
Thesis for the Degree of Licentiate of Engineering

Pure Type Systems with an
Internalized Parametricity

Theorem

Guilhem Moulin

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden 2013

Pure Type Systems with an Internalized Parametricity Theorem
Guilhem Moulin

© 2013 Guilhem Moulin

Technical Report 109L
ISSN 1652-876X
Department of Computer Science and Engineering
Programming Logic Research Group

Chalmers University of Technology

SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Göteborg, Sweden 2013

Abstract

Parametricity results have recently been proved for dependently-typed
calculi such as the Calculus of Constructions. However these results
are meta theorems, and although they can be stated as internal propo-
sitions, they cannot be proved internally. In this thesis we define for any
sufficiently strong Pure Type System O (such as the Calculus of Con-
structions) an extension P in which each instance of the parametricity
theorem, including those corresponding to open terms, can be proved
internally. As a consequence we can prove inside the system that each
term of type ∀A.A → A is an identity. Furthermore, our system P
is proved to be strongly normalizing by a reduction-preserving inter-
pretation into O. We also prove Church-Rosser and Subject Reduction
properties; consistency follows.

Keywords: Polymorphism, Parametricity, Type structure, Lambda Cal-
culus.

- iii -

The present thesis is an extended version of the paper A com-
putational interpretation of parametricity which appeared in the
Proceedings of LICS 2012 [Bernardy and Moulin, 2012].

Contents

Proofs for free 5
1.1 Pure type systems . 5
1.2 Logical relations, from PTS to PTS 7

Towards internalizing parametricity 11
2.1 Aim and example . 11
2.2 Internalization . 13
2.3 Parametricity of parametricity 15
2.4 A syntax for hypercubes . 17
2.5 The interpretation of hypercubes 19
2.6 Exchanging dimensions . 21
2.7 Dimension checks . 24

A calculus with an internal parametricity theorem 25
3.1 Definitions . 25
3.2 Properties of the Parametric Interpretation 30
3.3 Confluence . 32
3.4 Abstraction . 36
3.5 Subject Reduction . 38
3.6 Reduction-preserving model into the underlying PTS . . . 39

Bibliography 46

Appendix: Additional proofs 47

- v -

Acknowledgements

I would like to show my gratitude to my supervisors Peter Dybjer and
Jean-Philippe Bernardy for their patience and extremely valuable guid-
ance along the way. Jean-Philippe deserves a special mention since
his intuition is to a large extend what gave birth to this work and to
our publications in the LICS 2012 and ICFP 2013 proceedings. Many
thanks also to Peter for his tireless readings and numerous corrections
and other improvements on this thesis.

I am also grateful to Thorsten Altenkirch to have accepted the role of
discussion leader for my defense, and to my fellow members of the
Proglog research group for the insightful weekly seminars. Thanks to
my teachers André Hirschowitz and Yves Bertot for their trust which
made my moving to Sweden possible.

Thanks also to my colleagues and students, who make the department
such a nice place to work at. Thanks to my officemates and friends Si-
mon Huber, Bassel Mannaa and Anders Mörtberg for the good time and
political discussions that will probably never come to an end. Finally,
thanks to Nils Anders Danielsson to have kindly lent me the unicycle I
am now riding daily, on the way to work.

- vii -

Introduction

Parametricity, as formally stated by Reynolds [1983], expresses that
polymorphic functions must behave uniformly. This is done by inter-
preting a type A as a relation JAK : A → A → ? such that JAK a a for
every a : A. In other words this result, known as the abstraction the-
orem, says that every type gives a theorem which holds for any of its
inhabitants.
The study of parametricity, starting with Reynolds’ work, is typically
semantic: originally the abstraction theorem was proved for types of
system F, and the concern was to construct a model capturing its poly-
morphic character. Later Mairson [1991], followed by Abadi et al.
[1993], developed a more syntactic approach: types were interpreted in
another calculus (of proofs and propositions), and for each proof term,
they showed how to construct a proof term inhabiting the relational
interpretation of its types.
Bernardy et al. [2010], Bernardy and Lasson [2011] have more recently
shown how to extend the relational interpretation to some dependent
type theories, such as the Calculus of Constructions [Coquand and
Huet, 1986] or Martin-Löf’s Intuitionistic Type Theory [1984]. They also
show how terms, types and their relational interpretations as proofs
and propositions can all be expressed in the same calculus.
For instance, in the Calculus of Constructions, the interpretation of any
f : ∀x : A. A → A gives that it must be an identity, in other words that
x is Leibniz-equal to f A x for each x : A:

∀A : ?. ∀x : A. x ≡A f A x (1)

where the Leibniz equality x ≡A y is defined (for A : ? and x, y : A) as
∀P : (A→ ?). P x→ P y.

The notion of parametricity, in particular the abstraction theorem, is
used in numerous applications when reasoning about functional pro-
grams [Wadler, 1989], for instance to prove the correctness of short-
cut fusion [Gill et al., 1993, Johann, 2002]. Relying on parametricity

- 1 -

conditions is also required when using Church-encoding to represent
datatypes [Plotkin and Abadi, 1993].
Parametricity theorems have also been used for richer calculi, e.g., the
Calculus of Inductive Constructions [Pfenning and Paulin-Mohring,
1990, Keller and Lasson, 2012], for instance to prove the correctness
of well-scoped representations of λ-terms [Chlipala, 2008, Pouillard,
2011]. Indeed, an informal justification of the fact that all inhabitants
of the following inductive definition (here in Agda syntax, and due to
Pouillard [2011]) are well-scoped lies in the fact that the index V is ab-
stract, hence the only way to introduce new variables is by abstraction.

data Term (V : ?) : ? where
var : V → TermV
app : TermV → TermV → TermV
abs : Term (MaybeV)→ TermV

However, the parametricity property, i.e., the fact that every term satis-
fies the parametric interpretation of its type, has not been known to be
provable in the system in which the type is expressed. In particular, the
following property cannot be proved in the Calculus of Constructions
or Martin-Löf’s Intuitionistic Type Theory, hence cannot be proved ei-
ther in existing proof assistants based on these systems, such as Coq

[The Coq development team, 2013] or Agda [Norell, 2007].

f : ∀(A : ?). A→ A
A : ?
x : A

f A x ≡A x

(Were ≡ stands for the Leibnitz equality.)

On the other hand, one may notice that the parametricity condition
associated with the polymorphic identity is the missing assumption to
prove this property.
In fact, users relying on the parametricity conditions have postulated
the parametricity axiom [Pouillard, 2011, Chlipala, 2008, Atkey et al.,
2009]. However, this approach has a fundamental drawback: because
the postulate does not have a computational interpretation, parametric-
ity conditions can only be used in computationally-irrelevant positions.
Also, Wadler [2007] has shown that, given extensionality, induction
schemes associated with datatypes can be deduced directly from their
Church-encoding. However, to conveniently program with these en-
codings one needs to use the parametricity conditions in computa-
tionally relevant positions. For instance the natural numbers can be

- 2 -

encoded in the Calculus of Constructions as the polymorphic type
N ::= ∀X : ?. X → (X → X) → X, since any inhabitant n of this
type cannot inspect the parameter X. The free theorem associated with
any such Church Numeral n : N is:

∀X : ?. ∀P : (X → ?).
∀z : X. P z→
∀s : X → X. (∀y : X. P (s y))→
P (n z s)

which, in extensional theories, can be used to derive the usual induction
principle for n : N [Wadler, 2007]:

∀P : (N→ ?). (∀m : N. P (succm))→ P n

Related work

This thesis being an extended version of [Bernardy and Moulin, 2012], it
does not reflect the state of the art on Internalized Parametricity. Several
related papers have been written since our paper was published in the
2012 LICS Proceedings; we briefly present a few of them below:

Keller and Lasson [2012] extended Relational Parametricity to the
Calculus of Inductive Constructions (CIC). They added a new, non-
informative, sort hierarchy inhabited by the codomain of parametric
relations, which forbids nested application of parametricity. They also
prove the Abstraction Theorem for CIC, and provide a Coq tactic for
constructing proof terms by parametricity.

Bernardy and Moulin [2013] developed an alternative presentation
of the calculus presented in this thesis, in which hypercubes are kept
implicit and their dimensions (called colors) are named; the ability to ab-
stract over dimensions removes the need for some of the technicalities
we developed earlier in [Bernardy and Moulin, 2012]. In addition, an
erasure operator reveals some structural invariants, hence some defini-
tions and proofs may be omitted as they become trivial. In fact, the
latter paper was an attempt to make the calculus presented here easier
to use as a programming language.

Krishnaswami and Dreyer [2013] built a parametric model of the Ex-
tensional Calculus of Constructions. They focus on soundness prop-
erties and show how to derive equality results (such as some com-

- 3 -

mon postulates on Church-encoded data) from parametricity condi-
tions. However, the fact that parametricity is modelled in an extensional
theory makes it impractical to use their model to build a programming
language.

Atkey et al. [2014] describe parametric models of predicative and im-
predicative Dependent Type Theories in reflexive graphs, which are in
turn seen as Categories with Families. In the impredicative case, they
how to take advantage of parametricity to derive the existence of initial
algebras for all indexed functors.

Outline

After recalling previous work by Bernardy et al. [2010] in chapter 1, we
show in chapter 2 how to extend any strong enough Pure Type Sys-
tem O (such as the Calculus of Constructions) with new rules, includ-
ing a Parametricity Rule, which all have a computational content. More
specifically, we describe a new system and show how to adapt the pre-
vious result in order to achieve internalization. In the latter subsections,
we expose some of the technical problems encountered, and the solu-
tions we found, namely the introduction of hypercubes. In chapter 3
we give a formal presentation of our calculus, and state and prove im-
portant meta-properties of our system. In particular, we prove that all
instances of the abstraction theorem can be both expressed and proved
in the calculus itself. Finally, by defining a reduction-preserving inter-
pretation from our system to the underlying PTS O in section 3.6, we
show how to derive desired meta properties properties such as Church-
Rosser and Strong Normalization.

- 4 -

Proofs for free

This chapter is a reminder and synthesis of previous work by Bernardy
et al. [2010] and Bernardy and Lasson [2011], which the present work
is largely based on.

1.1 Pure type systems

Pure Type Systems (PTSs) are a family of λ-calculi, parameterized by a
set of sorts S , a set of axioms A ⊆ S × S and set of rules R ⊆ S × S ×
S . The various syntactic forms of quantifications (and corresponding
abstraction and application) are syntactically unified, and one needs to
inspect sorts to identify which form is meant. The axioms A give the
typing rules for sorts, and R determines which forms of quantification
exist in the system. Many systems (e.g., the Calculus of Constructions
or System F) are examples of PTSs.
The syntax of PTS terms is the following:

Term 3 A, . . . , U = s sort
| x variable
| A B application
| λx : A. B abstraction
| ∀x : A. B product

The product ∀x : A. B may also be written A → B when x does not oc-
cur free in B. In the rest of this document we assume a given PTS speci-
fication (S ,A,R), and we name the calculus arising from that specifica-
tion O. In particular, a suitable O is the Calculus of Constructions, the
typing rules of which can be expressed in a PTS fashion by choosing
the following specification:

S = {?,�}
A = {(?,�)}
R = {(?, ?, ?), (?,�,�), (�, ?, ?), (�,�,�), }

- 5 -

(s1, s2) ∈ A` s1 : s2

Axiom

Γ ` A : B Γ ` C : s
Γ, x : C ` A : B

Weakening

Γ ` F : (∀x : A. B) Γ ` a : A
Γ ` F a : B[a/x]

Application

Γ, x : A ` b : B Γ ` (∀x : A. B) : s
Γ ` (λx : A. b) : (∀x : A. B)

Abstraction

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (∀x : A. B) : s3

Product (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : s B =β B′

Γ ` A : B′

Conversion

Γ ` A : s
Γ, x : A ` x : A

Start

Figure 1: Typing rules of the Pure Type System specified by (S ,A,R)

- 6 -

1.2 Logical relations, from PTS to PTS

In this section we recall the relational interpretation of terms and types
of the PTS O into another PTS, here called JOK, following the construc-
tion of [Bernardy et al., 2010, Bernardy and Lasson, 2011].
In any PTS, types and terms in O can respectively be interpreted in JOK
as predicates and proofs that the terms satisfy the predicates. Each type
can be interpreted as a predicate that its inhabitants satisfy; and each
term can be turned into a proof that it satisfies the predicate of its type.
Usual presentations of parametricity use binary relations, but for sim-
plicity of notation we present here a unary version. The generalization
to arbitrary arity is straightforward, as shown by Bernardy and Lasson
[2011].
In the following we define what it means for a term C to satisfy the
predicate generated by a type T (which we write C ∈ JTK); and the
translation from a program C of type T to a proof JCK that C satisfies
the predicate.
More precisely, we define (Def. 4) two mutually recursive functions
T 7→ JTK and T 7→ (· ∈ JTK), by induction on the structure of the
raw term T. These interpretations respectively take terms and types
in O, and return proofs and propositions in JOK. Let (S ,A,R) be the
specifications of the PTS O; then those of JOK are

S ′ = S
A′ = A
R′ = {(s1, s2, s2) | (s1, s2, s3) ∈ R} ∪R (2)

Before we formally define the interpretation, let us begin by stating
the abstraction theorem for O and JOK: Any well-typed term of O is
interpreted as a proof that it satisfies the parametricity condition of its
type [Bernardy and Lasson, 2011].

Theorem 1 (Abstraction). If Γ `O A : B : s, then

JΓK `JOK JAK : ({A} ∈ JBK) : s

(Where {A} is A in which each free variable y in Γ is renamed to y0 in the
extended context JΓK, defined below.)
Furthermore, if O is consistent, for instance if O is the Calculus of Construc-
tions, then so is JOK [Bernardy and Lasson, 2011].

A property of the translation J·K is that whenever x : A is free in T,
there are two variables x0 and x1 in JTK, where x1 witnesses that x0

- 7 -

satisfies the parametricity condition of its type (x1 : x0 ∈ JAK). This
means that the translation needs to be extended to contexts, as follows:

JεK = ε

JΓ, x : AK = JΓK, x0 : {A}, x1 : x0 ∈ JAK

It is important to notice that this definition assumes a global renaming
from each variable x to fresh variables x0 and x1. (The renaming will
be made local in further chapters.)
A raw term T in O is syntactically translated, by mutual induction on
its structure, to both a proof term JTK in JOK, and to a predicate C 7→
(C ∈ JTK). We separate these two interpretations in the presentation
below.

• The translation of a variable is done by looking up the corre-
sponding parametric witness in the context.

JxK = x1

• The case for abstraction adds a witness that the input satisfies
the relational interpretation of its type and returns the relational
interpretation of the body.

Jλx : A. BK = λx0 : {A}. λx1 : x0 ∈ JAK. JBK

• The application follows the same pattern: the function is passed
a witness that the argument satisfies the interpretation of its type.

JA BK = JAK {B} JBK

• If the term has another syntactic form, namely a product or a
sort, then it is a type (T). Thus we can use λ-abstraction to create
a predicate and check that the abstracted variable z satisfies the
relational interpretation of the type in the body (z ∈ JTK).

JsK = λz : s. z→ s
J∀x : A. BK = λz : (∀x0 : {A}. {B}).

λx0 : {A}. λx1 : x0 ∈ JAK.
(z x) ∈ JBK

We now need to define the proposition C ∈ JTK which, as it can be seen
in Thm. 1, is the type of JCK for any well-typed C : T.

- 8 -

• Because types in a PTS are abstract, no predicate can discriminate
between them, hence any predicate over a type C can be used to
witness that C satisfies the relational interpretation of its sort s.

C ∈ JsK = C → s

• If the type is a product (∀x : A. B), then C must be a function, and
it satisfies the relational interpretation of its type if and only if it
maps satisfying inputs to satisfying outputs.

C ∈ J∀x : A. BK = ∀x0 : {A}. ∀x1 : x0 ∈ JAK. (C x0) ∈ JBK

• For any other syntactic form for a type T, namely a variable, an
application or a lambda, C ∈ JTK is defined using the interpreta-
tion J·K given above: C ∈ JTK = JTK {C}.

C ∈ JxK = x1 {C}
C ∈ JA BK = JAK {B} JBK {C}

C ∈ Jλx : A. BK = λx1 : {C} ∈ JAK. JBK

A direct reading of Thm. 1 is as a typing judgment about translated
terms: if A has type B, then JAK has type {A} ∈ JBK. However, it can
also be understood as an abstraction theorem for O: if a program A
has type B in Γ, then A satisfies the relational interpretation of its type
({A} ∈ JBK). Remember that {A} is merely the term A, but using vari-
ables in JΓK instead of Γ. In particular, if A is closed then {A} = A. If
we were to study binary parametricity, JΓK would contain two related
environments (and witnesses that they are properly related). Therefore
A would have two possible interpretations {A}, each obtained by pick-
ing variables out of each copy of the environment, and JAK would be a
proof that the two possible interpretations of A are related.

One can show by induction on raw terms that whenever C : T : s, we
have:

JTK : {T} → s C ∈ JTK =β JTK {C} : s {C} : {T}

One may wonder why we mutually define two interpretations, since
instead one could be defined from the other using the above equality.
The advantage of the distinction, as described by Bernardy and Lasson
[2011], is that it makes derivations in JOK follow the same structure

- 9 -

as those in O. Indeed, if we were using the same interpretation both
for types and terms, derivations in JOK would be cluttered by extra
uses of the conversion rule, as it was earlier presented by Bernardy
et al. [2010]. Furthermore, preserving cuts makes the congruence of
our model (Lem. 16) trivial.

In general the PTS JOK, where parametricity conditions are expressed,
extends the source system O. However, for rich enough systems, such
as the calculus of constructions, they can be identical [Bernardy et al.,
2010, Bernardy and Lasson, 2011]. Indeed, the PTS specifications are
then closed under the parametric interpretation, presented at the be-
ginning of this section. We now show how to extend such a system O
to a new calculus P with internalized parametricity.

- 10 -

Towards internalizing
parametricity

In this chapter we describe and motivate our system step by step, start-
ing from a Pure Type System (such as the Calculus of Constructions)
and extending it with our new constructions. In this chapter we gradu-
ally motivate and informally describe the system we envision. The full
specification of our calculus can be found in definitions 3 to 8.

2.1 Aim and example

Let us assume a PTS Q satisfying equation (2) (i.e., Q = JQK), such as
the Calculus of Constructions. This means that both types and their
parametricity conditions can be expressed in Q, one can hope that for
every term A of type B, we can get a witness JAK that it is parametric
({A} ∈ JBK). Even though this holds for closed terms, it is not so for
open terms, because the context where JAK is meaningful is “bigger”
than that where A is: for each free variable x : A in Γ, we need a
variable x1 : x ∈ JAK in JΓK. In other words, given Γ `Q A : B we
have JΓK `Q JAK : {A} ∈ JBK. However if we are to use this judgment
inside a proof or a program, we are bound to the context encountered,
hence we cannot extend it with explicit parametric witnesses for each
free variable.
What we really want is to derive each free theorem rather than pos-
tulating the precise instances, and to be able to rely on parametricity
conditions in the same context. Therefore, we need the following judg-
ment to be valid:

Γ `Q JAK : A ∈ JBK.

The aim of this work is to find a system P such that the following
proposition is verified.

- 11 -

Proposition 1 (Internal Parametricity). If Γ `P A : B, then

Γ `P JAK : A ∈ JBK

That is, the free theorem associated with each inhabited type B can be proved
in the system P itself, regardless of whether B is closed or not.

In that case, for any term A, terms of P can invoke the fact that A
is parametric, by writing JAK. The notations JAK and A ∈ JBK for
P will be defined later in this section, following and extending their
homonyms in O.
Such a system would allow a full internalization of Reynold’s abstrac-
tion theorem seen in the introduction, in the sense that variables and
implication no longer need to be expressed at the meta-level:

Example 1. Assume that P extends the Calculus of Constructions. Let us
consider the following instance of Internal Parametricity:

Γ ::= f : (∀a : ?. a→ a), a : ?, x : a A ::= f B ::= ∀a : ?. a→ a

Then applying internal parametricity gives:

f : (∀a : ?. a→ a), a : ?, x : a `P f : ∀a : ?. a→ a =⇒
f : (∀a : ?. a→ a), a : ?, x : a `P J f K : ∀a : ?. ∀P : a→ ?.

∀x : a. P x→
P (f a x)

We are thus able to prove that any function of type ∀a : ?. a→ a is an identity,
as we hinted at in the introduction. The formulation of the theorem within P
and its proof term are as follows.

identities : ∀ f : (∀a : ?. a→ a). ∀a : ?. ∀x : a. f a x ≡ x
identities = λ f . λa. λx. J f K a (· ≡ x) x (refl a x)

where the infix ≡ stands for Leibniz equality described in the introduction,
and for a : ? and x : a, (· ≡ x) denotes the predicate of terms Leibniz-equal to
x: (· ≡ x) ::= ∀y : a. y ≡ x; refl a x : x ≡ x is merely the identity function
λP : (∀x : a. ?). λp : P x. p
If identities is applied to a “concrete” identity function, such as f = λa :
?. λx : a. x, then f a x reduces to x, and the theorem specializes to reflexivity
of equality:

identities f : ∀a : ?. ∀x : a. x ≡ x
After reduction, the proof no longer mentions J·K:

identities i →β λa. λx. J f K[λa : ?. λx : a. x/ f] a (· ≡ x) x(refl a x)
= λa. λx. Jλa : ?. λx : a. xK a (· ≡ x) x(refl a x)
= λa. λx. (λa. λa1. λx. λx1. x1) a (· ≡ x) x(refl a x)
→β λa. λx. refl a x

- 12 -

(Where →β stands for the β reduction in P , which we will define below in
Def. 6.)

It is to be noted that when applying Thm. 1 instead of Internal Parametricity
to the above instance, the context Γ is extended to

f : (∀A : ?. A→ A), f1 : ∀A : ?. ∀P : A→ ?. ∀x : A. P x→ P (f A x),
A : ?, P : A→ ?,
x : A, p : P x

Hence in identities, one cannot rely on a parametricity witness for f with-
out asserting it. And in a proof assistant, free variables will only ever be
instantiated by λ-terms, which are known to be parametric by Thm. 1.
However Thm. 1 and internal parametricity coincide on closed instances (i.e.,
when Γ is the empty context).

2.2 Internalization

We will now give an overview of our system P . This system is obtained
by starting from a PTS O such that O = JOK, for instance the Calcu-
lus of Constructions, and adding several constructions. In the present
section we give motivations for the new constructions, and present the
precise syntax and inference rules of system P later in definitions 3 to 8.
We emphasize that the motivations given in this section are informal,
and consistency of the system and other fundamental properties are
proved later in sections 3.3 to 3.6.
We have seen that the abstraction theorem (Thm. 1) for PTSs gives us
something very close to internal parametricity, except that for each free
variable x : A in Γ, we need an explicit witness that x is parametric
(x1 : x ∈ JAK) in the environment.
However, we know that every closed term is parametric. Therefore,
ultimately, we know that for each possible concrete term a that can be
substituted for a free variable x, it is possible to construct a concrete
term JaK to substitute for x1. This means that the witness of parametric-
ity for x does not need to be given explicitly (if x is bound). Therefore
we allow to access such a witness via the new syntactic form ddxee. This
intuition justifies the addition of the substitution rule

ddxee[a/x] = JaK

as well as the following typing rule, expressing that if x is found in the
context, then it is valid to use ddxee, which witnesses that x satisfies the
parametricity condition of its type.

Γ ` A : s
Γ, x : A ` ddxee : x ∈ JAK

- 13 -

Note that because of this new construction dd·ee, the system P that we
are defining in this section is not a Pure Type System. However it
extends any PTS O such that O = JOK.
At the same time, we must amend the parametric interpretation to keep
track of which variables have been assigned an explicit witness, and
which variables must wait for a concrete term. For instance in Ex. 1,
only the bound variables of the identity f were assigned explicit wit-
nesses. The parametric witnesses of a free variable x is given by our
new syntactic construct ddxee, while that of a bound variable y is picked
directly from the context as y1. Hence we need to keep track of free
variables when defining the interpretation; we write the list of assign-
ments as an index to J·K, and extend A ∈ JBK to A ∈ JBKξ accordingly.
(From here on, we let JAK mean JAK∅.) For example, abstraction is
translated as follows:

Jλx : A. BKξ = λx0 : {A}ξ . λx1 : x0 ∈ JAKξ . JBKξ,x 7→(x0,x1)

and other cases are modified accordingly. In particular, the interpreta-
tion of variables becomes the following1.

JxKξ = x1 if x 7→ (x0, x1) ∈ ξ

JxKξ = ddxee if x /∈ ξ

and {·} is generalized in a similar fashion: {A}ξ is A where each free
variable in x ∈ ξ is replaced with x0, while variables that are not in ξ
remain untouched.

The difference of treatment between free and bound variables is illus-
trated in the following example:

x : A ` b : B =⇒ x : A ` JbK : b ∈ JBK
` λx : A. b : ∀x : A. B =⇒ ` λx0 : A. λx1 : x ∈ JAK. JbK{x} :

∀x0 : A. ∀x1 : x ∈ JAK. b ∈ JBK{x}

The above construction solves the issue of context extension. That is,
every term A of a PTS Q can be proved parametric by using JAK with-
out extending the context where A is typeable. Another aspect of the
result is that, assuming parametricity on variables, the parametricity for
all terms can be derived. This means that, in a language featuring para-
metricity, the parametric construction can be used on any term, but in
normal forms, dd·ee only appears on variables, possibly in a nested way.

1 – Careful readers might worry that we discard the index in the second case. An infor-
mal justification is that if x has no explicit witness, then the free variables of its type do
not either; thus types are preserved by this equation.

- 14 -

Unfortunately, internal parametricity does not quite hold at this stage,
after the mere extension of the original calculus with the constructor
dd·ee. Indeed, as we show in the next section, Subject Reduction does not
hold.

2.3 Parametricity of parametricity

Assuming that P has Internalized Parametricity (Prop. 1), the fact that
all values are parametric is also captured by the following theorem
(internalized inside the calculus):

parametricity : ∀a : ?. ∀x : a. x ∈ JaK
parametricity = λa : ?. λx : a. ddxee

Since all terms are assumed parametric, it should be possible to apply
J·K to the above term. For a closed type A : ?, consider the term

Jparametricity AK = λx0 : A. λx1 : x0 ∈ JAK. JddxeeK{x 7→(x0,x1)}

So far, we have not defined our meta-operation J·Kξ on the new con-
structor ddxee of our system P (where x is a free variable). A perhaps
natural idea is to exchange the two occurrences of the parametric inter-
pretation, by defining JddxeeKξ = JJxKξK. In our case, that leads to

JddxeeK{x 7→(x0,x1)} = JJxK{x 7→(x0,x1)}K = ddx1ee

which is a proper normal form. Unfortunately, this definition does not
preserve types (i.e., it breaks Subject Reduction). This can be checked
by assuming x : A, and by computing the types of the expression be-
fore and after reduction. Internal Parametricity gives ddxee : JAK x. By
Abstraction (giving an explicit parametric witness for x), we get

JddxeeK{x 7→(x0,x1)} : JJAK xK{x 7→(x0,x1)} {JxK}{x 7→(x0,x1)} (3)

: JJAKK{x 7→(x0,x1)} x0 JxK{x 7→(x0,x1)} ddx0ee
: JJAKKx0 JxK{x 7→(x0,x1)} ddx0ee
: JJAKKx0 x1 ddx0ee

On the other hand, by Abstraction we have JxK{x 7→(x0,x1)} : JAK x0, and
by application of Internal Parametricity, we obtain

JJxK{x 7→(x0,x1)}K = ddx1ee : JJAK x0K x1 (4)

: JJAKK x0 ddx0ee x1

- 15 -

That is, in the above example, the reduction rule suggested above has
the effect to swap the second and third arguments to JJAKK in the type,
which means that Subject Reduction would not hold if we were to have
the above, naive rule.
However, one observes that, for a closed type A, the relation JJAKK x is
symmetric: JJAKK x B C isomorphic to JJAKK x C B. Thus the swapping
observed above is harmless, and it is sufficient to deal with it in a tech-
nical fashion.

Example 2. For instance, the relation JJ(a : ?)→ a→ aKK f is symmetric
for any f . That is,

JJ(a : ?)→ a→ aKK f f1 f2 and JJ(a : ?)→ a→ aKK f f2 f1

are isomorphic for all f1, f2 of type J(a : ?)→ a→ aK f .
Indeed, JJ(a : ?)→ a→ aKK f f1 f2 expands to

∀a : ?. ∀P : a→ ?.
∀Q : a→ ?. ∀R : (x : a)→ P x→ Q x→ ?.

∀x : a. ∀p : Q x.
∀q : T x. ∀r : R x p q.

R (f a x) (f1 a P x p) (f2 a Q x q)

If ϕ : JJ(a : ?)→ a→ aKK f f1 f2, an inhabitant of

JJ(a : ?)→ a→ aKK f f2 f1

is given by swapping the abstractions of respectively P and Q, and p and q:

λa. λP. λQ. λR. λx. λp. λq. λr. ϕ a Q P (λx. λp. λq. R x q p) x q p r

In the light of this observation, we introduce a special-purpose operator
(pronounced exchange) · �π , which applies the given permutation π to
the arguments of relations, and which permutes their types in the same
way.

Γ ` A : B
Γ ` A �π : B �π

This rule generalizes the above example to open terms and types. In-
deed, when instantiated to Ex. 2, the new operator merely swaps the
abstractions:

` ϕ : JJ(a : ?)→ a→ aKK f f1 f2

` ϕ �(1,2) : JJ(a : ?)→ a→ aKK f f2 f1

Thanks to this operation we can now properly define the parametric
interpretation on the constructor J·K, in a way that preserves types. The

- 16 -

above situation now becomes:

JJxKK{x 7→(x0,x1)} = JJxK{x 7→(x0,x1)}K �
(1,2) .

However, supporting exchange (· �) requires deep changes in the syn-
tax, exposed in the next section.

2.4 A syntax for hypercubes

In order to support the swapping operation, we need to indicate the
role of each of the arguments to the relations explicitly, in the syntax.
To this end, we amend the abstract syntax, and introduce a new version
of application where arguments are tied together in a cubical structure.
For instance, the type of JJxKK{x 7→(x0,x1)}, which was written before as
JJAKK x0 x1 ddx0ee, is now written

JJAKK•
(

x0 x1
ddx0ee ·

)
.

that is, the 3 arguments of the relation JJAKK are tied together into
an (incomplete) 2 × 2 matrix. Its counterpart, corresponding to the
former JJAKK x0 ddx0ee x1, can now be obtained by merely transposing
the matrix:(

JJAKK•
(

x0 x1
ddx0ee ·

))
�(1,2) =β JJAKK•

(
x0 ddx0ee
x1 ·

)

One could understand hypercube application as a macro denoting a
(2n − 1)-place application. However, we need to make this explicit in
the syntax to be able to perform exchanges without extra complication
of the analysis of terms. Indeed, having grouped the arguments allows
us to massage them all at once in the β-reduction and parametric in-
terpretation; however they should really be read in their “linearized”
form, such as the JJAKK x0 x1 ddx0ee above.
In general, we need to remember the grouping of arguments when
applying the relational interpretation. Essentially, one iteration of the
relational interpretation transforms an application of an argument into
application of two arguments. After a second iteration, there will be
four arguments, and 2n after n iterations. (We must change the abstract
syntax of application to group these 2n arguments together.) Abstrac-
tion and product follow the same pattern as application. Hence, we can
arrange our bindings as oriented n-cubes in general. Using overbar to

- 17 -

denote cube meta-variables, the syntax becomes the following:

Term = A B̄ application (of hypercubes)
| λx̄ : Ā. B abstraction (of hypercubes)
| ∀x̄ : Ā. B function space
| . . .

In the above, a binding x̄ : B̄ introduces 2n variables xi, where i is any
bit-vector of size n, and n is the dimension of B̄. Consider the binding
x̄ : B̄. If B̄ has dimension zero, it stands for a single binding x : B. If
it has dimension 1, it contains a type B0, and a predicate B1 over B0.
Abusing matrix notation, one could write

x̄ :
(

B0
B1

)
as a shorthand for the two bindings

(
x0 : B0

x1 : B1x0

)
At dimension two, the cube B̄ contains a type B00, two predicates B01
and B10 over B00, and a relation B11, between B00, B10 x00, and B01 x00.

x̄ :
(

B00 B01
B10 B11

)
means

(
x00 : B00 x01 : B01 x00

x10 : B10 x00 x11 : B11 x00 x01 x10

)
Since we refer to each vertex by its position in the hypercube, we define
hypercubes of dimension n as mappings from bit-vectors of length n to
terms. We write[

i 7→ Bi
]n

i∈2n and
[

i 7→ Bi
⌋n

i∈2n−1

respectively for plain and incomplete cubes (those that lack an element
at index 1...1, called top index in the following) of dimension n.

We furthermore need a special syntax for the introduction, elimination
and formation of relations, which correspond to application, abstrac-
tion and quantification over incomplete cubes. Such a cube is found for
example in the type of x11 above. Using a check ·̌ to denote incomplete
cube (i.e., one of those with 2n-1 vertices) meta-variables:

Term = A•B̌ relation membership
| λ• x̌ : Ǎ. B relation formation
| Ǎ

•→ sn relation space
| . . .

Using this syntax, we can finally write the type of x11, previously lin-

earized as B11 x00 x01 x10, in the form we need: B11•

(
x00 x01
x10 ·

)
. The

- 18 -

type of B11 is
(

B00 B01
B10 ·

)
•→ s. For a plain cube B̄ of arbitrary dimen-

sion, we have x1...1 : B1...1•(x̄//1...1) and Bi : (B̄//i)
•→ s, where B̄//1...1

denotes the cube B̄ with the top vertex removed. Further generalizing,
xi is a witness that the sub-cube found by removing all the dimensions
d such that id = 0 satisfies the relation Bi:

xi : Bi•(x̄//i)

where B̄//i is the cube obtained by discarding the elements of the cube
B̄ for each dimension d where id = 0, and then removing the top vertex.

B̄//i =
[

j 7→ Bj&i
⌋||i||

j∈2||i||−1

where ||i|| = ∑d id and & is the pointwise and between bitvectors:

(bj)&(0i) = 0(j&i)
(bj)&(1i) = b(j&i)

Bi is then a relation over the corresponding sub-cube of B̄, which is
written formally:

Bi : (B̄//i)
•→ s

Remark. In this presentation, free theorems, or more generally logical re-
lations, can only take an incomplete cube (of 2n − 1 vertices) as argument,
whereas their proofs involve applications of full cubes. In particular, partial
applications of a parametric relation are not allowed. We should also stress
that the syntax is an extension of the underlying PTS, which can be recovered
by restricting to cubes of dimension zero.

2.5 The interpretation of hypercubes

Having given the new syntax of terms, we can express the relational
interpretation using this new syntax. The interpretation of a cube in-
creases its dimension; to each element is associated its interpretation:

JĀKξ =

[
0i 7→ {Ai}ξ

1i 7→ JAiKξ

]dims Ā+1

i∈2dims Ā

If a binding x̄ has been extended by the interpretation, a variable xi is
then interpreted as x1i.

JxiKξ,x = x1i

- 19 -

The interpretation of terms mentioning full cubes (of size 2n for some n)
is the following:

JA B̄Kξ = JAKξ JB̄Kξ

Jλx̄ : Ā. BKξ = λx̄ : JĀKξ . JBKξ,x 7→(x0,x1)

C ∈ J∀x̄ : Ā. BKξ = ∀x̄ : JĀKξ . (C (x̄/01...1)) ∈ JBKξ,x 7→(x0,x1)

The interpretation of the cubes of size 2n − 1 used for relations requires
some care. Because the index 1...1 is missing in such a cube, apply-
ing the same method as for full cubes leaves two elements missing, at
indices 1...1 and 01...1. The former is supposed to be missing (because
the resulting cube is also incomplete), but the latter is dependent on the
context. Hence we introduce the following notation for interpretation
of incomplete cubes where the “missing element” is explicitly specified
to be B:

(JǍKξ ⊕ B) =

 0i 7→ {Ai}ξ

1i 7→ JAiKξ

01...1 7→ B

dims Ǎ+1

i∈2dims Ǎ−1

The parametric interpretation of the special forms for relation forma-
tion, membership and product are as follows2.

C ∈ JǍ
•→ sKξ = (JǍKξ ⊕ C)

•→ s

C ∈ JA•B̌Kξ = JAKξ
•(JB̌Kξ ⊕ C)

Jλ• x̌ : Ǎ. BKξ = λ• x̌ : (JǍKξ ⊕ (λ• x̌ : Ǎ. B)).

x01...1 ∈ JBKξ,x 7→(x0,x1)

They are a straightforward consequence of the usual parametric inter-
pretation and our choice of grouping arguments in cubes. Readers
familiar with realizability interpretations for the Calculus of Construc-
tions (in the style for example of [Paulin-Mohring, 1989]) will notice a
similarity here: the interpretation of a function space adds a quantifica-
tion; and the other forms behave accordingly. Note that the form A•B̌
is always a type, and therefore we interpret it as such.

2 – Note that the missing element (the right hand-side of the ⊕ operator) is always a
subterm of the expression we start with.

- 20 -

We now revisit nested parametricity (presented above in section 2.3):

Example 3 (Nested application of J·K).

Jparametricity AK = λā : J(A)K. dda1ee �(01)

where ā : J(A)K can be understood as
(

a0
a1

)
:
(

A
a0 ∈ JAK

)
. There we have

on the one hand

Jparametricity AK : (parametricity A) ∈ J∀a : A. ∈ JAKK
= (λa : A. ddaee) ∈ J∀a : A. ∈ JAKK

= ∀ā : J(A)K. JAK2•

(
a0 a1
dda0ee ·

)
while on the other hand

a1 : a0 ∈ JAK = JAK•
(

a0
·

)
hence

dda1ee �(01) : (a1 ∈ Ja0 ∈ JAKK) �(01)

= JAK2•

(
a0 dda0ee
a1 ·

)
�(01)

= JAK2•

(
a0 a1
dda0ee ·

)
So Subject Reduction no longer fails as it did for the system without hypercubes
presented in section 2.3.

2.6 Exchanging dimensions

Given the above definition of cubes, we can take advantage of the fact
that vertices are tied to the structure and define an operation that ap-
plies an arbitrary permutation of its dimensions. For dimension n = 0
or n = 1, there is no non-trivial permutation. In the case of a square
(n = 2), there is only one permutation, which is a simple swapping of
the elements at indices 01 and 10. For higher dimensions (n ≥ 3), the
elements of the cube are multidimensional themselves (the dimension
of an element at index i is ||i||). Thus, one must take care to perform
the exchange properly for each element. For instance, performing an

- 21 -

exchange of dimensions 1 and 2 in a cube x̄ for n = 3 involves exchang-
ing dimensions 0 and 1 of the element x011. Indeed, exchanging the
dimensions 1 and 2 in the cube has the effect of exchanging dimensions
in the square occupied by x011; so an exchange has to be performed on
x011 to restore the cube structure. Geometrically, exchanging the dimen-
sions as above corresponds to twisting the cube: two faces are swapped,
and the two other are twisted. The situation is shown graphically in the
following picture.

x000 x001

x010 x011

x100 x101

x110 x111

=

x000 x010

x001 x011 �
(01)

x100 x110

x101 x111 �
(12)

In general, applying a permutation π on the dimensions of a cube C̄ is
done as follows:

Definition 1 (Cube exchange).

C̄ �π =
[

i 7→ Cπ(i) �
π/i

]dim C̄

i∈2dim C̄

Where π/i stands for the permutation π restricted to the dimensions d where
id = 1.
Incomplete cubes are permuted in the same way (simply omitting the top ver-
tex).

Definition 2. If π is a permutation {d 7→ xd},
π/i = canon{d 7→ xd | id = 1}, where canon maps the domain and co-
domain of the function {d 7→ xd | id = 1} to the set {0..||i|| − 1}, preserving
the order. Renaming the dimensions in the permutation ensures that sub-cubes
can be treated just like normal cubes.

Example 4. If π = {0 7→ 0, 1 7→ 2, 2 7→ 1} swaps dimensions 1 and 2, we
have

i {d 7→ π(d) | id = 1} π/i
001 {2 7→ 1} {0 7→ 0}
010 {1 7→ 2} {0 7→ 0}
100 {0 7→ 0} {0 7→ 0}
011 {1 7→ 2, 2 7→ 1} {0 7→ 1, 1 7→ 0}
101 {0 7→ 0, 2 7→ 1} {0 7→ 0, 1 7→ 1}
110 {0 7→ 0, 1 7→ 2} {0 7→ 0, 1 7→ 1}

- 22 -

Applying a permutation to terms is then a matter of permuting all the
cubes encountered:

(A B̄) �π
ξ = A �π

ξ B̄ �π
ξ

(λx̄ : Ā. B) �π
ξ = λx̄ : Ā �π

ξ . B[x̄ �π /x̄] �π
ξ,x

(∀x̄ : Ā. B) �π
ξ = ∀x̄ : Ā �π

ξ . B[x̄ �π /x̄] �π
ξ,x

(and similarly for the incomplete cubes). It remains to explain the inter-
action with the special constructs, J·K and · �· itself. We do so by listing
four laws which hold in our calculus.
The first law is not surprising: the composition of exchanges is the
exchange of the composition.

A �ρ �π =β A �π◦ρ (5)

Regarding the interactions between J·K and · �π , recall first that the re-
lational interpretation adds one dimension to cubes. By convention,
the dimension added by J·K is at index 0, and all other dimensions are
shifted by one. Therefore, the relational interpretation of an exchange
merely lifts the exchange out, and shifts indices by one in its permuta-
tion, leaving dimension 0 intact.

JA �πK =β JAK �π+1 (6)

where π + 1 denotes the permutation {d 7→ π(d− 1) | 0 < d ≤ dim π}.

The law that motivates the introduction of exchanges is the following:

JJAKKξ =β JJAKξK �
(01) (7)

This law can also be explained by the convention that J·K always in-
creases each existing dimension and inserts a new dimension 0. By
commuting the uses of parametricity, dimensions are swapped, and
the exchange operator restores the order.
Last, one can also simplify exchanges in the presence of symmetric
terms. We know that a term JAKn is symmetric in its n first dimensions.
Thus, applying a permutation that touches only dimensions 0..n− 1 to
such a term has no effect. Formally, we have:

JAKn �(x1 x2 ...xm) =β JAKn if ∀i ∈ 1..m, xi < n (8)

We have argued before that it suffices to provide parametricity only for
variables, and that the construct J·K acts as a “macro” on other con-
structs. The situation is the same in the presence of dimension ex-
changes: equation (6) explains how to compute the parametricity wit-
ness of an exchange. For the · �π construct, the situation is analogous:

- 23 -

it suffices to provide the construct for variables, possibly enclosed by
dd·ee themselves, while it is a macro on all other forms.
The reason is that the above laws give a way to compute the exchange
for any term which is not a parametricity witness (the result is given in
Def. 5). When we want to be explicit about exchange being the syntactic
construct, we write simply x �π . The syntax fragment for parametricity
and exchanges is as follows.

Var ∈ x, y, z
Param ∈ x ::= x variable

| ddxee parametric witness
Term ∈ a, . . . , u ::= x �π permutation of dimensions

| . . .

2.7 Dimension checks

If a permutation acts on dimensions 0 to n − 1, every cube where it
is applied to must exhibit at least n dimensions. So far we have not
discussed this restriction, which is the final feature of the system to
present. To implement it we choose to amend the syntax and annotate
sorts with the dimension of the type which inhabits it. Since the sort
s at dimension n is written sn, we can capture the restriction in the
following exchange rule.

Γ ` A : B Γ ` B : sn
dim(π) ≤ n

Γ ` A �π : B �π

(However, as with the Param rule, only the version where the term A is
a variable is added to our typing rules; this is enough, since the general
rule can be derived.)

If a type inhabits a sort of dimension n, all the quantifications found
inside the type must be over cubes of dimension at least n. This is
enforced by modifying the product rule as follows:

Γ ` Ā : sn
1 Γ, x̄ : Ā ` B : sm

2

Γ ` (∀x̄ : Ā. B) : smun
3

Product (s1, s2, s3) ∈ R

Similarly, relations found in the type must be over cubes of dimen-
sion n.

- 24 -

A calculus with an internal
parametricity theorem

Having concluded the informal presentation of our system P , we fo-
cus now on a detailed description and will end with proofs of some
fundamental meta-properties such as Confluence (Thm. 3), Strong Nor-
malization (Thm. 9), and Consistency (Thm. 8).

3.1 Definitions

We start this section with the full definition of system P , parameterized
on a PTS specification (S ,A,R).

Definition 3 (Abstract syntax of P).

Sort 3 s, s1, s2, s3 ::= S
Var ∈ x, y, z
Param ∈ x ::= x variable

| ddxee parametric witness
Term ∈ a, . . . , u ::= x �π permutation of dimensions

A, . . . , U | sn sort at dimension n
| A B̄ application (of hypercubes)
| λx̄ : Ā. B abstraction (of hypercubes)
| ∀x̄ : Ā. B function space
| A•B̌ relation membership
| λ• x̌ : Ǎ. B relation formation
| Ǎ

•→ sn relation space
Cube 3 Ā ::=

[
i 7→ Ai

]n
i∈2n cube of size 2n

Cube′ 3 Ǎ ::=
[

i 7→ Ai
⌋n

i∈2n−1 cube of size 2n − 1
Context 3 Γ, ∆ ::= ε empty context

| Γ, x : A context extension

Where
[

i 7→ Ai
]n

i∈2n (resp.
[

i 7→ Ai
⌋n

i∈2n−1) denote a balanced binary
tree (resp. a balanced binary tree without the lower-right leaf) of depth n,

- 25 -

where for each bit-vector i of length n, the vertex Ai is the leaf reached from
the root by following the left child on 1’s and right one on 0’s.

The cube bindings can be defined formally once we introduce some convenient
notations:

• 2n stands for all bit-vectors of size n; and 2n− 1 stands for all bit-vectors
of size n, except 1...1.

• ind(Ā) stands for 2dims Ā; and ind(Ǎ) stands for 2dims Ǎ − 1.

• x̄ : Ā stands for the bindings xi : Ai•(x̄//i) where i ∈ ind(Ā); and
x̌ : Ǎ stands for the bindings xi : Ai•(x̌//i) where i ∈ ind(Ǎ).

• Similarly, Ā : sn stands for Ai : Ā//i
•→ s||i|| and Ǎ : sn stands for

Ai : Ǎ//i
•→ s||i||.

Definition 4 (Relational interpretation of raw terms).

JddxeenKξ = ddxeen+1 (in particular, JxKξ = ddxee for n = 0) if x 6∈ ξ

JddxieenKξ = ddx1ieen �(0..n) (in particular, JxiKξ = x1i for n = 0) if x ∈ ξ

Jx �πKξ = JxKξ �
π+1

Jλx̄ : Ā. BKξ = λx̄ : JĀKξ . JBKξ,x 7→(x0,x1)

Jλ• x̌ : Ǎ. BKξ = λ• x̌ : (JǍKξ ⊕ (λ• x̌ : Ǎ. B)).

x01...1 ∈ JBKξ,x 7→(x0,x1)

JA B̄Kξ = JAKξ JB̄Kξ

JTKξ = λž :
(

T
·

)
. z0 ∈ JTKξ if T is ∀, • or sn

C ∈ JsnKξ =

(
C
·

)
•→ sn+1

C ∈ J∀x̄ : Ā. BKξ = ∀x̄ : JĀKξ . (C (x̄/01...1)) ∈ JBKξ,x 7→(x0,x1)

C ∈ JǍ
•→ snKξ = (JǍKξ ⊕ C)

•→ sn+1

C ∈ JA•B̌Kξ = JAKξ
•(JB̌Kξ ⊕ C)

C ∈ JTKξ = JTKξ
•

(
C
·

)
if T is not ∀, • nor sn

JεKξ = ε

JΓ, x : AKξ,x 7→(x0,x1) = JΓKξ , x0 : A, x1 : x0 ∈ JAKξ if x ∈ ξ

JΓ, x : AKξ = JΓKξ , x : A if x /∈ ξ

- 26 -

JĀKξ =

[
0i 7→ {Ai}ξ

1i 7→ JAiKξ

]dims Ā+1

i∈2dims Ā

(JǍKξ ⊕ B) =

 0i 7→ {Ai}ξ

1i 7→ JAiKξ

01...1 7→ B

dims Ǎ+1

i∈2dims Ǎ−1

Definition 5 (Term exchange).

ddxeen �ρ �π
ξ = ddxeen �ρ if x ∈ ξ

ddxeen �ρ �π
ξ = ddxeen �normaln(π◦ρ) if x /∈ ξ

(A B̄) �π
ξ = A �π

ξ B̄ �π
ξ

(λx̄ : Ā. B) �π
ξ = λx̄ : Ā �π

ξ . B[x̄ �π /x̄] �π
ξ,x

(∀x̄ : Ā. B) �π
ξ = ∀x̄ : Ā �π

ξ . B[x̄ �π /x̄] �π
ξ,x

(A•B̌) �π
ξ = A �π

ξ
•B̄ �π

ξ

(λ• x̌ : Ǎ. B) �π
ξ = λ• x̌ : Ǎ �π

ξ . B[x̄ �π /x̄] �π
ξ,x

(Ǎ
•→ sn) �π

ξ = Ǎ �π
ξ
•→ sn

sn �π
ξ = sn

Where normaln(π) removes all cycles of π entirely contained in 0..n− 1.

The β-reduction of the underlying PTS extends naturally to hypercube
redexes.

Definition 6 (Reduction).

(λx̄ : Ā. b) ā −→ b[ā/x̄]

(λ• x̌ : Ǎ. b)•ǎ −→ b[ǎ/x̌]

Where b[ā/x̄] (resp. b[ǎ/x̌]) denotes the 2dim ā (resp. 2dim ǎ− 1) substitutions
b[xi/ai | i ∈ 2dim ā] (resp. b[xi/ai | i ∈ 2dim ǎ − 1]).
We do not specify a reduction strategy, and the β-reduction −→ can be applied
anywhere in a term, including under abstraction or application.

We write =β the reflexive, symmetric, transitive closure of the reduction −→.

Definition 7 (Substitution). In addition to the usual congruence rules, we
extend the substitution meta-operation to our two new syntactic constructs.

ddxee[a/x] = JaK∅
x �π [a/x] = a �π

∅

- 27 -

Definition 8 (Typing rules of P).

(s1, s2) ∈ A
` sn

1 : sn
2

Axiom

Γ ` A : B Γ ` C : sn

Γ, x : C ` A : B
Weakening

Γ ` F : (Ǎ
•→ sn) Γ ` ǎ : Ǎ

Γ ` F•ǎ : sn

Rel-elim

Γ, x̌ : Ǎ ` B : sn Γ ` Ǎ : sn

Γ ` (λ• x̌ : Ǎ. B) : (Ǎ
•→ sn)

Rel-intro

Γ ` Ǎ : sn
1

Γ ` (Ǎ
•→ sn

1) : sn
2

Rel-form (s1, s2) ∈ A

Γ ` F : (∀x̄ : Ā. B) Γ ` ā : Ā
Γ ` F ā : B[ā/x̄]

Application

Γ, x̄ : Ā ` b : B Γ ` (∀x̄ : Ā. B) : sn

Γ ` (λx̄ : Ā. b) : (∀x̄ : Ā. B)

Abstraction

Γ ` Ā : sn
1 Γ, x̄ : Ā ` B : sm

2

Γ ` (∀x̄ : Ā. B) : smun
3

Product (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : sn B =β B′

Γ ` A : B′

Conversion

Γ ` A : sn

Γ, x : A ` x : A
Start

Γ ` x : A
Γ ` ddxee : x ∈ JAK∅

Param

Γ ` x : A Γ ` A : sn
dim(π) ≤ n

Γ ` x �π : A �π

Exchange

Where the typing judgment Γ ` ā : Ā stands for the conjunction of the judg-
ments Γ ` ai : Ai•(ā//i) for i ∈ ind(Ā); and Γ ∈ ǎ : Ǎ stands for the
conjunction of the judgments Γ ` ai : Ai•(ǎ//i) for i ∈ ind(Ǎ).

The syntactic changes made to the system require results to be adapted
accordingly. In the case of Ex. 1, (proving that any function of type
∀a : ?. a→ a is an identity), the definition of Equality must be amended
to make it inhabit ?1. This mostly involves augmenting the dimension
of cubes by adding unit types as indices:

Eq : ∀a : ?. a→
(

a
·

)
•→ ?1

Eq = λa : ?. λx : A. λ•
(

y
·

)
:
(

a
·

)
. ∀
(

–
P

)
:

 >(
a
·

)
•→ ?1

 . >

P•
(

x
·

)→ P•
(

y
·

)

- 28 -

The proof term needs fewer amendments:

identities : ∀ f : (∀a : ?. a→ a).

∀a : ?. ∀x : a. Eq a (f a x)•
(

x
·

)
identities = λ f . λa. λx. .J f K

(
a

Eq a x

)(
x

refl a x

)

J f K : ∀
(

a0
a1

)
:
(

?

a0
•→ ?1

)
. ∀
(

x0
x1

)
:
(

a0
a1

)
. a1•(f a0x0)

We have now defined our system P . In the remainder of this
chapter we prove the main meta-theoretic results about the system.
More precisely, we prove Confluence in section 3.3, the Abstraction
and Parametricity theorems in section 3.4, and Subject Reduction in
section 3.5. We then define in section 3.6 a reduction-preserving in-
terpretation of P into the underlying PTS O, hence model the former
in the latter. This model is done by introducing explicit witnesses of
parametricity for all variables. Provided that Consistency and Strong
Normalization hold for O (for instance when O is the Calculus of Con-
structions), we can then derive from the model that they also hold for
our system P .

- 29 -

Dependencies between these results can be summarized by the follow-
ing directed graph:

Syntax
(definitions 3–7)

Typing rules
(definition 8)

Confluence
(theorem 3)

Abstraction & Parametricity theorems
(theorems 4 & 5)

Subject-Reduction
(theorem 6)

Modelling P in O
(section 3.6)

Consistency
(theorem 8)

Strong Normalization
(theorem 9)

3.2 Properties of the Parametric Interpretation

We start by proving weakening and commutation lemmas for our para-
metric interpretation. These lemmas are used to prove Confluence (sec-
tion 3.3), and Abstraction and Parametricity theorems (section 3.4).

Lemma 1. For each term A and each variable z not free in A, we have:

i) JAKξ,z 7→(z0,z1) = JAKξ , and

ii) {a}ξ,z 7→(z0,z1) ∈ JAKξ,z 7→(z0,z1) = {a}ξ ∈ JAKξ for all terms a.

Proof. By simultaneous induction on the structure of the raw term A.
Details can be found in the appendix.

· �π commutes with dd·ee, but the permutation needs to be lifted.

Lemma 2. For each term A : sm and each ρ of dimension at most m, we have:

JA �
ρ
ζKξ

= JAKξ �
1+ρ
ζ

- 30 -

Proof. By induction on the structure of the raw term A. Details can be
found in the appendix.

When exchanging two occurrences of the parametric interpretation, one
needs to permute the cube variables that are explicit in both interpreta-
tions:

Lemma 3. For each term A, we have:

JJAKξKζ
= JJAKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

Proof. By structural induction on the raw term A. Details can be found
in the appendix.

In particular, when ξ is empty:

Corollary 1. For each term A, we have:

JJAKmKζ = JJAKζK
m �(0...m)

Note that equation (7) is a special case of this result, taking m = 0.

The parametric interpretation commutes with the substitution, but a
special treatment is required when the variable to be substituted for is
either free or known to the interpretation.

Lemma 4 (J·K and substitution, part 1). For each term A, and each variable
z not in ξ, we have:

i) JA[u/zi]Kξ = JAKξ,z[{u}ξ/z0i][JuKξ/z1i], and

ii) {a[u/zi]}ξ ∈ JA[u/zi]Kξ = ({a}ξ,z ∈ JAKξ,z)[{u}ξ /z0i][JuKξ /z1i].

Lemma 5 (J·K and substitution, part 2). For each term A, for variable z not
free in A or contained in ξ, we have:

i) JA[u/zi]Kξ = JAKξ [{u}ξ/z0i], and

ii) {a[u/zi]}ξ ∈ JA[u/zi]Kξ = ({a}ξ ∈ JAKξ)[{u}ξ /z0i].

Proof. By simultaneous induction on the structure of the raw term A.
Details can be found in the appendix.

The last lemma of this section states that our parametric interpretation
uniformly expands cubes:

Lemma 6 (Symmetry). For each term A, JAKn is symmetric in its n first
dimensions. More specifically,

- 31 -

i) JAKn
ξ �π

ξ = JAKn
ξ �

normaln(π)
ξ , and

ii) (a ∈ JAKn
ξ) �π

ξ = (a ∈ JAKn
ξ) �

normaln(π)
ξ

Proof. By simultaneous induction on the structure of the raw term A.
Details can be found in the appendix.
Lemma 7 (· �· and substitution). If ξ does not contain either z or any of the
free variables of E, then

A[E/z] �π
ξ = A �π

ξ [E/z] for all π.

Proof. By induction on A. The only interesting case is the one for vari-
ables, with x = z:

ddzeen
�ρ[E/z] �π

ξ = JEKn �ρ �π
ξ

= JEKn �normaln(π◦ρ) by Lem. 6

= ddzeen
�normaln(π◦ρ)[E/z]

= ddzeen
�ρ �π

ξ [E/z]

Lemma 8 (Substitution).

A[E/z][E′/z′] = A[E′/z′][E[E′/z′]/z]

Proof. By induction on A; the only non-trivial case is for the parametric
witnesses ddzeen:

ddzeen
�π [E/z][E′/z′] = JEKn

∅[E′/z′] �π

= JE[E′/z′]Kn
∅ �π = ddzeen

�π [E′/z′][E[E′/z′]/z]

by lemmas 5 and 7.

3.3 Confluence

We now check that the Church-Rosser property holds, that is, we verify
that the order in which the reductions are performed does not mat-
ter. To prove this property, we define a parallel reduction (following the
Tait/Martin-Löf technique), and show that the diamond property holds
for this reduction.

- 32 -

Definition 9 (Parallel nested reduction).

Refl

A . A

β
b . b′ ā . ā′

(λx̄ : Ā. b) ā . b′[ā′/x̄]
β•

b . b′ ǎ . ǎ′

(λ• x̌ : Ǎ. b)•ǎ . b′[ǎ′/x̌]

App-Cong

F . F′ ā . ā′

F ā . F′ ā′
App

•-Cong

F . F′ ǎ . ǎ′

F•ǎ . F′•ǎ′

Abs-Cong

Ā . Ā′ b . b′

λx̄ : Ā. b . λx̄ : Ā′. b′
Abs

•-Cong

Ǎ . Ǎ′ b . b′

λ• x̌ : Ǎ. b . λ• x̌ : Ǎ′. b′

All-Cong

Ā . Ā′ B . B′

∀x̄ : Ā. B . ∀x̄ : Ā′. B′
All

•-Cong

Ǎ . Ǎ′

Ǎ
•→ sn . Ǎ′

•→ sn

With Ā . Ā′ iff. for all i, Ai . A′i (and similarly for Ǎ . Ǎ′).

We now need to prove congruence lemmas for the parallel reduction
., for each of our 3 meta-operators: parametric interpretation J·K, term
exchange · �, and substitution.

Lemma 9 (Congruence of J·K). If A . A′, then for all ξ,

i) JAKξ . JA′Kξ , and

ii) a ∈ JAKξ . a′ ∈ JA′Kξ for all a . a′

Proof. By induction on A . A′:

• The case of Refl is trivial.

• For β, one expects

J(λx̄ : Ā. b) āKξ . Jb′[ā′/x̄]Kξ ,

knowing b . b′ and ā . ā′.

J(λx̄ : Ā. b) āKξ
= {by def. of J·Kξ}

(λx̄ : JĀKξ . JbKξ,x) JāKξ

. {by β, Refl and IH}
Jb′Kξ,x[Jā′Kξ /x̄]

= {by Lem. 4}
Jb′[ā′/x̄]Kξ

- 33 -

• The case of β• is similar.

• The cases of ?-Cong are straightforward using the definition of
J·K.

Lemma 10 (Congruence of · �·). If A . A′, then for all ξ and π, one has

A �π
ξ .A′ �π

ξ

Proof. By induction on A . A′. The only interesting cases are for the β
and β•-reductions. For β (β• is similar), we have

((λx̄ : Ā. b) ā) �π
ξ

= {by def. of · �π
ξ }

(λx̄ : Ā �π
ξ . b[x̄ �π

ξ /x̄] �π
ξ,x) ā �π

ξ

. {by β, Refl and IH}
b′[x̄ �π

ξ /x̄] �π
ξ,x[ā′ �π

ξ /x̄]
= b′ �π

ξ,x[ā′ �π
ξ /x̄ �π

ξ]
= b′[ā′/x̄] �π

ξ

Lemma 11 (Congruence of substitution). If A . A′ and E . E′, then

A[E/z] . A′[E′/z].

Proof. By induction on A . A′:

• For Refl, the expected result follows from an induction on A
(using n times Lem. 9 and Lem. 10 for the case ddzeen

�π).

• For β, one expects

((λx̄ : Ā. b) ā)[E/z] . b′[ā′/x̄][E/z],

knowing b . b′ and ā . ā′. We have

((λx̄ : Ā. b) ā)[E/z]
= {by def. of the substitution}

(λx̄ : A[E/z]. b[E/z]) ā[E/z]
. {by β and IH}

b′[E′/z][ā′[E′/z]/x̄]
= {by Lem. 8}

b′[ā′/x̄][E′/z]

• The case of β• is similar.

- 34 -

• The cases of ?-Cong stem from straightforward uses of induction
hypotheses.

Theorem 2 (Diamond property). The rewriting system (.) has the diamond
property. In other words, for each A, B, B′ such that B / A . B′, there exists C
such that B . C / B′

Proof. By induction on the derivations:

• If one of the derivations ends with Refl, one has either A = B,
or A = B′. We pick C = B′ in the former case and C = B in the
latter.

• If one of the derivations ends with Abs-Cong, All-Cong, Abs
•-

Cong or All
•-Cong, the other one has to end with the same rule,

and the result is a straightforward use of the induction hypothe-
sis.

• If one of the derivations ends with App-Cong, the other one has to
end with App-Cong, or with β. The first case is straightforward;
in the second one, one has

(λx̄ : Ā′. b′) ā′ / (λx̄ : Ā. b) ā . b′′[ā′′/x̄]

with λx̄ : Ā′. b′ / λx̄ : Ā. b, b . b′′ and ā′ / ā . ā′′

The situation is summarized in the diagram below. In more de-
tails, the end of the derivation of λx̄ : Ā′. b′ / λx̄ : Ā. b has to be
either Abs-Cong, or Refl. In the first case (the last one is similar),
one has Ā′ / Ā and b′ / b.

By induction hypothesis there exist b′′′, ā′′′ such that b′ . b′′′ / b′′

and ā′ . ā′′′ / ā′′.

The result follows by β and Lem. 11:

(λx̄ : Ā′. b′) ā′ . b′′′[ā′′′/x̄] / b′′[ā′′/x̄]

- 35 -

(λx̄ : Ā. b) ā

(λx̄ : Ā′. b′) ā′ b′′[ā′′/x̄]

b′′′[ā′′′/x̄]

Ab
s
-C

o
n
g

ā′
/

ā,
b′
/

b βb . b ′′, ā . ā ′′

β

b ′
. b ′′′, ā ′

. ā ′′′ Lem
. 11

b′
′′ /

b′
′ , ā′
′′ /

ā′
′

• The case for App
•-Cong is similar.

• If both derivations end with the same β or β• rule, the result is a
straightforward use of the induction hypothesis and Lem. 11.

Theorem 3 (Church-Rosser property). Our calculus system has the con-
fluence (Church-Rosser) property that is, for each A, B, B′ such that B ←−?
A −→? B′, there exists C such that B −→? C ←−? B′

Proof. Direct consequence of Thm. 2, using the equality .? =−→?.

3.4 Abstraction

In this section we check that our main goal, the integration of para-
metricity (see Prop. 1), is achieved by the design that we propose. (In
particular, internalized parametricity holds for the Param rule itself.)
At the same time, we check that the abstraction theorem also holds
for our calculus. We do so by proving Lem. 12, which subsumes both
theorems.

Lemma 12 (Generalized abstraction). Assuming that ξ conforms to Γ,
i) Γ ` A : B ⇒ JΓKξ ` JAKξ : {A}ξ ∈ JBKξ

ii) Γ ` A : B ⇒ JΓKξ ` {A}ξ : {B}ξ

iii) Γ ` B : sn ⇒ JΓKξ , x : B ` x ∈ JBKξ : sn+1

Proof. The proof is done by simultaneous induction on the derivation
tree, and is similar to the proof of the Abstraction Theorem by Bernardy

- 36 -

and Lasson [2011]. The new parts occur in the special handling of the
Start and Param rules. The proof of each sub-lemma can be sketched
as follows (the full proof can be found in the appendix):

i) The cases of abstraction and application stem from the fact that
their respective relational interpretations follow the same pattern
as the relational interpretation of the product. The case of a vari-
able x (Start) is more tricky: if x ∈ ξ, then the context contains
an explicit witness of parametricity for x. This witness is used to
justify the translated judgment. If x /∈ ξ, then we can use the para-
metricity rule on x to translate the typing judgment. The Param

rule is handled similarly, with the additional complexity that an
exchange of dimensions must be added when x /∈ ξ.

ii) This sub-lemma is used to justify weakening of contexts in the
other sub-lemmas. It is a consequence of the thinning lemma and
the fact that the interpretation of types in always well-typed (see
the third item below).

iii) This sub-lemma expresses that if B is a well-sorted type, then so
is x ∈ JBK. It is easy to convince oneself of that result by checking
that the translation of a type always yields a relation, and that the
translation of a relation is itself a relation.

Remark. In summary, and roughly speaking, Lem. 12 replaces the occur-
rences of Start (resp. Param) for variables not in ξ by Param (resp. nested
Param + Exchange). Occurrences on Start (resp. Param) for variables
in ξ are preserved.

Theorem 4 (Abstraction).

i) Γ ` A : B ⇒ JΓKξ ` JAKξ : ({A}ξ ∈ JBKξ), where ξ contains all the
variables in Γ.

ii) Furthermore, if the original judgment makes no use of Param, the re-
sulting judgment does not either.

Proof.

i) Direct consequence of Lem. 12i.

ii) In the proof of Lem. 12i, if ξ is full, then the target derivation
trees contains Param iff. Param occurs in the derivation tree for
Γ ` A : B.

Theorem 5 (Parametricity). Each term, no matter if is closed or opened,
satisfies the parametricity condition of its type:

Γ ` A : B ⇒ Γ ` JAK : (A ∈ JBK)

- 37 -

Proof. Take ξ empty in Lem. 12i. (We recall that JΓK∅ = Γ.)

Definition 10. ξ conforms to Γ iff. ξ contains a suffix of Γ.

Remark. J·K preserves conforming indices: if ξ conforms to Γ and A is well-
typed in Γ, the definition of JAKξ makes only recursive calls with conforming
substitutions.

Proof. By induction on the typing derivation. In the definition of J·Kξ ,
every bound variable in a term is added to the index ξ in recursive
calls.

3.5 Subject Reduction

In this section we prove Subject Reduction (preservation of types). Since
parametricity acts as a typing rule for J·K, Subject Reduction for our
calculus stems directly from it. We start by discussing basic proper-
ties generally attributed to PTSs, on which Subject Reduction (Thm. 6)
depends on.
The weakening of contexts behaves in our calculus exactly in the same
way as in all PTSs. Indeed, the usual thinning lemma holds.

Lemma 13 (Thinning). Let Γ and ∆ be legal contexts such that Γ ⊆ ∆. Then
Γ ` A : B =⇒ ∆ ` A : B.

Proof. As in [Barendregt, 1992, Lem. 5.2.12].

The generation lemma for our calculus must account for the new para-
metricity construct.

Lemma 14 (Generation). The statement of the lemma is the same as that of
the generation lemma for PTS [Barendregt, 1992, Lem. 5.2.13], but with the
additional case for the Param rule:

• If Γ ` ddxee : C then there exists B such that Γ ` B : sn, (x : B) ∈ Γ,
and C =β x ∈ JBK.

Proof. As in [Barendregt, 1992]:

• We follow the derivation Γ ` ddxee : C until ddxee is introduced. It
can only be done by the following rule

∆ ` B : sn

∆, x : B ` ddxee : x ∈ JBK
Param

with C =β x ∈ JBK, and (∆, x̄ : B) ⊆ Γ. The conclusion stems
from Lem. 13.

- 38 -

Theorem 6 (Subject Reduction). If A −→ A′ and Γ ` A : T, then

Γ ` A′ : T

Proof. Most of the technicalities of the proof by Barendregt [1992], con-
cern β-reduction, and are not changed by our addition of parametricity.
Hence we discuss here only the handling of the parametricity construct:
our task is to check that substitution a concrete term a for x in ddxee
preserves the type of the expression.
Facing a term such as ddxee in context Γ, we know by generation that it
must have type x ∈ JBK (for some type B valid in Γ, and x : B). We can
then prove that substituting a term a of type B′ (where B′ is convertible
to B) for x preserves the type of the expression. Indeed, the expression
then reduces to JaK, which has type a ∈ JB′K by Thm. 5. In turn, a ∈ JB′K
is convertible to x ∈ JBK by Lem. 9.

3.6 Reduction-preserving model into the un-
derlying PTS

In this section we present a formalization of the intuitive model pre-
sented in section 2.2. We developed a “high-level” calculus P suitable
to internalize parametricity results; we now model our system P into
the underlying PTS O, which can be seen as “low-level” in that context.
Each term is mapped to a term where parametricity witnesses are
passed explicitly. Simultaneously, contexts are extended with explicit
witnesses: in a first approximation, each binding x : A is replaced by
a multiple binding x : A, x̆ : x ∈ JAK. This means that ddxee can be
interpreted by the corresponding variable x̆ in the context. In fact, this
is really what the term ddxee means, as shown by the reduction rule
ddxee[u/x] −→ JuK.
The following table shows how some example terms can be interpreted
(for the sake of readability we omit type annotations in the abstractions,
since they play no role in these examples):

original term A its interpretation 〈|A|〉
λx. ddxee λx. λx̆. x̆

(λx. ddxee)(yz) (λx. λx̆. x̆)(yz)(y̆zz̆)
(λx. ddxee)(λy. ddyee) (λx. λx̆. x̆) (λy. λy̆. y̆)

(λy. λy̆. λy̆′. λy̆′2. y̆′2)

Note that the third row in the above table shows how an instance of
nested parametricity is modelled: we add explicit witnesses of level
two.

- 39 -

Given that the interpretation is sound with respect to O (Thm. 7) and
that it preserves reductions (Lem. 16), we obtain Strong Normalization
(Thm. 9). The rest of the section is devoted to defining the model for-
mally, and proving its soundness.
In general, the transformation is not trivial, because of the interaction
between functions and their arguments, occurring in the App rule. If a
function uses parametricity on one of its argument, calls to the function
must also compute explicit parametricity witnesses. (This may in turn
trigger the need for more explicit witnesses at the call site). Further, if
the function is passed to another function, this will create further needs
for explicit witnesses.
As we have seen above, each binding x : A should be replaced by
x : A, . . . , x̆n : x ∈ JAKn for some n. Our main task is to compute an n
that would be big enough to make all the parametricity witnesses ddxeek

explicit. To do so, we use an intermediate representation of the typing
derivation, containing some constraints on the n’s, by annotation of the
derivation tree, as in figure 2. We assume without loss of generality that
variable names are distinct, so the n’s are given by a (partial) valuation
ε : Var → N defined on each cube variable. This annotation of the
derivation with constraints is an instance of a technique known as type-
based analysis [Svenningsson, 2007].

Γ ` F : (∀x̄ : Ā. B) t :: Γ ` ā : Ā {e + ε(x) ≤ ε(y) | e ≤ ε(y) ∈ t}
Γ ` F ā : B[ā/x̄]
Application

Γ ` F : (∀• x̌ : Ǎ. sn) t :: Γ ` ǎ : Ǎ {e + ε(x) ≤ ε(y) | e ≤ ε(y) ∈ t}
Γ ` F•ǎ : sn

Rel-Elim

Γ ` A : sm n ≤ ε(x)

Γ, x : A ` ddxeen
�π : (x ∈ JAKn) �π

Param/n

dim π ≤ m + n

Figure 2: Typing rules extended with constraints on the valuation ε.
Rules omitted here remain unchanged (see Def. 8). The notation e ≤
ε(y) ∈ t expresses that the constraint appears in the sub-derivation t.
(For the sake of conciseness, we merged the rules Start, Param and
Exchange into Param/n here.)

The Application and Rel-Elim rules require special care. Indeed, we
need to “lift” the inequalities of the right sub-tree t, since if F has to
be extended to a term of type ∀Jx : AKn. B, then it has to be fed with

- 40 -

n extra parametricity witnesses JaK · · · JaKn, hence the context has to
be extended enough to contain y̆n, for each y free in a. Note that the
constraints e + ε(x) ≤ ε(y) we add in the Application and Rel-Elim

rule are more restrictive than the corresponding e ≤ ε(y) that are in t,
so one can simply ignore the latter.
We need to check that the system of constraints has a solution. In fact,
the simplex it defines is unbounded: indeed, the only place where a
variable appears on the left-hand side of a constraint is in Application

and Rel-Elim when we “lift by x” the constraints in the sub-tree t; It
cannot create any cycle, since x does not appear in t.

With our notion of cubes instead of usual bindings, extending the con-
text with an explicit witness corresponds to adding one dimension to
the cube. However, we a priori only need to access one of the new ver-
tices, the one that has the new dimension set to one. Hence in general,
each of the 2dims Ā vertices xi of a binding x̄ : Ā will be extended with
xji : xi ∈ JAi•(x̄//i)Kk for 0 ≤ k ≤ ε(x) and j = 0ε(x)−k1k.

Permutations on variables yield yet another difficulty, as one can see in
the example λx : A. λy1 : x ∈ JAK. ddy1ee �(12). (The cubes have been flat-
tened for the sake of readability.) Here, ddy1ee �(12) : JAK2 x y1 ddxee while
ddy1ee : JAK2 x ddxee y1. Our solution is to not only extend the context
with explicit parametricity witnesses, but also with explicit permuted
parametricity witnesses. Hence a possible interpretation of the previ-
ous term in the naked system O is the following:

λx0 : A.λx1 : (JAK x0).
λy01 : (JAK x0).λy11 : (JAK2 x0 x1 y01).

λy(12)
11 : (JAK2 x0 y01 x1). y(12)

11

We are not focusing on the minimal extension here, and we add wit-
nesses for each possible permutation. It is however possible to refine
this extension, since for instance the relations are symmetric in the new
dimensions, hence we can ignore permutation cycles that are entirely
contained in these new dimensions.

- 41 -

Definition 11 (Interpretation which inserts explicit witnesses). Writing
Sn to be the group of permutations on {0, . . . , n− 1},

〈|sn|〉 = s

〈|ddxieen �π |〉 = xπ
ji where j =

ε(x)︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

n

〈|λx̄ : Ā. B|〉 = λ〈|x̄ : Ā|〉. 〈|B|〉
〈|∀x̄ : Ā. B|〉 = ∀〈|x̄ : Ā|〉. 〈|B|〉

〈|F x ā|〉 = 〈|F|〉 {〈|JaiK
k �π |〉 | i ∈ ind(ā), k ≤ ε(x),

π ∈ Sk+dims ā }
〈|λ• x̌ : Ǎ. B|〉 = λ〈|x̌ : Ǎ|〉. 〈|B|〉
〈|∀• x̌ : Ǎ. sn|〉 = ∀〈|x̌ : Ǎ|〉. s

〈|F•x Ǎ|〉 = 〈|F|〉 {〈|JaiK
k �π |〉 | i ∈ ind(ǎ), k ≤ ε(x),

π ∈ Sk+dims ǎ }

〈| − |〉 = −
〈|Γ, xi : A|〉 = 〈|Γ|〉, 〈|xi : A|〉

We introduce a new macro 〈|xi : A|〉, which expands to the following multiple
bindings:

〈|xi : A : sn|〉 = {xπ
ji : 〈|(xi ∈ JAKk) �π |〉 | k ≤ ε(x),

j = 0ε(x)−k1k,
π ∈ Sk+n }

Bindings of cube variables are merely “flattened”, using our previously defined
macro:

〈|x̄ : Ā|〉 = {〈|xi : Ai•(x̄//i)|〉 | i ∈ ind(Ā)}
〈|x̌ : Ǎ|〉 = {〈|xi : Ai•(x̌//i)|〉 | i ∈ ind(Ǎ)}

The essence of the model defined by 〈| · |〉 is that a parametricity witness
ddxieen

�π is adequately modeled by the variable xπ
0...01...1i, that is, if x has

type A, then x1 : x ∈ JAK, etc.

Lemma 15 (〈| · |〉 and substitution).

〈|A[ai/xi]|〉 = 〈|A|〉[〈|JaiK
k �π |〉/xπ

ji , k ≤ ε(x), j = 0ε(x)−k1k, π ∈ . . .]

- 42 -

Proof. By induction on A; we illustrate how the proof proceeds by
showing only the case for variables, since all the other cases stem from
straightforward uses of the induction hypotheses.

〈|ddxieen
�π [ai/xi]|〉 = 〈|JaiK

n �π |〉
= xπ

ji [〈|JaiK
n �π |〉/xπ

ji]

= 〈|ddxieen
�π |〉[〈|JaiK

k �π |〉/xπ
ji , . . .]

Lemma 16 (Congruence of 〈| · |〉). If Γ ` A : B with A −→ A′, then

〈|A|〉 −→+ 〈|A′|〉.

Proof. By induction on A −→ A′.

Finally, we are now able to prove the soundness of our model, by prov-
ing that the transformation yields well-typed terms in O.

Theorem 7 (Soundness). If Γ `P A : B, then

〈|Γ|〉 `O 〈|A|〉 : 〈|B|〉.

Proof. We proceed by induction on the derivation; however the proof re-
quires a stronger induction hypothesis when the derivation Γ `P A : B
starts with the Application rule. See the appendix for details.

Theorem 8 (Consistency). If O is consistent, then so is P , our system ex-
tended with Param.

Proof. Since 〈| · |〉 transports the empty type from P to O, by Thm. 7 any
inhabitant of the empty type in P would give one in O.

Theorem 9 (Strong Normalization). If O is strongly normalizing, then so
is P .

Proof. Assume Γ ` A : B and consider a chain of reductions A −→n

A′. We have 〈|A|〉 −→m 〈|A′|〉, and m ≥ n by Lem. 16. We also have
that 〈|A|〉 is typeable in O, by Thm. 7. Therefore, only finite chains of
reductions are possible.

- 43 -

- 44 -

Bibliography

M. Abadi, L. Cardelli, and P. Curien. Formal parametric polymorphism.
In Proc. of POPL’93, pages 157–170. ACM, 1993.

B. Atkey, N. Ghani, and P. Johann. A relationally parametric model of
dependent type theory. 2014.

R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific lan-
guages. In Proc. of Haskell ’09, pages 37–48. ACM, 2009.

H. P. Barendregt. Lambda calculi with types. Handbook of logic in com-
puter science, 2:117–309, 1992.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure
type systems. In M. Hofmann, editor, FoSSaCS, volume 6604 of LNCS,
pages 108–122. Springer, 2011.

J.-P. Bernardy and G. Moulin. A computational interpretation of para-
metricity. In Proc. of the Symposium on Logic in Comp. Sci. IEEE, 2012.

J.-P. Bernardy and G. Moulin. Type-theory in color. In Proceeding of
the 18th ACM SIGPLAN international conference on Funct. Programming,
2013. To appear.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent
types. In Proc. of the 15th ACM SIGPLAN international conference on
Funct. programming, pages 345–356, Baltimore, Maryland, 2010. ACM.
doi: 10.1145/1863543.1863592.

A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In Proc. of ICFP 2008, pages 143–156. ACM, 2008.

T. Coquand and G. Huet. The calculus of constructions. Technical
report, INRIA, 1986.

A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation.
In Proc. of FPCA, pages 223–232. ACM, 1993.

- 45 -

P. Johann. A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbol. Comp., 15(4):273–300, 2002.

C. Keller and M. Lasson. Parametricity in an impredicative sort. In CSL,
pages 381–395, 2012.

N. R. Krishnaswami and D. Dreyer. Internalizing relational parametric-
ity in the extensional calculus of constructions. In CSL, pages 432–
451, 2013.

H. Mairson. Outline of a proof theory of parametricity. In Proc. of FPCA
1991, volume 523 of LNCS, pages 313–327. Springer-Verlag, 1991.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers Tekniska Högskola, 2007.

C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calcu-
lus of constructions. In POPL’89, pages 89–104. ACM, 1989.

F. Pfenning and C. Paulin-Mohring. Inductively defined types in the
calculus of constructions. In MFPS, volume 442 of LNCS, pages 209–
228. Springer, 1990.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. In
Proc. of TLCA, volume 664 of LNCS, page 361–375. Springer, 1993.

N. Pouillard. Nameless, painless. In Proc. of ICFP 2011, ICFP ’11, pages
320–332. ACM, 2011. to appear.

J. C. Reynolds. Types, abstraction and parametric polymorphism. In-
formation processing, 83(1):513–523, 1983.

J. Svenningsson. Scalable Program Analysis. Phd thesis, Chalmers
Tekniska Högskola, 2007.

The Coq development team. The Coq proof assistant, 2013.

P. Wadler. Theorems for free! In Proc. of FPCA 1989, pages 347–359.
ACM, 1989.

P. Wadler. The Girard–Reynolds isomorphism (second edition). Theor.
Comp. Sci., 375(1–3):201–226, 2007.

- 46 -

Appendix: Additional
proofs

Lemma 1. For each term A and each variable z not free in A, we have:

i) JAKξ,z 7→(z0,z1) = JAKξ , and

ii) {a}ξ,z 7→(z0,z1) ∈ JAKξ,z 7→(z0,z1) = {a}ξ ∈ JAKξ for all terms a.

Proof. By simultaneous induction on the structure of the raw term A.
Following the definition of our relational interpretation, we prove only
i) for the case of variable, lambda, relation introduction and applica-
tion; we prove ii) in the other cases, namely product, sort, and relation
elimination.

Variable ddxieen
�π

Jddxieen
�πKξ,z = JddxieenKξ,z �

π+1

= ddxiee1+n
�π+1

= JddxieenKξ �
π+1

= Jddxieen
�πKξ

Lambda λx̄ : Ā. B

Jλx̄ : Ā. BKξ,z = λx̄ : JĀKξ,z. JBKξ,z,x

= λx̄ : JĀKξ . JBKξ,x by IH

= Jλx̄ : Ā. BKξ

Lambda• λ• x̌ : Ǎ. B

Jλ• x̌ : Ǎ. BKξ,z = λ• x̌ : JǍKξ,z. JBKξ,z,x

= λ• x̌ : JǍKξ . JBKξ,x by IH

= Jλ• x̌ : Ǎ. BKξ

- 47 -

Application F ā

JF āKξ,z = JFKξ,z JāKξ,z

= JFKξ JāKξ by IH

= JF āKξ

Sort sn

{a}ξ,z ∈ JsnKξ,z =

(
{a}ξ,z
·

)
•→ s1+n

= {a}ξ ∈ JsnKξ

Product ∀x̄ : Ā. B

{a}ξ,z ∈ J∀x̄ : Ā. BKξ,z = ∀x̄ : JĀKξ,z. ({a}ξ,z (x̄/01...1)) ∈ JBKξ,z,x

= ∀x̄ : JĀKξ . ({a}ξ (x̄/01...1)) ∈ JBKξ,x by IH

= {a}ξ ∈ J∀x̄ : Ā. BKξ

Arrow• Ǎ
•→ sn

{a}ξ,z ∈ JǍ
•→ snKξ,z = (JǍKξ,z ⊕ {a}ξ,z)

•→ s1+n

= (JǍKξ ⊕ {a}ξ)
•→ s1+n by IH

= {a}ξ ∈ JǍ
•→ snKξ

Application• F•b̌

{a}ξ,z ∈ JF•b̌Kξ,z = JFKξ,z•(Jb̌Kξ ⊕ {a}ξ,z)

= JFKξ
•(Jb̌Kξ ⊕ {a}ξ) by IH

= {a}ξ ∈ JF•b̌Kξ

Lemma 2. For each term A : sm and each ρ of dimension at most m, we have:

JA �
ρ
ζKξ

= JAKξ �
1+ρ
ζ

Proof. By induction on the structure of raw term A.

Variable (1) ddxieen
�π , x ∈ ξ ∩ ζ

Jddxieen
�π �

ρ
ζKξ

= Jddxieen
�πKξ

= JddxieenKξ �
π+1

= ddx1ieen
�normaln((0...n)◦π+1)

= ddx1ieen
�normaln((0...n)◦π+1) �

ρ+1
ζ

= Jddxieen
�πKξ �

ρ+1
ζ

- 48 -

Variable (2) ddxieen
�π , x /∈ ξ, x ∈ ζ

Jddxieen
�π �

ρ
ζKξ

= Jddxieen
�πKξ

= JddxieenKξ �
π+1

= ddx0ieen
�normaln((0...n)◦π+1)

= ddx0ieen
�normaln((0...n)◦π+1) �

ρ+1
ζ

= Jddxieen
�πKξ �

ρ+1
ζ

Variable (3) ddxieen
�π , x ∈ ξ, x /∈ ζ

Jddxieen
�π �

ρ
ζKξ

= Jddxieen
�normaln(ρ◦π)Kξ

= ddx1ieen
�(0...n) �1+normaln(ρ◦π)

= ddx1ieen
�(0...n) �1+π �

1+ρ
ζ

= Jddxieen
�πKξ �

1+ρ
ζ

Variable (4) ddxieen
�π , x /∈ ξ, x /∈ ζ

Jddxieen
�π �

ρ
ζKξ

= Jddxieen
�normaln(ρ◦π)Kξ

= ddx0ieen
�(0...n) �1+normaln(ρ◦π)

= ddx0ieen
�(0...n) �1+π �

1+ρ
ζ

= Jddxieen
�πKξ �

1+ρ
ζ

Lambda λx̄ : Ā. B

J(λx̄ : Ā. B) �
ρ
ζKξ

= Jλx̄ : Ā �
ρ
ζ . B[x̄ �ρ /x̄] �

ρ
ζ,xKξ

= λx̄ : JĀ �
ρ
ζKξ

. JB[x̄ �ρ /x̄] �
ρ
ζ,xKξ,x

= λx̄ : JĀKξ �
1+ρ
ζ . JB[x̄ �ρ /x̄]Kξ,x �

1+ρ
ζ,x by IH

= λx̄ : JĀKξ �
1+ρ
ζ . JBKξ,x[x̄ �1+ρ /x̄] �

1+ρ
ζ,x

= (λx̄ : JĀKξ . JBKξ,x) �
1+ρ
ζ

= Jλx̄ : Ā. BKξ �
1+ρ
ζ

- 49 -

Lambda• λ• x̌ : Ǎ. B

J(λ• x̌ : Ǎ. B) �
ρ
ζKξ

= Jλ• x̌ : Ǎ �
ρ
ζ . B[x̌ �ρ /x̌] �

ρ
ζ,xKξ

= λ• x̌ : (JǍ �
ρ
ζKξ
⊕ {λ• x̌ : Ǎ �

ρ
ζ . B[x̌ �ρ /x̌] �

ρ
ζ,x}ξ

).

x01...1 ∈ JB[x̌ �ρ /x̌] �
ρ
ζ,xKξ,x

= λ• x̌ : (JǍKξ ⊕ {λ
• x̌ : Ǎ. B}ξ) �

1+ρ
ζ .

(x01...1 ∈ JBKξ,x)[x̌ �1+ρ /x̌] �
1+ρ
ζ,x

by IH

= (λ• x̌ : (JǍKξ ⊕ {λ
• x̌ : Ǎ. B}ξ). x01...1 ∈ JBKξ,x) �

1+ρ
ζ

= Jλ• x̌ : Ǎ. BKξ �
1+ρ
ζ

Application F ā

J(F ā) �
ρ
ζKξ

= JF �
ρ
ζ ā �ρ

ζKξ

= JF �
ρ
ζKξ

Jā �ρ
ζKξ

= JFKξ �
1+ρ
ζ JāKξ �

1+ρ
ζ by IH

= JF āKξ �
1+ρ
ζ

Sort sn

{a}ξ �
1+ρ
ζ ∈ Jsn �

ρ
ζKξ

= {a}ξ �
1+ρ
ζ ∈ JsnKξ

=

(
{a}ξ �

1+ρ
ζ

·

)
•→ s1+n

= ({a}ξ ∈ JsnKξ) �
1+ρ
ζ

Product ∀x̄ : Ā. B

{a}ξ �
1+ρ
ζ ∈ J(∀x̄ : Ā. B) �

ρ
ζKξ

= {a}ξ �
1+ρ
ζ ∈ J∀x̄ : Ā �ρ . B[x̄ �ρ /x̄] �

ρ
ζ,xKξ

= ∀x̄ : JĀ �ρKξ . ({a}ξ �
1+ρ
ζ (x̄/01...1)) ∈ JB[x̄ �ρ /x̄] �

ρ
ζ,xKξ,x

= ∀x̄ : JĀKξ �
1+ρ . ({a}ξ (x̄/01...1)) ∈ JBKξ,x)[x̄ �1+ρ /x̄] �

1+ρ
ζ by IH

= J∀x̄ : Ā. BKξ �
1+ρ
ζ

- 50 -

Arrow• Ǎ
•→ sn

{a}ξ �
1+ρ
ζ ∈ J(Ǎ

•→ sn) �
ρ
ζKξ

= {a}ξ �
1+ρ
ζ ∈ JǍ �

ρ
ζ

•→ snK
ξ

= (JǍ �
ρ
ζKξ
⊕ {a}ξ �

1+ρ
ζ)

•→ s1+n

= (JǍKξ ⊕ {a}ξ) �1+ρ •→ s1+n by IH

= ({a}ξ ∈ JǍ
•→ snKξ) �

1+ρ
ζ

Application• F•b̌

{a}ξ �
1+ρ
ζ ∈ J(F•b̌) �

ρ
ζKξ

= {a}ξ �
1+ρ
ζ ∈ JF �

ρ
ζ
•b̌ �ρK

ξ

= JF �
ρ
ζKξ

•(Jb̌ �
ρ
ζKξ
⊕ {a}ξ �

1+ρ
ζ)

= JFKξ �
1+ρ
ζ

•(Jb̌Kξ ⊕ {a}ξ) �
1+ρ
ζ by IH

= ({a}ξ ∈ JF•b̌Kξ) �
1+ρ
ζ

Lemma 3. For each term A, we have:

JJAKξKζ
= JJAKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

Proof. By structural induction on A.

- 51 -

Variable (1) ddzieen
�π , z ∈ ξ, z ∈ ζ

JJddzieen
�πKξKζ

= JJJziKξK
n �(0...n) �1+πK

ζ

= Jddz1ieen
�(0...n) �1+πKζ

= Jddz1ieenKζ �
(1...1+n) �2+π by Lem. 2

= JJz1iKζK
n �(0...n) �(1...1+n) �2+π

= ddz11ieen
�(0...n) �(1...1+n) �2+π

= ddz11ieen
�... �2+π

= ddz11ieen
�... �

(01)
ξ∩ζ �2+π

= ddz11ieen
�... �2+π �

(01)
ξ∩ζ

since 2 + π and (01) are disjoints

= JJz1iKξK
n �(0...n) �(1...1+n) �2+π �

(01)
ξ∩ζ

= Jddz1ieenKξ �
(1...1+n) �2+π �

(01)
ξ∩ζ

= Jddz1ieen
�(0...n) �1+πKξ �

(01)
ξ∩ζ by Lem. 2

= JJJziKζK
n �(0...n) �1+πK

ξ
�

(01)
ξ∩ζ

= JJddzieen
�πKζKξ

�
(01)
ξ∩ζ

= JJddzieen
�πKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

Variable (2) ddzieen
�π , z /∈ ξ, z ∈ ζ

JJddzieen
�πKξKζ

= Jddziee1+n
�1+πKζ

= JJziKζK
1+n �(0...1+n) �2+π

= ddz1iee1+n
�(0...1+n) �2+π

= ddz1iee1+n
�(1...1+n) �

(01)
z �2+π

since 2 + π and (01) are disjoints

= ddz1iee1+n
�(1...1+n) �2+π �

(01)
ξ∩ζ

= Jddz1ieen
�(0...n) �1+πKξ �

(01)
ξ∩ζ

= JJJziKζK
n �(0...n) �1+πK

ξ
�

(01)
ξ∩ζ

= JJddzieen
�πKζKξ

�
(01)
ξ∩ζ

= JJddzieen
�πKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

- 52 -

Variable (3) ddzieen
�π , z ∈ ξ, z /∈ ζ

JJddzieen
�πKξKζ

= Jddz1ieen
�(0...n) �1+πKζ

= ddz1iee1+n
�(1...1+n) �2+π

= ddz1iee1+n
�(0...1+n) �

(01)
z �2+π

since 2 + π and (01) are disjoints

= ddz1iee1+n
�(0...1+n) �2+π �

(01)
ξ∩ζ

= Jddziee1+n
�1+πKξ �

(01)
ξ∩ζ

= JJddzieen
�πKζKξ

�
(01)
ξ∩ζ

= JJddzieen
�πKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

Variable (4) ddzieen
�π , z /∈ ξ, z /∈ ζ

JJddzieen
�πKξKζ

= ddziee2+n
�2+π

since dim (01) < 2

= ddziee2+n
�

(01)
ξ∩ζ �2+π

since 2 + π and (01) are disjoints

= ddziee2+n
�2+π �

(01)
ξ∩ζ

= JJddzieen
�πKζKξ

�
(01)
ξ∩ζ

= JJddzieen
�πKζKξ

[x̄ �(01) /x̄ | x ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

Lambda λx̄ : Ā. B

JJλx̄ : Ā. BKξKζ
= λx̄ : JJĀKξKζ

. JJBKξ,xKζ,x

= λx̄ : JJĀKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ .

JJBKζ,xKξ,x
[z̄ �(01) /z̄ | z ∈ (ξ ∩ ζ) ∪ {x}] �(01)

(ξ∩ζ)∪{x}

by IH

= λx̄ : JJĀKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ .

JJBKζ,xKξ,x
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

= (λx̄ : JJĀKζKξ
. JJBKζ,xKξ,x

)[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �
(01)
ξ∩ζ

= JJλx̄ : Ā. BKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

- 53 -

Lambda• λ• x̌ : Ǎ. B

JJλ• x̌ : Ǎ. BKξKζ

= λ• x̌ : Č. JJBKζ,xKξ,x
•

(
x001...1 x011...1
x101...1 ·

)
= λ• x̌ : Č. JJBKζ,xKξ,x

[z̄ �(01) /z̄ | z ∈ (ξ ∩ ζ) ∪ {x}] �(01)
(ξ∩ζ)∪{x} •(

x001...1 x011...1
x101...1 ·

) by IH

= λ• x̌ : Č′[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �
(01)
ξ∩ζ .(

JJBKζ,xKξ,x
•

(
x001...1 x011...1
x101...1 ·

))
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

=

(
λ• x̌ : Č′. JJBKζ,xKξ,x

•

(
x001...1 x011...1
x101...1 ·

))
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

= JJλ• x̌ : Ǎ. BKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

Where

Č =

00i 7→ {{Ai}ξ}ζ

10i 7→ J{Ai}ξKζ

01i 7→ {JAiKξ}ζ
11i 7→ JJAiKξKζ

001...1 7→ {{λ• x̌ : Ǎ. B}ξ}ζ
101...1 7→ J{λ• x̌ : Ǎ. B}ξKζ

011...1 7→ {λ• x̌ : (JǍKξ ⊕ {λ
• x̌ : Ǎ. B}ξ). x01...1 ∈ JBKξ,x}ζ

= Č′[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ by IH

and

Č′ =

00i 7→ {{Ai}ζ}ξ

10i 7→ J{Ai}ζKξ

01i 7→ {JAiKζ}ξ
11i 7→ JJAiKζKξ

001...1 7→ {{λ• x̌ : Ǎ. B}ζ}ξ
101...1 7→ J{λ• x̌ : Ǎ. B}ζKξ

011...1 7→ {λ• x̌ : (JǍKζ ⊕ {λ
• x̌ : Ǎ. B}ζ). x01...1 ∈ JBKζ,x}ξ

Application F ā

JJF āKξKζ
= JJFKξKζ

JJāKξKζ

= JJFKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

JJāKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

by IH

= JJF āKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

- 54 -

Sort sn

{{a}ξ}ζ
∈ JJsnKξKζ

=

(
{{a}ξ}ζ

{JaKξ}ζ

J{a}ξKζ
·

)
•→ sn+2

=

((
{{a}ζ}ξ

{JaKζ}ξ

J{a}ζKξ
·

)
•→ sn+2

)
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ

= ({{a}ζ}ξ
∈ JJsnKζKξ

[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ]) �
(01)
ξ∩ζ

Product ∀x̄ : Ā. B

{{a}ξ}ζ
∈ JJ∀x̄ : Ā. BKξKζ

= ∀x̄ : JJĀKξKζ
. JJB̄Kξ,xKζ,x

•

(
{{a}ξ}ζ

(x̄/001...1) {JaKξ}ζ
(x̄/011...1)

J{a}ξKζ
(x̄/101...1) ·

)
= ∀x̄ : JJĀKξKζ

[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �
(01)
ξ∩ζ .(

JJB̄Kξ,xKζ,x
•

(
{{a}ξ}ζ

(x̄/001...1) {JaKξ}ζ
(x̄/011...1)

J{a}ξKζ
(x̄/101...1) ·

))
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ ∪ {x}] �(01)

ξ∩ζ∪{x}

by IH

= ({{a}ζ}ξ
∈ JJ∀x̄ : Ā. BKζKξ

[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ]) �
(01)
ξ∩ζ

Arrow• Ǎ
•→ sn

{{a}ξ}ζ
∈ JJǍ

•→ snKξKζ

= Č
•→ s2+n

= (Č′
•→ s2+n)[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ]) �

(01)
ξ∩ζ

= ({{a}ζ}ξ
∈ JJǍ

•→ snKζKξ
[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ]) �

(01)
ξ∩ζ

Where

Č =

00i 7→ {{Ai}ξ}ζ

10i 7→ J{Ai}ξKζ

01i 7→ {JAiKξ}ζ
11i 7→ JJAiKξKζ

001...1 7→ {{a}ξ}ζ
101...1 7→ J{a}ξKζ

011...1 7→ {JaKξ}ζ

= Č′[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ by IH

and

Č′ =

00i 7→ {{Ai}ζ}ξ

10i 7→ J{Ai}ζKξ

01i 7→ {JAiKζ}ξ
11i 7→ JJAiKζKξ

001...1 7→ {{a}ζ}ξ
101...1 7→ J{a}ζKξ

011...1 7→ {JaKζ}ξ

- 55 -

Application• F•Ǎ

{{a}ξ}ζ
∈ JJF•ǍKξKζ

= JJFKξKζ
•Č

= ({{a}ζ}ξ
∈ JF•ǍKξ [z̄ �(01) /z̄ | z ∈ ξ ∩ ζ]) �

(01)
ξ∩ζ

Where

Č =

00i 7→ {{Ai}ξ}ζ

10i 7→ J{Ai}ξKζ

01i 7→ {JAiKξ}ζ
11i 7→ JJAiKξKζ

001...1 7→ {{a}ξ}ζ
101...1 7→ J{a}ξKζ

011...1 7→ {JaKξ}ζ

= Č′[z̄ �(01) /z̄ | z ∈ ξ ∩ ζ] �

(01)
ξ∩ζ by IH

and

Č′ =

00i 7→ {{Ai}ζ}ξ

10i 7→ J{Ai}ζKξ

01i 7→ {JAiKζ}ξ
11i 7→ JJAiKζKξ

001...1 7→ {{a}ζ}ξ
101...1 7→ J{a}ζKξ

011...1 7→ {JaKζ}ξ

Lemma 4 (J·K and substitution, part 1). For each term A, and each variable
z not in ξ, we have:

i) JA[u/zi]Kξ = JAKξ,z[{u}ξ /z0i][JuKξ /z1i], and

ii) {a[u/zi]}ξ ∈ JA[u/zi]Kξ = ({a}ξ,z ∈ JAKξ,z)[{u}ξ /z0i][JuKξ /z1i].

Proof. By simultaneous induction on the structure of A.

Variable (1) ddzieen
�π

Jddzieen
�π [u/zi]Kξ = JJuKn �πKξ

= JddueenKξ �
π+1 by Lem. 2

= JJuKξK
n �(0...n) �π+1 by Cor. 1

= ddz1ieen
�(0...n) �π+1[{u}ξ /z0i][JuKξ /z1i]

= JJziKξ,zK
n �(0...n) �π+1[{u}ξ /z0i][JuKξ /z1i]

= JddzieenKξ,z �
π+1[{u}ξ /z0i][JuKξ /z1i]

= Jddzieen
�πKξ,z 7→(z0,z1)[{u}ξ /z0i][JuKξ /z1i] by Lem. 2

Variable (2) ddxjeen
�π , with x 6= z

Jddxjeen
�π [u/zi]Kξ

= Jddxjeen
�πK

ξ

= Jddxjeen
�πK

ξ
[{u}ξ /z0i][JuKξ /z1i]

= Jddxjeen
�πK

ξ,z 7→(z0,z1)
[{u}ξ /z0i][JuKξ /z1i] by Lem. 1

- 56 -

Lambda λx̄ : Ā. B

J(λx̄ : Ā. B)[u/zi]Kξ = Jλx̄ : Ā[u/zi]. B[u/zi]Kξ

= λx̄ : JĀ[u/zi]Kξ . JB[u/zi]Kξ,x

= λx̄ : JĀKξ,z[{u}ξ /z0i][JuKξ /z1i].

JBKξ,x,z[{u}ξ /z0i][JuKξ /z1i]

by IH

= Jλx̄ : Ā. BKξ,z 7→(z0,z1)[{u}ξ /z0i][JuKξ /z1i]

Lambda• λ• x̌ : Ǎ. B

J(λ• x̌ : Ǎ. B)[u/zi]Kξ

= Jλ• x̌ : Ǎ[u/zi]. B[u/zi]Kξ

= λ• x̌ : (JǍ[u/zi]Kξ ⊕ {λ
• x̌ : Ǎ[u/zi]. B[u/zi]}ξ). x01...1 ∈ JB[u/zi]Kξ,x

= λ• x̌ : (JǍKξ ⊕ {λ
• x̌ : Ǎ[u/zi]. B[u/zi]}ξ).

x01...1 ∈ JB[u/zi]Kξ,x

= λ• x̌ : (JǍKξ,z ⊕ λ• x̌ : Ǎ. B)[{u}ξ /z0i][JuKξ /z1i].

(x01...1 ∈ JBKξ,x,z)[{u}ξ /z0i][JuKξ /z1i]

by IH

= (λ• x̌ : (JǍKξ,z ⊕ {λ
• x̌ : Ǎ. B}ξ,z). x01...1 ∈ JBKξ,x,z)

[{u}ξ /z0i][JuKξ /z1i]

= Jλ• x̌ : Ǎ. BKξ,z[{u}ξ /z0i][JuKξ /z1i]

Application F ā

J(F ā)[u/zi]Kξ = JF[u/zi] ā[u/zi]Kξ

= JF[u/zi]Kξ Jā[u/zi]Kξ

= JFKξ,z[{u}ξ /z0i][JuKξ /z1i] JāKξ,z[{u}ξ /z0i][JuKξ /z1i] by IH

= (JFKξ,z JāKξ,z)[{u}ξ /z0i][JuKξ /z1i]

= JF āKξ,z[{u}ξ /z0i][JuKξ /z1i]

Sort sn

{a[u/zi]}ξ ∈ Jsn[u/zi]Kξ =

(
{a}ξ,z[{u}ξ /z0i]

·

)
•→ s1+n

= ({a}ξ,z ∈ JsnKξ,z)[{u}ξ /z0i][JuKξ /z1i]

Product ∀x̄ : Ā. B

{a[u/zi]}ξ ∈ J(∀x̄ : Ā. B)[u/zi]Kξ

= ∀x̄ : JĀ[u/zi]Kξ . ({a[u/zi]}ξ (x̄/01...1)) ∈ JB[u/zi]Kξ,x,z

= (∀x̄ : JĀKξ,z. ({a}ξ,z (x̄/01...1)) ∈ JBKξ,x,z)[{u}ξ /z0i][JuKξ /z1i] by IH

= ({a}ξ,z ∈ J∀x̄ : Ā. BKξ,z)[{u}ξ /z0i][JuKξ /z1i]

- 57 -

Arrow• Ǎ
•→ sn

{a[u/zi]}ξ ∈ J(Ǎ
•→ sn)[u/zi]Kξ

= (JǍ[u/zi]Kξ ⊕ {a[u/zi]}ξ)
•→ s1+n

= ((JǍKξ,z ⊕ {a}ξ,z)
•→ s1+n)[{u}ξ /z0i][JuKξ /z1i] by IH

= ({a}ξ,z ∈ JǍ
•→ snKξ,z)[{u}ξ /z0i][JuKξ /z1i]

Application• F•b̌

{a[u/zi]}ξ ∈ J(F•b̌)[u/zi]Kξ

= JF[u/zi]Kξ
•(Jb̌[u/zi]Kξ ⊕ {a[u/zi]}ξ)

= JFKξ,z[{u}ξ /z0i][JuKξ /z1i]•(Jb̌Kξ,z ⊕ {a}ξ,z)[{u}ξ /z0i][JuKξ /z1i] by IH

= ({a}ξ,z ∈ JF•b̌Kξ,z)[{u}ξ /z0i][JuKξ /z1i]

Lemma 5 (J·K and substitution, part 2). For each term A, for variable z not
free in A or contained in ξ, we have:

i) JA[u/zi]Kξ = JAKξ [{u}ξ /z0i], and

ii) {a[u/zi]}ξ ∈ JA[u/zi]Kξ = ({a}ξ ∈ JAKξ)[{u}ξ/z0i].

Proof. By simultaneous induction on the structure of A.

Variable (1) ddzieen
�π Impossible.

Variable (2) ddxjeen
�π , with x 6= z

Jddxjeen
�π [u/zi]Kξ

= Jddxjeen
�πK

ξ

= Jddxjeen
�πK

ξ
[{u}ξ /z0i]

Lambda λx̄ : Ā. B

J(λx̄ : Ā. B)[u/zi]Kξ = Jλx̄ : Ā[u/zi]. B[u/zi]Kξ

= λx̄ : JĀ[u/zi]Kξ . JB[u/zi]Kξ,x

= λx̄ : JĀKξ [{u}ξ /z0i]. JBKξ,x[{u}ξ /z0i] by IH

= Jλx̄ : Ā. BKξ [{u}ξ /z0i]

- 58 -

Lambda• λ• x̌ : Ǎ. B

J(λ• x̌ : Ǎ. B)[u/zi]Kξ

= Jλ• x̌ : Ǎ[u/zi]. B[u/zi]Kξ

= λ• x̌ : (JǍ[u/zi]Kξ ⊕ {λ
• x̌ : Ǎ[u/zi]. B[u/zi]}ξ). x01...1 ∈ JB[u/zi]Kξ,x

= λ• x̌ : (JǍKξ ⊕ {λ
• x̌ : Ǎ. B}ξ)[{u}ξ /z0i].

(x01...1 ∈ JBKξ,x)[{u}ξ /z0i]

by IH

= Jλ• x̌ : Ǎ. BKξ [{u}ξ /z0i]

Application F ā

J(F ā)[u/zi]Kξ = JF[u/zi] ā[u/zi]Kξ

= JF[u/zi]Kξ Jā[u/zi]Kξ

= JFKξ [{u}ξ /z0i] JāKξ [{u}ξ /z0i] by IH

= (JFKξ JāKξ)[{u}ξ /z0i]

= JF āKξ [{u}ξ /z0i]

Sort sn

{a[u/zi]}ξ ∈ Jsn[u/zi]Kξ =

(
{a}ξ [{u}ξ /z0i]

·

)
•→ s1+n

= ({a}ξ ∈ JsnKξ)[{u}ξ /z0i]

Product ∀x̄ : Ā. B

{a[u/zi]}ξ ∈ J(∀x̄ : Ā. B)[u/zi]Kξ

= ∀x̄ : JĀ[u/zi]Kξ . ({a[u/zi]}ξ (x̄/01...1)) ∈ JB[u/zi]Kξ,x

= (∀x̄ : JĀKξ . ({a}ξ (x̄/01...1)) ∈ JBKξ,x)[{u}ξ /z0i] by IH

= ({a}ξ ∈ J∀x̄ : Ā. BKξ)[{u}ξ /z0i]

Arrow• Ǎ
•→ sn

{a[u/zi]}ξ ∈ J(Ǎ
•→ sn)[u/zi]Kξ

= (JǍ[u/zi]Kξ ⊕ {a[u/zi]}ξ)
•→ s1+n

= ((JǍKξ ⊕ {a}ξ)
•→ s1+n)[{u}ξ /z0i] by IH

= ({a}ξ ∈ JǍ
•→ snKξ)[{u}ξ /z0i]

Application• F•b̌

{a[u/zi]}ξ ∈ J(F•b̌)[u/zi]Kξ

= JF[u/zi]Kξ
•(Jb̌[u/zi]Kξ ⊕ {a[u/zi]}ξ)

= JFKξ [{u}ξ /z0i][JuKξ /z1i]•(Jb̌Kξ ⊕ {a}ξ)[{u}ξ /z0i] by IH

= ({a}ξ ∈ JF•b̌Kξ)[{u}ξ /z0i]

- 59 -

Lemma 6 (Symmetry). For each term A, JAKn is symmetric in its n first
dimensions. More specifically,

i) JAKn
ξ �π

ξ = JAKn
ξ �

normaln(π)
ξ , and

ii) (a ∈ JAKn
ξ) �π

ξ = (a ∈ JAKn
ξ) �

normaln(π)
ξ

Proof. By simultaneous induction on the structure of A.

Variable (1) ddxieem
�ρ, x ∈ ξ

Jddxieem
�ρKn

ξ �π
ξ = ddx1...1ieem

�n+(0...m) �n+ρ �π
ξ

= ddx1...1ieem
�n+(0...m) �n+ρ

= Jddxieem
�ρKn

ξ �
normaln(π)
ξ

Variable (2) ddxieem
�ρ, x /∈ ξ

Jddxieem
�ρKn

ξ �π
ξ = ddxieen+m

�n+ρ �π
ξ

= ddxieen+m
�normaln+m((n+ρ)◦π)

since n + ρ and (0 . . . n− 1) are disjoint

= ddxieen+m
�normaln+m((n+ρ)◦normaln(π))

= Jddxieem
�ρKn

ξ �
normaln(π)
ξ

Lambda (Lambda• is similar) λx̄ : Ā. B

Jλx̄ : Ā. BKn
ξ �π

ξ = λx̄ : JĀKn
ξ �π

ξ . JBKn
ξ,x[x̄ �π /x̄] �π

ξ,x

= λx̄ : JĀKn
ξ �

normaln(π)
ξ . JBKn

ξ,x[x̄ �π /x̄] �
normaln(π)
ξ,x by IH

= λx̄ : JĀKn
ξ �

normaln(π)
ξ . JBKn

ξ,x[x̄ �normaln(π) /x̄] �
normaln(π)
ξ,x

= Jλx̄ : Ā. BKn
ξ �

normaln(π)
ξ

Application (Application• is similar) F ā

JF āKn
ξ �π

ξ = λx̄ : JF̄Kn
ξ �π

ξ . JaKn
ξ �π

ξ

= λx̄ : JF̄Kn
ξ �

normaln(π)
ξ . JaKn

ξ �
normaln(π)
ξ,x by IH

= Jλx̄ : Ā. BKn
ξ �

normaln(π)
ξ

- 60 -

Product (Arrow• is similar) ∀x̄ : Ā. B

(C ∈ J∀x̄ : Ā. BKn
ξ) �π

ξ

= ∀x̄ : JĀKn
ξ �π

ξ . (C x̄ ∈ JBKn
ξ,x)[x̄ �π /x̄] �π

ξ,x

= ∀x̄ : JĀKn
ξ �

normaln(π)
ξ . (C x̄ ∈ JBKn

ξ,x)[x̄ �π /x̄] �
normaln(π)
ξ,x by IH

= ∀x̄ : JĀKn
ξ �

normaln(π)
ξ . (C x̄ ∈ JBKn

ξ,x)[x̄ �normaln(π) /x̄] �
normaln(π)
ξ,x

= (C ∈ J∀x̄ : Ā. BKn
ξ) �

normaln(π)
ξ

Sort s
The result (C ∈ JsKn

ξ) �π
ξ = (C ∈ JsKn

ξ) �
normaln(π)
ξ stems from an easy in-

duction on n.

Lemma 12 (Generalized abstraction). Assuming that ξ conforms to Γ,
i) Γ ` A : B ⇒ JΓKξ ` JAKξ : {A}ξ ∈ JBKξ

ii) Γ ` A : B ⇒ JΓKξ ` {A}ξ : {B}ξ

iii) Γ ` B : sn ⇒ JΓKξ , x : B ` x ∈ JBKξ : sn+1

Proof. The lemmas are proved by transforming derivation trees. They
mutually depend on each other, (but only for structurally smaller state-
ments, hence the recursion is sound). For each lemma, each rule is
treated. The rule being handled is written before the corresponding
part of the resulting derivation.
In the proofs, the application of each sub-lemma to an arbitrary deriva-
tion Γ ` A : B are written as follows:

i) JΓ ` A : BKξ

ii) |Γ ` A : B|ξ

iii) {Γ ` A : B}ξ

We only give further details for the two first items in the following; iii)
stemming from simple application of induction hypotheses.

- 61 -

i)
Γ
`

A
:B
⇒

JΓ
K ξ
`

JA
K ξ

:{
A
} ξ
∈

JB
K ξ

A
xi

om
;R

el
-E

li
m

;R
el

-F
or

m
;P

ro
du

ct
In

th
is

ca
se

,t
he

de
fin

it
io

n
of

JA
K ξ

fa
lls

th
ro

ug
h:

a
ne

w
re

la
ti

on
is

in
tr

od
uc

ed
.

T
he

pr
oo

f
re

lie
s

on
th

e
ne

xt
su

b-
le

m
m

a.

Γ
`
A

:
s

|Γ
`
A

:
s|
ξ

JΓ
K ξ
,z

0
:
A
`
z 0
∈

JA
K ξ

:
s

{Γ
`
A

:
s}
ξ

JΓ
K ξ
`
A

:
s

JΓ
K ξ
`
λ•
ž

:
A
.z

0
∈

JA
K ξ

:
A

• →
s

R
e
l-
I

JΓ
K ξ
`

JA
K ξ

:
A
∈

Js
K ξ

d
e
f

W
ea

ke
ni

ng

Γ
`
A

:
B

Γ
`
C

:
s

Γ
,x

:
C
`
A

:
B

w
k

-x
/∈

ξ

JΓ
`
A

:
B

K ξ
JΓ

K ξ
`

JA
K ξ

:
A
∈

JB
K ξ

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

JΓ
K ξ
,x

:
C
`

JA
K ξ

:
A
∈

JB
K ξ

w
k

JΓ
,x

:
C

K ξ
`

JA
K ξ

:
A
∈

JB
K ξ

d
e
f

- 62 -

-x
∈

ξ

JΓ
`
A

:
B

K ξ

JΓ
K ξ
`

JA
K ξ

:
A
∈

JB
K ξ

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

JΓ
K ξ
,x

0
:
C
`

JA
K ξ

:
A
∈

JB
K ξ

w
k

JΓ
`
C

:
sK
ξ

JΓ
K ξ
`

JC
K ξ

:
C
∈

Js
K ξ

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

JΓ
K ξ
,x

0
:
C
`

JC
K ξ

:
C
∈

Js
K ξ

w
k

JΓ
K ξ
,x

0
:
C
`

JC
K ξ

:
C

• →
s

d
e
f

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

JΓ
K ξ
,x

0
:
C
`
x
0

:
C

st

JΓ
K ξ
,x

0
:
C
`

JC
K ξ

•
x
0

:
s

a
p
p

JΓ
K ξ
,x̄

:

(C JC
K ξ

) `
JA

K ξ
:
A
∈

JB
K ξ

w
k

JΓ
,x

:
C

K ξ
`

JA
K ξ

:
A
∈

JB
K ξ

d
e
f

- 63 -

R
el

-I
nt

ro
Γ
,ž

:
Ǎ
`
B

:
s

Γ
`
Ǎ

:
s

Γ
`

(λ
•
ž

:
Ǎ
.B

)
:
Ǎ

• →
s

R
e
l-
I

|Γ
,ž

:
Ǎ
`
B

:
s|
ξ

JΓ
K ξ
,ž

:
Ǎ
,z

0
1
..
.1

:
B
`
z 0

1
..
.1
∈

JB
K ξ

:
s

JΓ
K ξ
,ž

:
(J
Ǎ

K ξ
⊕

(λ
•
ž

:
Ǎ
.B

))
`
z 0

1
..
.1
∈

JB
K ξ

:
s

w
k

JΓ
K ξ
`

(J
Ǎ

K ξ
⊕

(λ
•
ž

:
Ǎ
.B

))
:
s

JΓ
K ξ
`

(λ
•
ž

:
(J
Ǎ

K ξ
⊕

(λ
•
ž

:
Ǎ
.B

))
.z

0
1
..
.1
∈

JB
K ξ

)
:
((

JǍ
K ξ
⊕

(λ
•
ž

:
Ǎ
.B

))
• →
s)

R
e
l-
I

JΓ
K ξ
`

Jλ
•
ž

:
Ǎ
.B

K ξ
:

(λ
•
ž

:
Ǎ
.B
∈

JǍ
• →
sK
ξ
)

d
e
f

A
pp

li
ca

ti
on

Γ
`
F

:
(∀
x̄

:
Ā
.B

)
Γ
`
ā

:
Ā

Γ
`
F
ā

:
B

[x
7→
ā
]

a
p
p

JΓ
`
F

:
(∀
x̄

:
Ā
.B

)K
ξ

JΓ
K ξ
`

JF
K ξ

:
F
∈

J∀
x̄

:
Ā
.B

K ξ
JΓ

K ξ
`

JF
K ξ

:
(∀
x̄

:
JĀ

K ξ
.(
F
x̄

)
∈

JB
K ξ
,x

)
d
e
f

JΓ
`
ā

:
Ā

K ξ
JΓ

K ξ
`

Jā
K ξ

:
JĀ

K ξ
JΓ

K ξ
`

JF
K ξ

Jā
K ξ

:
((
F
x̄

)
∈

JB
K ξ
,x

)[
x̄
7→
ā
]

a
p
p

JΓ
K ξ
`

JF
K ξ

Jā
K ξ

:
(F

ā
)
∈

JB
[x̄
7→
ā
]K
ξ

L
e
m
.
4

JΓ
K ξ
`

JF
ā
K ξ

:
(F

ā
)
∈

JB
[x̄
7→
ā
]K
ξ

d
e
f

A
bs

tr
ac

ti
on

Γ
,z

:
Ā
`
b

:
B

Γ
`

(∀
x̄

:
Ā
.B

)
:
s

Γ
`

(λ
z̄

:
Ā
.b

)
:
(∀
x̄

:
Ā
.B

)
a
b
s

- 64 -

JΓ
,z

:
Ā
`
b

:
B

K ξ
,z

JΓ
,z

:
Ā

K ξ
,z
`

Jb
K ξ
,z

:
b
∈

JB
K ξ
,z

JΓ
K ξ
,z

:
JĀ

K ξ
`

Jb
K ξ
,z

:
b
∈

JB
K ξ
,z

d
e
f

JΓ
K ξ
`

(∀
z̄

:
JĀ

K ξ
.b
∈

JB
K ξ
,z

)
:
s

JΓ
K ξ
`

(λ
z̄

:
JĀ

K ξ
.J
bK
ξ
,z

)
:
(∀
z̄

:
JĀ

K ξ
.b
∈

JB
K ξ
,z

)
a
b
s

JΓ
K ξ
`

Jλ
z̄

:
Ā
.b

K ξ
:

(λ
z̄

:
Ā
.b

)
∈

J∀
z̄

:
Ā
.B

K ξ
d
e
f

C
on

ve
rs

io
n

Γ
`
A

:
B

′
Γ
`
B

:
s
B

′
=
β
B

Γ
`
A

:
B

c
o
n
v

JΓ
`
A

:
B

′ K
ξ

JΓ
K ξ
`

JA
K ξ

:
A
∈

JB
′ K
ξ

|Γ
`
B

:
s|
ξ

JΓ
K ξ
,x

:
B
`
x
∈

JB
K ξ

:
s

{Γ
`
A

:
B

′ }
ξ

JΓ
K ξ
`
A

:
B

′
{Γ
`
B

:
s}
ξ

JΓ
K ξ
`
B

:
s
B

′
=
β
B

JΓ
K ξ
`
A

:
B

c
o
n
v

JΓ
K ξ
`
A
∈

JB
K ξ

:
s

su
b
st

B
′

=
β
B

A
∈

JB
′ K
ξ

=
β
A
∈

JB
K ξ

L
e
m
.
9

JΓ
K ξ
`

JA
K ξ

:
A
∈

JB
K ξ

c
o
n
v

St
ar

t
Γ
`
A

:
s

Γ
,x

:
A
`
x

:
A

st

- 65 -

-x
/∈

ξ
Si

nc
e

ξ
co

nf
or

m
s

to
Γ,

no
va

ri
ab

le
of

ξ
is

in
Γ.

Γ
`
A

:
s

Γ
,x

:
A
`
x

:
A

st

Γ
,x

:
A
`
ddx
eed

:
x
∈

JA
K

pa
r
a
m

JΓ
K ξ
,x

:
A
`
ddx
eed

:
x
∈

JA
K ξ

(c
o
n
fo
rm

s)

JΓ
,x

:
A

K ξ
`

Jx
K ξ

:
x
∈

JA
K ξ

d
e
f

-x
∈

ξ

|Γ
`
A

:
s|
ξ

JΓ
K ξ
,x

0
:
A
`
x
0
∈

JA
K ξ

:
s

JΓ
K ξ
,x

0
:
A
,x

1
:
x
0
∈

JA
K ξ
`
x
1

:
x
0
∈

JA
K ξ

st

JΓ
,x

:
A

K ξ
`

Jx
K ξ

:
x
∈

JA
K ξ

d
e
f

Pa
ra

m

Γ
`
x

:
A

Γ
`
ddx
eed

:
x
∈

JA
K

pa
r
a
m

- 66 -

JΓ
`
x

:
A

K ξ

JΓ
K ξ
`

Jx
K ξ

:
x
∈

JA
K ξ

JΓ
K ξ
`
ddJ
x
K ξ
eed

+
1

:
Jx

K ξ
∈

Jx
∈

JA
K ξ

K
pa

r
a
m

JΓ
K ξ
`

Jdd
xee

d
K ξ

:
(J
x
K ξ
∈

Jx
∈

JA
K ξ

K)
d
e
f

JΓ
K ξ
`
ddx
eed
∈

Jx
∈

JA
KK
ξ

:
s

E
q
.

(7
)

JJ
A

KK
ξ

=
β

JJ
A

K ξ
K

JJ
A

KK
ξ
•

(x
Jx

K
Jx

K ξ
·

) =
β

(J
JA

K ξ
K•
(x

Jx
K

Jx
K ξ

·

))

β
-R

e
l
-E

l
im

(dd
xee

d
∈

Jx
∈

JA
KK
ξ
)

=
β

(J
x
K ξ
∈

Jx
∈

JA
K ξ

K)
d
e
f

JΓ
K ξ
`

Jdd
xee

d
K ξ

:
ddx
eed
∈

Jx
∈

JA
KK
ξ

c
o
n
v

ii)
Γ
`

B
:s

n
⇒

JΓ
K ξ

,x
:{

B
} ξ
`

x
∈

JB
K ξ

:s
n+

1

A
xi

om
`
s 1

:
s 2

a
x

- 67 -

`
s 1

:
s 2

a
x

x
:
s 1
`
x

:
s 1

st

x
:
s 1
`
x

:
s 1

d
e
f

x
:
s 1
`
x

• →
s 1

:
s 2

R
e
l-
F

x
:
s 1
`
x
∈

Js
1
K ξ

:
s 2

d
e
f

St
ar

t

Γ
`
s

:
s 2

Γ
,y

:
s
`
y

:
s

st

-y
/∈

ξ

Γ
`
s

:
s 2

Γ
,y

:
s
`
y

:
s

st

Γ
,y

:
s
`
ddy
eed

:
y
∈

Js
K

pa
r
a
m

Γ
`
s

:
s 2

Γ
,y

:
s
`
y

:
s

st

Γ
,y

:
s,
x

:
y
`
ddy
eed

:
y
∈

Js
K

w
k

Γ
,y

:
s,
x

:
y
`
ddy
eed

:
y

• →
s

d
e
f

Γ
`
s

:
s 2

Γ
,y

:
s
`
y

:
s

st

Γ
,y

:
s,
x

:
y
`
x

:
y

st

Γ
,y

:
s,
x

:
y
`
ddy
eed

•
x

:
s

R
e
l-
E

JΓ
K ξ
,y

:
s,
x

:
y
`
ddy
eed

•
x

:
s

(c
o
n
fo
rm

s)

JΓ
,y

:
sK
ξ
,x

:
y
`
x
∈

Jy
K ξ

:
s

d
e
f

- 68 -

-y
∈

ξ

Γ
,y

:
s,
y 1

:
y

• →
s,
x

:
y
`
y 1

:
y

• →
s

Γ
,y

:
s,
y 1

:
y

• →
s
`
y

:
s

Γ
,y

:
s,
y 1

:
y

• →
s,
x

:
y
`
x

:
y

st

JΓ
K ξ
,y

:
s,
y 1

:
y

• →
s,
x

:
y
`
y 1

•
x

:
s

R
e
l-
E

JΓ
,y

:
sK
ξ
,x

:
y
`
x
∈

Jy
K ξ

:
s

d
e
f

W
ea

ke
ni

ng
Γ
`
B

:
s

Γ
`
C

:
s

Γ
,y

:
C
`
B

:
s

w
k

-y
/∈

ξ

|Γ
`
B

:
s|
ξ

JΓ
K ξ
,x

:
B
`
x
∈

JB
K ξ

:
s

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

JΓ
K ξ
,y

:
C
,x

:
B
`
x
∈

JB
K ξ

:
s

t
h
in
n
in
g

JΓ
,y

:
C

K ξ
,x

:
B
`
x
∈

JB
K ξ

:
s

d
e
f

-y
∈

ξ

|Γ
`
B

:
s|
ξ

JΓ
K ξ
,x

:
B
`

JA
K ξ

:
A
∈

JB
K ξ

{Γ
`
C

:
s}
ξ

JΓ
K ξ
`
C

:
s

|Γ
`
C

:
s|
ξ

JΓ
K ξ
,y

:
C
`
y
∈

JC
K ξ

:
s

JΓ
K ξ
,y

:
C
,y

1
:
y
∈

JC
K ξ
,x

:
B
`
x
∈

JB
K ξ

:
s

t
h
in
n
in
g

JΓ
,y

:
C

K ξ
,x

:
B
`
x
∈

JB
K ξ

:
s

d
e
f

- 69 -

R
el

-E
li

m
Γ
`
F

:
Ǎ

• →
s

Γ
`
ǎ

:
Ǎ

Γ
`
F

•
ǎ

:
s

R
e
l-
E

JΓ
`
F

:
Ǎ

• →
sK
ξ

JΓ
K ξ
`

JF
K ξ

:
F
∈

JǍ
• →
sK
ξ

{Γ
`
F

•
ǎ

:
s}
ξ

JΓ
K ξ
`
F

•
ǎ

:
s

JΓ
K ξ
,z

0
:
F

•
ǎ
`

JF
K ξ

:
F
∈

JǍ
• →
sK
ξ

w
k

JΓ
K ξ
,z

0
:
F

•
ǎ
`

JF
K ξ

:
(J
Ǎ

K ξ
⊕
F

)
• →
s

d
e
f

JΓ
K ξ
,z

0
:
F

•
ǎ
`

Jǎ
:
Ǎ

K ξ

{Γ
`
F

•
ǎ

:
s}
ξ

JΓ
K ξ
,z

0
`
F

•
ǎ

:
s

JΓ
K ξ
,z

0
:
F

•
ǎ
`
z 0

:
F

•
ǎ

st

JΓ
K ξ
,z

0
:
F

•
ǎ
`
z 0

:
F

•
(J
ǎ
K ξ
//

0
1.
..
1
)

d
e
f

JΓ
K ξ
,z

0
:
F

•
ǎ
`

(J
ǎ
K ξ
⊕
z 0

)
:

(J
Ǎ

K ξ
⊕
F

)
d
e
f

JΓ
K ξ
,z

0
:
F

•
ǎ
`

JF
K ξ

•
(J
ǎ
K ξ
⊕
z 0

)
:
s

R
e
l-
E

JΓ
K ξ
,z

0
:
F

•
ǎ
`
z 0
∈

JF
•
ǎ
K ξ

:
s

d
e
f

R
el

-I
nt

ro
A

bs
ur

d:
th

e
ty

pe
is

a
re

la
ti

on
(Ǎ

• →
sn

),
w

hi
ch

ca
nn

ot
be

a
so

rt
.

R
el

-F
or

m
Γ
`
Ǎ

:
s 1

Γ
`

(Ǎ
• →
s 1

)
:
s 2

R
e
l-
F

JΓ
K ξ
,z

0
:

(Ǎ
• →
s 1

)
`

JǍ
:
s 1

K ξ
JΓ

K ξ
,z

0
:

(Ǎ
• →
s 1

)
`
z 0

:
Ǎ

• →
s 1

JΓ
K ξ
,z

0
:

(Ǎ
• →
s 1

)
`

(J
Ǎ

K ξ
⊕
z 0

)
:
s 1

d
e
f

JΓ
K ξ
,z

0
:

(Ǎ
• →
s 1

)
`

(J
Ǎ

K ξ
⊕
z 0

)
• →
s 1

:
s 2

R
e
l-
F

JΓ
K ξ
,z

0
:

(Ǎ
• →
s 1

)
`
z 0
∈

JǍ
• →
s 1

K ξ
:
s 2

d
e
f

- 70 -

A
pp

li
ca

ti
on

Γ
`
Ā

:
s 1

Γ
`
F

:
Ā
→
s

g
e
n

Γ
`
ā

:
Ā

Γ
`
F
Ā

:
s

a
p
p

JΓ
`
F

:
Ā
→
s

:
sK
ξ

JΓ
K ξ
`

JF
K ξ

:
F
∈

JĀ
→
sK
ξ

JΓ
K ξ
`

JF
K ξ

:
ā
∈

JĀ
K ξ
→
F
ā
∈

Js
K ξ

d
e
f

JΓ
`
ā

:
Ā

:
sK
ξ

JΓ
K ξ
`

Jā
K ξ

:
ā
∈

JĀ
K ξ

JΓ
K ξ
`

JF
K ξ

Jā
K ξ

:
F
ā
∈

Js
K ξ

a
p
p

JΓ
K ξ
`

JF
K ξ

Jā
K ξ

:
F
ā

• →
s

d
e
f

{Γ
`
F
ā

:
s}
ξ

JΓ
K ξ
`
F
ā

:
s

JΓ
K ξ
,x

:
F
ā
`
x

:
F
ā

st

JΓ
K ξ
,x

:
F
ā
`

JF
K ξ

Jā
K ξ
x

:
s

R
e
l-
E

JΓ
K ξ
,x

:
F
ā
`
x
∈

JF
ā
K ξ

:
s

d
e
f

A
bs

tr
ac

ti
on

A
bs

ur
d.

Pr
od

uc
t

Γ
`
Ā

:
s 1

Γ
,x

:
Ā
`
B

:
s 2

Γ
`

(∀
x̄

:
Ā
.B

)
:
s 3

(s
1
,s

2
,s

3
)

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

)
`

JĀ
K ξ

:
s 1

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

),
x

:
JĀ

K ξ
`
f
x
0

:
B

|Γ
,x

:
Ā
`
B

:
s 2
| ξ,
x

JΓ
K ξ
,x

:
JĀ

K ξ
,z

:
B
`
z
∈

JB
K ξ
,x

:
s 2

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

),
x

:
JĀ

K ξ
,z

:
B
`
z
∈

JB
K ξ
,x

:
s 2

w
k

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

),
x

:
JĀ

K ξ
`

(f
x
0
)
∈

JB
K ξ
,x

:
s 2

su
b
st

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

)
`

(∀
x̄

:
JĀ

K ξ
.(
f
x
0
)
∈

JB
K ξ
,x

)
:
s 3

(s
1
,s

2
,s

3
)

JΓ
K ξ
,f

:
(∀
x̄

:
Ā
.B

)
`
f
∈

J∀
x̄

:
Ā
.B

K ξ
:
s 3

d
e
f

- 71 -

Conversion
Γ ` B : s Γ ` s : s s =β s

Γ ` B : s
conv

Trivial.

Param Absurd: the type of the parametricity witness is z ∈ JBKξ , which
cannot be a sort sn.

Theorem 7 (Soundness). If Γ `P A : B, then

〈|Γ|〉 `O 〈|A|〉 : 〈|B|〉.

Proof. We proceed by induction on the derivation; however the proof re-
quires a stronger induction hypothesis when the derivation Γ `P A : B
starts with the Application rule, hence we generalize the statement as
follows:

Let Γ `P A : B : sn, k such that k ≤ ε(x) for each free
variable x, and π ∈ Sn+k. Then

〈|Γ|〉 `O 〈|JAKk �π |〉 : 〈|(A ∈ JBKk) �π |〉 (9)

However, for the sake of readability we only prove the specialized state-
ment

Γ ` A : B =⇒ 〈|Γ|〉 `O 〈|A|〉 : 〈|B|〉

(The proof for equation (9) stems from an additional decreasing induc-
tion on k ≤ ∩x free ε(x).)

- 72 -

A
x

i
o

m

Tr
iv

ia
l.

W
e

a
k

e
n

i
n

g

Γ
`

A
:B

in
du

ct
io

n
〈|Γ
|〉
`
〈|A
|〉

:〈
|B
|〉

Γ
`

C
:s

n

in
du

ct
io

n
〈|Γ
|〉
`
〈|C
|〉

:s
Le

m
.1

2i
ii

〈|Γ
|〉,
〈|x

i
:C
|〉

le
ga

l
Th

in
ni

ng
〈|Γ
|〉,
〈|x

i
:C
|〉
`
〈|A
|〉

:〈
|B
|〉

A
p

p
l

i
c

a
t

i
o

n
(R

e
l
-E

l
i
m

is
si

m
il

ar
)

Γ
`

F
:(
∀x̄

:Ā
.B

)

in
du

ct
io

n
〈|Γ
|〉
`
〈|F
|〉

:(
∀〈
|x̄

:Ā
|〉.
〈|B
|〉)

by
de

f.
〈|Γ
|〉
`
〈|F
|〉

:(
∀{

xπ ji
:.

..
}.
〈|B
|〉)

Γ
`

ā
:Ā

by
de

f.
Γ
`

a i
:A

i•
(x̄

//
i)

in
du

ct
io

n

〈|Γ
|〉
`
〈|J

a i
K||

j||
�π
|〉

:〈
|(

a i
∈

JA
i•

(x̄
//

i)
K||

j||
)
�π
|〉

(m
an

y-
)A

p
p
.

〈|Γ
|〉
`
〈|F
|〉
{〈
|J

a i
K||

j||
�π
|〉
|.

..
}

:〈
|B
|〉[
〈|J

a i
K||

j||
�π
|〉/

xπ ji
,.

..
]

by
de

f.,
Le

m
.1

5
〈|Γ
|〉
`
〈|F

ā|〉
:〈
|B

[ā
/

x̄]
|〉

A
b

s
t

r
a

c
t

i
o

n
(R

e
l

-I
n

t
r

o
is

si
m

il
ar

)
Γ,

x̄
:Ā
`

b
:B

in
du

ct
io

n
〈|Γ
|〉,
〈|x̄

:Ā
|〉
`
〈|b
|〉

:〈
|B
|〉

. . .
(m

an
y-

)A
b

s
.

〈|Γ
|〉
`

(λ
〈|x̄

:Ā
|〉.
〈|b
|〉

:(
∀〈
|x̄

:Ā
|〉.
〈|B
|〉

by
de

f.
〈|Γ
|〉
`
〈|λ

x̄
:Ā

.b
|〉

:〈
|∀

x̄
:Ā

.B
|〉

- 73 -

Pr
o

d
u

c
t

(R
e

l
-F

o
r

m
is

si
m

il
ar

)
Γ
`

Ā
:s

m 1
by

de
f.

Γ,
..

.`
A

i•
(x̄

//
i)

:s
m 1

in
du

ct
io

n

〈|Γ
|〉,

..
.`
〈|(

x i
∈

JA
i•

(x̄
//

i)
K||

j||
)
�π
|〉

:s
1

Γ,
x̄

:Ā
`

B
:s

n 2

in
du

ct
io

n
〈|Γ
|〉,
〈|x̄

:Ā
|〉
`
〈|B
|〉

:s
2

(m
an

y-
)P

r
o

d
.

〈|Γ
|〉
`

(∀
{x

π ji
:〈
|(

x i
∈

JA
i•

(x̄
//

i)
K||

j||
)
�π
|〉
|.

..
}.
〈|B
|〉)

:s
3

by
de

f.
〈|Γ
|〉
`
〈|∀

x̄
:Ā

.B
|〉

:s
3

C
o

n
v

e
r

s
i
o

n Γ
`

A
:B

in
du

ct
io

n
〈|Γ
|〉
`
〈|A
|〉

:〈
|B
|〉

Γ
`

B
′

:s
n

in
du

ct
io

n
〈|Γ
|〉
`
〈|B
′ |〉

:s

B
=

β
B
′

Th
m

.3
,L

em
.1

6
〈|B
|〉

=
β
〈|B
′ |〉

C
o

n
v
.

〈|Γ
|〉
`
〈|A
|〉

:〈
|B
′ |〉

St
a

r
t

,P
a

r
a

m
,E

x
c

h
a

n
g

e

Γ
`

A
:s

m

in
du

ct
io

n
〈|Γ
|〉,
〈|x

i
:A
|〉

le
ga

l
Th

in
ni

ng
,S

t
a

r
t

〈|Γ
|〉,
〈|x

i
:A
|〉
`

xπ ji
:〈
|(

x i
∈

JA
Kn

)
�π
|〉

by
de

f.
〈|Γ
|〉,
〈|x

i
:A
|〉
`
〈|d
dx

iee
n
�π
|〉

:〈
|(

x i
∈

JA
Kn

)
�π
|〉

- 74 -

