For the E. coli transcriptional regulatory network we don’t see this pattern. 
Because of the topology and structure of the yeast transcriptional regulatory network it 
might be very hard to predict how a metabolic flux will change after certain 
perturbations, due to redundancy and overlap in the transcriptional regulatory network. 
This analysis points to the fact that regulation is complex and need to be studied more 
in detail in order to be able to make accurate predictions using modeling approaches. 

Recently the first whole-cell in silico model for an organism was published, namely 
for the small bacteria Mycoplasma genitalium (Karr et al, 2012). The whole-cell model 
describes the cellular processes divided into 28 submodels which each describe one 
biological process, e.g. metabolism, transcription and translation etc.  M. genitalium 
contains only 525 genes. The model was reconstructed by examining several hundreds 
of publications and investigating many high-throughput datasets. We are still far from 
being able to reconstruct a whole cell model for S. cerevisiae due to many reasons, e.g. 
much higher complexity and many more genes and components. 

The long term goal and extension of the work presented in this thesis would be to 
connect the biological network reconstructions and be able to model the whole system 
together. This is not a very easy task and requires an advanced modeling framework 
that also can take different time scales of the different processes into account. 
Furthermore, these networks could be combined with other models, for example with a 
description of cell cycle regulation and behavior in order to try to come a step closer to 
a model that can describe the whole cell.   
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