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Abstract: A key property of overlay networks is the overlay nodes’ ability to establish
connections (or be matched) to other nodes by preference, based on some suitability metric
related to, e.g., the node’s distance, interests, recommendations, transaction history or
available resources. When there are no preference cycles among the nodes, a stable matching
exists in which nodes have maximized individual satisfaction, due to their choices, however
no such guarantees are currently being given in the generic case. In this work, we employ
the notion of node satisfaction to suggest a novel modeling for matching problems, suitable
for overlay networks. We start by presenting a simple, yet powerful, distributed algorithm
that solves the many-to-many matching problem with preferences. It achieves that by using
local information and aggregate satisfaction as an optimization metric, while providing a
guaranteed convergence and approximation ratio. Subsequently, we show how to extend the
algorithm in order to support and adapt to changes in the nodes’ connectivity and preferences.
In addition, we provide a detailed experimental study that focuses on the levels of achieved
satisfaction, as well as convergence and reconvergence speed.
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1. Introduction

Overlays represent a significant puzzle piece in contemporary and future networking infrastructure,
whether they are intended to support resource sharing or other collaborative applications, such as
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searching, ad hoc connectivity and persistent services. The common scenario is that peers are able
to know part of the overlay network (in terms of potential neighbors), but want to connect only to a
small number of other peers in order to conserve resources. Connection decisions are not to be taken
blindly, but should rather be based on some suitability metric related to, e.g., the peer’s distance, interests,
recommendations, transaction history or available resources. In the fully distributed scenario, every peer
may follow an individually chosen metric (that it may even not want to disclose to other peers), but still
wants to be able to coordinate with others in order to improve the quality of its connections. We present
algorithms that enable peers that follow them to achieve a guaranteed level of collective quality in their
connections. They achieve that by disclosing a limited amount of metric information to their immediate
neighbors, but not the metric itself and are, in fact, independent of any individual metric choices. At the
same time, the algorithms proposed here are able to adapt and tolerate the high dynamicity commonly
found in these resource sharing overlays, with peers leaving, joining or changing the metrics about their
neighbors at any time.

Observe that finding good methods to help peers establish connections and accommodate such needs
or preferences relates to some form of matching problem in a graph. Moreover, in the context of overlay
networks, an important goal is to enable peers to satisfy their preferences during overlay construction:
note that these “preference lists” point towards a form of stable marriage/roommates problem [1–3].
The first to observe the relation between overlay construction and stable marriage problems were
Gai et al. [4], followed by Mathieu [5], in which overlay construction is regarded as a generalized stable
roommates matching problem [6] (also referred to as a b-matching problem [5,7]). In such a problem,
the agents under consideration have more than one opportunity to connect to each other, in a similar
way to, e.g., attendees in a conference exchanging the limited amount of calling cards they brought with
them. The goal for each agent in this setting is to be able to form the desired amount of connections with
the highest quality (most preferred) neighbors. However, the existence of cycles among the preference
lists of the peers may turn overlay construction into a challenging task: matchings between peers on a
cycle always create opportunities for improvement at other sites in the network, leading to infinite loops
and unstable configurations. Gai et al. in [4] proved that, in the case of an acyclic preference system,
there is always a stable configuration and also supplied examples of preference systems based on global
or symmetric metrics. Furthermore, in order to give a qualitative measure of the stabilization process,
Mathieu in [5] defined the notion of satisfaction gleaned by a peer out of its current matching choices.

With the research focused on preference systems that are known to have a stable configuration, such as
acyclic ones, there is a relative scarcity of results concerning arbitrary preference systems and practical
algorithms for achieving stable configurations (if existing) or good approximations thereof. Can we
look at this problem from a different perspective? How can a solution be measured? What are the
characteristics of a practical algorithm in a fully distributed scenario? Can we adapt to and tolerate
changes in the overlay, such as preference change or peer joining/leaving?

To propose answers to these questions, we focus on the distributed b-matching problem: we suggest a
novel modeling, present algorithms for both its adaptive and non-adaptive forms, show convergence and
guaranteed approximation bounds and complement our results with an extensive experimental study.

• Novel modeling:We start by reflecting further on the evaluation of different matching choices
of peers (as proposed in [5]). By considering satisfaction about the peer’s connection choices
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(compared to the optimal choices) as an optimization metric, we focus on distributed algorithms
that try to maximize the satisfaction of peers that follow them (either a group or the whole overlay).
We then proceed to propose a method of constructing an acyclic preference system from any
arbitrary one, and we use this helper acyclic system to reduce the initial problem to a many-to-many
maximum weighted matching problem.
• Algorithmic solutions:Generalizing the approximation algorithm for the one-to-one matching

problem found in [8,9], we present a simple, fully distributed, 1
2
-approximation algorithm for

the many-to-many maximum weighted matching problem using only communication among
immediate neighbors. In addition, we complement our distributed algorithm with a variant that can
adapt to and tolerate changes in the overlay, such as peer joining/leaving and preference changes.
We prove that both algorithms converge and that their computed solution is at least
1
2

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
of the maximum total satisfaction of the initial system, where bmax

is the maximum connection quota in the graph and s = Lmax

Lmin
is the ratio of the maximum

and minimum neighbor list sizes in the graph, Lmax and Lmin, respectively, resulting in a
1
4

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation algorithm in total.

• Experimental study: We also provide an extensive experimental study of the behavior of the
algorithm under a variety of scenarios, including normal operation, but also operation under
high stress. Under normal operation, we focus on the levels of achieved satisfaction, as well
as convergence time (in the case of our non-adaptive algorithm) and reconvergence time (in the
case of our adaptive algorithm). Specifically, we show that the resulting satisfaction is always
significantly higher than the worst-case theoretical bound after convergence, but also remains at
high levels during and after reconvergence, while reconvergence is achieved in an efficient way
under a variety of changes. Besides, motivated by [10,11], we conducted experiments that focus
on the stability of the network under join/leave attacks, by exposing it to high churn rates, and
observed that the algorithm withstands the attacks while maintaining graceful satisfaction values
throughout them.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary notation and
define our problem, while in Section 3, we present, separately, the notion of node satisfaction, along
with an extensive commentary, due to its importance in our modeling. In Section 4, we show how
our original b-matching problem can be reduced into a many-to-many maximum weighted matching
problem that is guaranteed to have a stable solution, and we prove that this can be done with constant
factor approximation. We present our distributed algorithm for the many-to-many maximum weighted
matching problem in two variations, adaptive and non-adaptive, in Section 5, along with analytical proofs
of their approximation ratio for our original problem. Our extensive experimental study can be found in
Section 6, while discussion on the presented, as well as related work can be found in Section 7. Finally,
Section 8 concludes the paper.

2. Problem Model

We represent a connectivity network as an undirected graph G(V, E), with |V | = n, |E| = m, where
V is the set of overlay peers and E the set of potential connections. Each node i has degree di and
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keeps a preference list Li of all nodes in its neighborhood Γi (in the rest of the paper and when it is clear
from the context, we will use notation Li to denote both the list and its length). Let Ri(j) denote the
rank of node j in node i’s preference list, with Ri(·) ∈ {0, 1, . . . , |Li| − 1}, attributing zero to its most
desirable neighbor. Each node i wants to maintain at most bi connections (in order to form the overlay)
to the best possible nodes according to its preference list and rank function, and at no point can it exceed
this number. Clearly, it must be bi ≤ |Li|. In the following sections, we will refer to two nodes as
neighboring nodes when they are connected by an edge in graph G and connected nodes when they are
matched by a matching algorithm. The problem of trying to find a many-to-many matching that respects
the individual preferences and connection quotas bi is a form of a generalized stable roommates problem
called the stable fixtures problem [6] or b-matching [5]. We call adaptive b-matching the dynamic form
of b-matching, where nodes can join, leave or change preferences at any time. In the remainder of this
paper, we will refer to these events simply as changes. We will also consider an asynchronous model for
messages and will not consider link or node failures, i.e., messages arrive asynchronously, but do not get
lost, and nodes depart gracefully or their absence can be detected by other means (for example, special
periodic “alive” messages).

In order to measure the success of node i’s efforts in establishing its bi connections, we make use of
the notion of satisfaction, Si, which is defined in [5] by the following formula:

Si =
ci

bi

+
ci (ci − 1)

2biLi

−

∑
j∈Ci

Ri (j)

biLi

(1)

where Ci (with |Ci| = ci ≤ bi) is an ordered list of node i’s connections in decreasing preference.
Satisfaction, due to its significance in the context of this paper, is discussed and analyzed separately in
Section 3.

We define an optimization variation of the b-matching problem, which we call the maximizing
satisfaction b-matching problem, where the objective is to find a b-matching that maximizes the total
sum of the nodes’ satisfaction. Later on, we also define a truncatedSmaximizing satisfaction b-matching
problem, which is based on the same basic b-matching problem, but tries to maximize a different
(truncated) satisfaction function (see Section 4) (although we may refer to them simply as the b-matching
problem and the truncatedS b-matching problem, respectively, it will be clear from the context that we
are referring to the optimization versions).

Consider that edges e = (i, j) ∈ E in the previously defined graph G(V,E) have assigned weights
w(i, j) = wij . A weighted matching problem on this graph is the problem of finding a set of edges,
such that their weight sum is maximized and there are no common endpoints between them. The
many-to-many variant that we will use replaces the last constraint on no common endpoints with node
capacities that need to be respected, which, in this case, are the connection quotas bi per node i.

During the analysis of the distributed algorithm, we will use the notion of a locally heaviest edge [9]:
if we define the set Eij as the set of edges that have either node i or node j as an endpoint (but not both):

Eij = {(i, ni) |ni ∈ Γi\j} ∪ {(j, nj) |nj ∈ Γj\i} (2)

an edge (i, j) is called locally heaviest if it has the greatest weight among all edges e ∈ Eij:

w (i, j) > w (e) , e ∈ Eij (3)
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In the following sections, we will assume that the nodes following the algorithms proposed here,
whether a group or the whole network, cooperate willfully, and we will provide guarantees about the
maximization of the total satisfaction in this group or network.

3. Node Satisfaction: A Metric for Optimization

In this section, we discuss the previous definition of satisfaction in depth, providing examples that
motivate its usage and clarify the defining formula. Furthermore, by digging into satisfaction, we get a
derivative form of Equation (1) to use directly in the algorithms of the following sections.

3.1. Interpreting Satisfaction

It is easy to see from Equation (1) that satisfaction Si of node i takes values in the range [0, 1], with
a maximum value when all bi connections are established with node i’s top bi ranked neighbors. In the
general case of ci ≤ bi connections, Si takes the value of ci

bi
minus a penalty if the connected nodes are

not the top choices in the preference list. More specifically, using the previously defined connection list
Ci of node i, observe that for each connected node j the penalty is proportional to the difference between
its rank Qi(j) in the connection list of node i and its rank Ri(j) in the preference list of node i:

Si =
ci

bi

−

∑
j∈Ci

(Ri (j)−Qi (j))

biLi

=

=
ci

bi

−

∑
j∈Ci

Ri (j)− ci(ci−1)
2

biLi

=

=
ci

bi

+
ci (ci − 1)

2biLi

−

∑
j∈Ci

Ri (j)

biLi

As defined in Equation (1), satisfaction Si also measures the deviation of the connection list Ci from
the optimal case. The following example (Figure 1) illustrates this notion of deviation:

Figure 1. Example of satisfaction computation for node i with bi = 4.

The optimal case for connections in Ci would be to occupy the top ci slots in node i’s preference list
(i.e., for node 31 to have Ri(31) = 0). For each node j that deviates from this optimal case a penalty
must be paid, giving to node i a satisfaction of:

Si =
ci

bi

− Ri (31)−Qi (31)

biLi

− Ri (7)−Qi (7)

biLi

−Ri (11)−Qi (11)

biLi

− Ri (22)−Qi (22)

biLi

= 0.708
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In short, the interpretation of satisfaction (Equation (1)) we consider here can be described simply as
follows: a node i is totally satisfied when it connects to its bi “most wanted” preferences with its bi

degrees of freedom; otherwise, each “opening” in the list and/or each degree of freedom that remains
unused (not matched) is reflected in the node’s lower satisfaction.

3.2. Satisfaction and Stability

The most common way to describe stability in stable roommate problems is through the notion of
blocking pairs [12]. For example, when indifference is not considered in the preference lists, two nodes
form a blocking pair when they both strictly prefer each other over some of their current matches, and a
matching configuration is called stable when there are no blocking pairs in the network. The satisfaction
definition of Equation (1), together with the interpretation in Section 3.1, can assist in moving beyond the
classic stable matchings and towards the overlay network context. Although work in this area has been
fairly limited, the notion of satisfaction does seem to stand out as a natural extension to the blocking pairs
notion: instead of nodes forming a strict, stable matching, satisfaction gives them the flexibility to make
choices of measurable “goodness”, by assigning real values to their choices and applying algorithms
that, e.g., maximize the total satisfaction on a network level. This maximizing total satisfaction criterion
introduces a social element to the traditional notion of stability and can be considered stricter than the
above definition of blocking pairs, as the following observation suggests.

Observation 1 If a stable configuration exists, it can differ from a maximizing total satisfaction
configuration, but the total satisfaction achieved by the latter is greater than or equal to the total
satisfaction of the first.

An example network that illustrates this observation can be found in Figure 2.

Figure 2. Example network exhibiting different stable and maximizing total satisfaction
configurations.

In this toy example, we assume that every node has only one free connection slot, and the preference
lists are shown above the respective nodes. Here, a maximizing total satisfaction configuration is depicted
by solid lines connecting nodes A and B with C and D, respectively. However, this configuration is not
stable, since nodes A and B constitute a blocking pair (each one prefers the other over their current
partners). By resolving this blocking pair, we get the stable configuration depicted by a dotted line
between nodes A and B (see Figure 2). However, using Equation (1) to compute the total satisfaction
of the network before (maximizing total satisfaction configuration S) and after (stable configuration S

′)
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the blocking pair resolution, we observe that the loss of satisfaction from nodes C and D offsets the gain
from the resolved blocking pair, A,B:

S = SA + SB + SC + SD = 0.5 + 0.5 + 1 + 1 = 3

S
′
= S

′

A + S
′

B + S
′

C + S
′

D = 1 + 1 + 0 + 0 = 2

It follows that the selfish choices of nodes A and B resulted in a network with decreased total
satisfaction. This behavior also suggests that total satisfaction maximization may be preferable to
traditional stability in overlay collaborative applications, where nodes pool together resources towards
a common goal,i.e., construct an overlay network, and social characteristics are inherent. Furthermore,
in the above example, we showed that it is possible to achieve equal or greater satisfaction to the one
achieved by the stable configuration, whose existence cannot be always guaranteed. This is in contrast
to the maximizing total satisfaction criterion, which can always be applied, becoming a natural and
sensible target goal to strive for in an overlay collaborative environment. Note here that the maximizing
total satisfaction criterion need not be applied necessarily to the whole network: any amount of nodes,
working closely within the network, can apply it and benefit from it as a group.

3.3. Optimizing through the Use of Satisfaction Increase

In the following sections, we will make frequent use of the satisfaction increase ∆Sj
i of node i (where

Si =
∑

j∈Ci

∆Sj
i ), due to its choosing of node j as its (Qi (j) + 1)-th highest ranked connection, which

can be derived from Equation (1) by considering only the contribution (and possible penalty) of node j

in node i’s satisfaction, where Qi (j) ≤ bi:

∆Sj
i =

1

bi

− Ri (j)−Qi (j)

biLi

=

=

(
1−Ri (j) /Li

bi

)
+

(
Qi (j)/bi

Li

)
= Ss

i,j + Sd
i,j (4)

Obviously, we can rewrite Equation (1) as:

Si =
∑
j∈Ci

∆Sj
i =

∑
j∈Ci

Ss
i,j +

∑
j∈Ci

Sd
i,j = Ss

i + Sd
i (5)

It is easy to see that ∆Sj
i breaks down into two parts Ss

i,j , Sd
i,j , which we call the a priori part and

the a posteriori part, respectively, since the former is computable for each j regardless of whether it is
currently matched with i or not, while the latter is computable only for those j that are currently matched
with i by the solution. Alternatively, we will refer to these parts as static and dynamic, respectively. The
static part depends only on the rank of node j in preference list Li, but the dynamic part depends on
the rank of node j among node i’s chosen connections at any given time. This rank among the nodes
connected to i may depend on various factors in an execution, possibly also choices of nodes that are
relatively remote to node i. Knowing that even simple matching is not a locally solvable problem [13],
this is no surprise. Note that an algorithm that makes connection decisions based on the static part of
∆Sj

i has all the necessary information available from the beginning of its execution (i.e., does not use
any runtime information), and therefore, a node’s valuation of other nodes (that depends only on that
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static part) does not change over time, due to its runtime connection decisions. As a result, oscillations,
due to cyclic preferences are avoided.

In the next section, we prove that it is possible to define a variation of the maximizing satisfaction
b-matching problem (based on a modified definition of ∆Sj

i ) that approximates the original problem and
can lead to a simple greedy algorithm.

4. Approximating B-Matchings with Weighted Matchings

In this section, we show how a simple modification connects the maximizing satisfaction b-matching
problem with well known optimization problems, such as the maximum weighted matching.

4.1. Discarding the A Posteriori Term

As the first step to approximate the maximizing satisfaction b-matching problem, we define a modified
problem based on the same basic b-matching problem, but computing satisfaction using a modified
version of Equation (4) (and subsequently Equation (1)):

∆S
j

i = Ss
i,j =

1

bi

− Ri (j)

biLi

, (6)

Si = Ss
i =

ci

bi

−

∑
j∈Ci

Ri (j)

biLi

, ci ≤ bi (7)

Using the above definition, we effectively disregard the dynamic part of Equation (4), making the
prospective satisfaction increase ∆Sj

i of node i independent of the number of connections. We refer to
the node satisfaction defined by Equation (7) as truncated satisfaction and the corresponding maximizing
satisfaction b-matching problem as a truncatedS maximizing satisfaction b-matching problem. In the
following lemma, we prove that by solving the truncatedS maximizing satisfaction b-matching problem,
we get an approximation of the original problem.

Lemma 1 The truncatedS maximizing satisfaction b-matching problem is a
1
2

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation of the maximizing satisfaction b-matching problem, where

bmax is the maximum connection quota in the graph and s = Lmax

Lmin
is the ratio of the maximum and

minimum neighbor list sizes in the graph, Lmax and Lmin, respectively.

Proof: Since only Ss
i is used in the modified maximizing satisfaction b-matching problem, we are

interested in studying the ratio:

ri =
Ss

i

Ss
i + Sd

i

(8)

and, specifically, its minimum value, rmin. Knowing this minimum value, we can conclude that the total
satisfaction of the modified problem, Smod, is a rmin-approximation of the total satisfaction of original
b-matching problem Sorig, since:

Smod =
n∑

i=1

Ss
i =

n∑
i=1

ri

(
Ss

i + Sd
i

)
≥ rmin

n∑
i=1

(
Ss

i + Sd
i

)
= rminSorig (9)
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where n = |V | is the number of nodes in the graph. Note that we are looking for the minimum value rmin,
and therefore, we can assume that a given node i has connected with the desired amount of neighbors bi

since then the difference between Ss
i and Sd

i is maximized, as we show below.
Initially, consider the scenario in which every node i is connected with its bottom-most bi neighbors.

It is easy to see that Sd
i gets its maximum value when the length of the list is maximized (|Ci| = bi), since

the dynamic part of the satisfaction increase ∆Sj
i is due to the connection list Ci of node i. In this case

of |Ci| = bi connections, Ss
i achieves its minimum value when the connections j ∈ Ci are drawn from

the bottom of the preference list Li. Since both of these conditions are met in the scenario considered
here, the relative value of Sd

i is maximized or, equivalently, the relative value of Ss
i is minimized and

the sums of dynamic and static parts, Sd
i and Ss

i , acquire the values of sd
i and ss

i , respectively. For these
values ss

i and sd
i , we have:

ss
i =

1− (Li−bi)
Li

bi

+
1− (Li−bi+1)

Li

bi

+ . . . +
1− (Li−1)

Li

bi

=
bi + 1

2Li

sd
i =

0

biLi

+
1

biLi

+ . . . +
bi − 1

biLi

=
bi − 1

2Li

meaning that the relative ratio of the sum of the static parts Ss
i is at least:

Ss
i

Ss
i + Sd

i

≥ ss
i

ss
i + sd

i

=
bi+1
2Li

bi

Li

=
1

2

(
1 +

1

bi

)
(10)

This is clearly the worst possible case for all nodes and a lower bound for the S mod

Sorig
ratio, since:

S mod =
n∑

i=1

Ss
i =

n∑
i=1

bi + 1

2Li

(11)

Sorig =
n∑

i=1

(
Ss

i + Sd
i

)
=

n∑
i=1

bi

Li

(12)

S mod ≥ 1

2

(
1 +

1

bmax

)
Sorig. (13)

However, note that each node i that connects with its bi bottom-most neighbors must have been
rejected by its Li − bi > 0 top-most ones. This means that these neighbors j cannot connect to their bj

bottom-most neighbors, since in the worst case the last place must be occupied by node i. In this case,
the worst possible scenario connects them to bj neighbors starting at the previous to last position and
moving without gaps towards more preferable neighbors. We write B for the set of nodes that connect
to their bottom-most neighbors, and we call these nodes bottom-choosers. Note here that we discuss a
worst case scenario and therefore we do not include nodes with Li − bi = 0 in set B; in such a case the
bi bottom-most neighbors are the same as the bi top-most ones, which is the best possible outcome for
node i.
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Since both bottom-choosers and non-bottom-choosers are connected to their desirable number of
neighbors, but the former are connected to their bottom-most neighbors, while the later are connected to
their bottom-most-but-one neighbors, for each node bci ∈ B we have:

Ss
bci

=
1− Lbci

−bbci
Lbci

bbci

+ . . . +
1− Lbci

−1

Lbci

bbci

=
bbci

+ 1
2Lbci

(14)

Sd
bci

=
0

bbci
Lbci

+ . . . +
bbci
− 1

bbci
Lbci

=
bbci
− 1

2Lbci

(15)

while for each node nbi ∈ V/B we have:

Ss
nbi

=
1− Lnbi

−bnbi
−1

Lnbi

bnbi

+ . . . +
1− Lnbi

−2

Lnbi

bnbi

=
bnbi

+ 3
2Lnbi

(16)

Sd
nbi

=
0

bnbi
Lnbi

+ . . . +
bnbi
− 1

bnbi
Lnbi

=
bnbi
− 1

2Lnbi

(17)

Using Equations (11) to (17) we get:

S
′

mod

S
′
orig

=

n∑
i=1

Ss
i +

∑
i∈V/B

1
Li

n∑
i=1

(
Ss

i + Sd
i

)
+
∑

i∈V/B

1
Li

=

S mod +
∑

i∈V/B

1
Li

Sorig +
∑

i∈V/B

1
Li

(18)

For reasons of clarity, in the remaining proof we are going to refer to quantities
∑

i∈V/B

1
Li

and

∑
i∈V/B

1
Li

/
Sorig with Q and q, respectively, as well as qmin for the minimum value of the latter. Using

the above notation and Equations (13) and (18), we get:

S
′

mod

S
′
orig

≥
1
2

(
1 + 1

bmax

)
Sorig + Q

Sorig + Q
≥

1
2

(
1 + 1

bmax

)
Sorig + qmin · Sorig

Sorig + qmin · Sorig

=

1
2

(
1 + 1

bmax

)
+ qmin

1 + qmin

(19)

In order to calculate qmin, we bound the sum
∑

i∈V/B

1
Li

as follows:

∑
i∈V/B

1

Li

≥ |V/B| 1

Lmax

≥ min (|V/B|) 1

Lmax

= (n−max |B|) 1

Lmax

(20)

where Lmax is the maximum neighbor list size in the graph. For |B|, we observe that each bottom-chooser
corresponds to Li − bi non-bottom-choosers (its Li − bi top-most neighbors), and summing up for the
whole graph, we have:

n = |B|+
∑
i∈B

Li − bi ≥ |B|+ |B|min
i∈B

(Li − bi) = |B|+ |B| ⇒ |B| ≤ n

2
(21)

since min
i∈B

(Li − bi) = 1.

For every node i we define Li − bi = ciLi, where ci is the percentage of list Li that is covered by
Li−bi. By the same definition, we have bi

Li
= 1−ci. By Equations (20) and (21) and the above definition,

we get:

q =

∑
i∈V/B

1
Li

Sorig

=

∑
i∈V/B

1
Li

n∑
i=1

bi

Li

=

∑
i∈V/B

1
Li

n∑
i=1

(1− ci)
≥
(
n− n

2

)
1

Lmax

n (1− cmin)
=

1

2Lmax (1− cmin)
(22)
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From Equations (19) and (22) and using the observation that 1− cmin = max bi

Li
≤ bmax

Lmin
, we get:

S
′

mod

S
′
orig

≥

(
bmax+1
2bmax

)
+ 1

2(1−cmin)Lmax

1 + 1
2(1−cmin)Lmax

=
(bmax + 1) (1− cmin)Lmax + bmax

2bmax (1− cmin)Lmax + bmax

=
1
2

(bmax + 1) (1− cmin) Lmax + bmax

bmax (1− cmin)Lmax + 1
2bmax

=
1
2

(
1 +

(1− cmin)Lmax + 1
2bmax

bmax (1− cmin)Lmax + 1
2bmax

)
=

1
2

(
1 +

1
bmax

(1− cmin)Lmax + 1
2bmax

(1− cmin) Lmax + 1
2

)
=

1
2

(
1 +

1
bmax

(
1 +

bmax − 1
2 (1− cmin)Lmax + 1

))
≥ 1

2

(
1 +

1
bmax

(
1 +

bmax − 1
2 bmax

Lmin
Lmax + 1

))

=
1
2

(
1 +

1
bmax

(
1 +

1− 1
bmax

2Lmax
Lmin

+ 1
bmax

))

=
1
2

(
1 + b−1

max

(
1 +

1− b−1
max

2s + b−1
max

))
(23)

where s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor list sizes in the graph, Lmax and

Lmin respectively, which proves the desired approximation ratio. �

4.2. Converting to a Maximum Weighted Matching

The truncatedS b-matching problem, as defined above, assumes privately kept preference lists and
cannot be considered a maximum weighted matching problem, which needs the weights associated with
edges to be known and common to both endpoints. In order to convert it, we will create edge weights by
adding the satisfaction gleaned by the two endpoints for the specific link. For an edge e = (i, j) ∈ E,
the weight should be:

w (i, j) = ∆S
j

i + ∆S
i

j = Ss
i,j + Ss

j,i =

=

(
1−Ri (j) /Li

bi

)
+

(
1−Rj (i) /Lj

bj

)
(24)

By using these weights to construct and solve a many-to-many weighted matching problem, we also get
a solution for the truncatedS b-matching problem, as the following lemma suggests.

Lemma 2 We consider the truncatedS b-matching problem that uses Equation (6) for satisfaction
calculations. A solution derived from a many-to-many maximum weighted matching on the same graph,
with edge weights given by Equation (24), is also a solution for the truncatedS b-matching problem, and
vice versa.
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Proof: Let A ⊆ E be the edge set that is the solution of a many-to-many maximum weighted matching
on a graph G(V, E) with edge weights defined by Equation (24). This set A corresponds to a collection
C of connection lists Ci ∀i ∈ V , and maximizes the expression

∑
(i,j)∈A

w (i, j) to a value w(A):

w (A) =
∑

(i,j)∈A

w (i, j) =
∑

(i,j)∈A

(
∆S

j

i + ∆S
i

j

)
(25)

Let also A
′ ⊆ E be the corresponding edge set for the truncatedS b-matching problem (using

Equation (6)) on the same graph. This set corresponds to a collection C
′ of connection lists C

′
i ∀i ∈ V ,

and maximizes the expression,
∑
i∈V

∑
j∈C

′
i

∆S
j

i , to a value w(A
′
) where

∑
j∈C

′
i

∆S
j

i is the satisfaction gleaned

by node i for the connections of list C
′
i :

w
(
A

′
)

=
∑
i∈V

∑
j∈C

′
i

∆S
j

i (26)

We will prove that these solutions w (A) and w(A
′
) are equal. Assume that w(A) > w(A

′
). If we group

the satisfaction increases ∆S
j

i in Equation (25) for a node i, we can write:

w (A) =
∑

(i,j)∈A

(
∆S

j

i + ∆S
i

j

)
=
∑
i∈V

∑
j∈Ci

∆S
j

i (27)

By the assumption and Equation (27), we have:

w (A) > w
(
A

′
)
⇒
∑
i∈V

∑
j∈Ci

∆S
j

i >
∑
i∈V

∑
j∈C

′
i

∆S
j

i

implying that the collection C achieves a greater value than C
′ for the maximizing expression of the

truncatedS b-matching problem. However, this contradicts the definition of C
′ .

Symmetrically, assuming that w(A) < w(A
′
) also leads to a contradiction, meaning that any solution

for the many-to-many maximum weighted matching we are considering is also a solution for the
corresponding truncatedS b-matching problem, and vice versa. �

The following theorem follows directly from Lemmas 1 and 2.

Theorem 1 We consider the maximizing satisfaction b-matching problem that uses Equation (4) to
maximize the total satisfaction. A solution derived from a many-to-many maximum weighted matching
on the same graph, with edge weights given by Equation (24), is a 1

2

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-

approximation of the b-matching problem, where bmax is the maximum connection quota in the graph
and s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor list sizes in the graph, Lmax and

Lmin, respectively.

Having approximated the original b-matching problem by a many-to-many maximum weighted
matching, we need only a distributed algorithm for that problem. The rest of this paper presents a simple,
distributed algorithm in two variations, an adaptive and a non-adaptive, that solve the many-to-many
maximum weighted matching problem using a 1

2
-approximation guarantee. We also present and

utilize a centralized helper algorithm that we employ in order to prove the approximation ratio of the
distributed algorithm.
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5. Distributed Algorithms for the Many-to-Many Maximum Weighted Matching Problem

In this section, we present a distributed algorithm, in adaptive and non-adaptive forms, that solves
the many-to-many maximum weighted matching problem with an approximation ratio of 1

2
. The non-

adaptive version of the algorithm is presented in Section 5.1, followed by the analysis of its correctness
and convergence properties in Section 5.2. Sections 5.3 and 5.4 present the adaptive version and its
analytical properties, respectively. Finally, Section 5.5 shows that the solutions of both variations are a
1
2
-approximation for the many-to-many maximum weighted matching problem.

5.1. LID Algorithm

The simple greedy algorithm we are proposing is fully distributed and operates by choosing the
locally heaviest edges in every node’s neighborhood, generalizing the one-to-one matching algorithm
by Hoepman [8].

In the beginning, each node i reports to each neighboring node, j, only j’s relative rank in i’s
preference list, in the form of ∆S

j

i , ∆S
i

j exchange between i and j, and they both compute the weight
w(i, j) of their connecting edge. This ensures the flexibility of the ranking metric each node uses (it
does not need to reveal the metric) at the cost of only local communication between nodes. Every node
keeps these newly formed weights of its adjacent edges in a weight list, which is then used during the
algorithm’s execution to determine the desirability of a neighboring node. Note that these weight lists do
not replace the individual preference lists of the nodes: they are auxiliary lists that are used in a similar
way (to determine desirability), but only during the algorithm’s execution, i.e., not for measuring the
final satisfaction.

The Local Information-based Distributed (LID) algorithm (cf. Algorithm 1 for pseudocode) uses, at
each node i, four sets (Ui, Pi, Ai, Ki) and a function (topRanked(·)) and sends two kinds of messages
(PROP and REJ):

• A node i sends PROP messages to propose to its heaviest-weight neighbors the establishment of a
connection with them. If an asked node also sends a PROP message to node i, then the connection
is established (locked or selected); note that this will happen at both endpoints. Set Pi keeps
the neighbors to which node i proposed with a PROP message; Ai keeps the neighbors which
approached node i with a PROP message; Ki keeps the locked neighbors, and Ui the neighbors
that did not send any message to node i or were not contacted yet. The algorithm terminates when
Ui = ∅.
• A node sends a REJ message when it has locked as many neighbors as it could. When a node

receives a REJ message, it sends a new PROP message to the next unproposed neighbor.
• The topRanked(·) function returns the top ranked node of its set argument, according to the weight

list of the calling node. In Algorithm 1, this means that PROP messages are sent to neighbors in
decreasing ranking order and there are at most bi such unanswered messages originating from i at
any time. A new PROP message is sent only if a previously asked node has explicitly declined.
• When the algorithm finishes in a node i the connected neighbors can be found in set Ki.
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Algorithm 1 LID: Local Information-based Distributed algorithm for many-to-many maximum
weighted matchings, run on node i

Ki = ∅; Ai = ∅; Pi = ∅; Ui = Γi

while |Pi| < bi do
Pi ← Pi ∪ topRanked(Ui\Pi)

forall the v ∈ Pi do
send(PROP,v)

while Ui ̸= ∅ do
receive(m,u):

if m = PROP then
Ai ← Ai ∪ u

if m = REJ then
Ui ← Ui\u
if u ∈ Pi then

Pi ← Pi\u
v ← topRanked(Ui\Pi)

Pi ← Pi ∪ v

send(PROP,v)

if ∃v ∈ (Pi\Ki) ∩ Ai then
Ui ← Ui\v
Ai ← Ai\v
Ki ← Ki ∪ v

if Pi\Ki = ∅ then
forall the v ∈ Ui do

send(REJ,v)
Ui ← ∅

5.2. Analysis of the LID Algorithm

At the center of the algorithm above is the notion of the locally heaviest edge [8,9], since the nodes
send PROP and REJ messages in order to compare their heaviest edges and find the locally heaviest
ones. Note here that we assume unique edge weights, since it is important for the greedy algorithms
described here to be able to recognize the locally heaviest edges in an unambiguous way (ties can be
broken using node identities). However, globally unique edge weights are not necessary: it is sufficient
for edge weights to be unique in the local neighborhoods of their endpoint nodes.

By the definition in Section 2, at most, one locally heaviest edge can be attached to a node i at any
specific point during the execution of the algorithm. However, once an edge is selected by node i, another
one can possibly become locally heaviest in node i’s neighborhood, and so on, until the algorithm selects
enough of them. On the other hand, when nearby nodes fill in their quotas of possible connections, any
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unselected edges they might have with node i become unavailable. In order to express this recursive
property of locally heaviest edges, we continue to use condition Equation (3):

w (i, j) > w (e) , e ∈ Eij

but we adapt the definition of the set Eij to include only edges of nodes i and j with unlocked neighbors
k (k ∈ U{i,j}\K{i,j}) that have not filled their connection quotas yet (Pk\Kk ̸= ∅):

Eij = {(i, k) | (k ∈ Ui\Ki) ∧ (Pk\Kk ̸= ∅) ∧ (k ̸= j)} ∪
{(j, k) | (k ∈ Uj\Kj) ∧ (Pk\Kk ̸= ∅) ∧ (k ̸= i)} (28)

Note that for the initial conditions Ki = Pi = ∅, Ui = Γi,∀i ∈ V , the definition above coincides with
the one of Equation (2).

The following two lemmas address the dynamics arising from the aforementioned recursive definition
by showing two important properties: the algorithm’s execution at node i: (i) chooses only locally
heaviest edges (although not in any particular order); and (ii) chooses edges in a way, such that any
unselected locally heaviest edge adjacent to node i at the end of the algorithm’s execution has lower
absolute edge weight than the selected ones adjacent to the same node.

Lemma 3 Every locked edge is locally heaviest at some point during the execution of the algorithm.

Proof: As edge (i, j) is eventually locked, we assume without loss of generality that node i sent to node
j a PROP message, inserted it in Pi\Ki, later on received a confirmation from node j and eventually
locked the edge. It is easy to see that sets Pi\Ki and Pj\Kj contain the heaviest available edges in the
neighborhoods of node i and j, respectively; heaviest because Algorithm LID sends PROP messages to
neighbors in decreasing edge weight order and available, since PROP messages were sent, but no reply
came back yet, either positive or negative (a positive answer will move the answering node to K, and a
negative answer will remove it from P ). Since we only need to search for locally heaviest edges in sets
Pi\Ki and Pj\Kj , we can replace sets Ui, Uj with Pi, Pj respectively in Equation (28) and prove that the
new condition holds at some point during the algorithm’s execution:

E
′

ij = {(i, k) | (k ∈ Pi\Ki) ∧ (Pk\Kk ̸= ∅) ∧ (k ̸= j)} ∪
{(j, k) | (k ∈ Pj\Kj) ∧ (Pk\Kk ̸= ∅) ∧ (k ̸= i)} , (29)

and w (i, j) > w (e) , e ∈ E
′

ij

Assume that condition Equation (29) does not hold at time t0, but edge (i, j) is selected (at that time
t0), and suppose a node k exists, such that w (i, k) > w (i, j). We know that node i proposed to node
k before proposing to node j, since PROP messages are being sent in decreasing ranking order. Node
k will answer back at some point t1 > t0 during the execution of the algorithm, either positively or
negatively, by which time it will be removed from set Pi\Ki. At that point, condition Equation (29)
will hold and edge (i, j) will be locally heaviest. The same is also true if a node l exists, such that
w (l, j) > w (i, j) or if both nodes k and l exist. �

Lemma 4 For every node i Algorithm LID chooses all locally heaviest edges that are adjacent to it,
if there is enough quota bi available, or otherwise chooses the bi of those that are heavier than any
unchosen one.
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Proof: Based on Lemma 3, by the end of the algorithm, all chosen edges of node i have been locally
heaviest. Furthermore, if there is enough quota bi available, any unselected locally heaviest edges will
be eventually selected. The only way some locally heaviest edge has been left unchosen is for node i to
fill in its connection quota bi with other locally heaviest edges. We just need to prove that in this case the
unchosen edge is of lower weight than the chosen ones.

Note that the LID algorithm proposes to nodes of heavier edges first and proceeds only if it receives
an explicit decline (meaning it was not a locally heaviest edge or the other node filled its quota), so the
chosen edges are always heavier than any unchosen one. �

Calculating edge weights in the way previously described enables the conversion of the original
maximizing satisfaction b-matching problem of Section 2 to a many-to-many maximum weighted
matching problem, but as an added benefit it enables us to use the weight lists to make preference-based
decisions, in a way similar to a b-matching problem. This new b-matching problem does not replace
the original maximizing satisfaction b-matching: the nodes keep their original preference lists, but a
new b-matching problem arises when they try to cooperate in order to collectively achieve a guaranteed
level of connection quality. However, this new b-matching problem always converges regardless of the
original problem, due to the symmetric nature of the edge weights [4]. The following lemma expresses
exactly this property by showing that the algorithm terminates for all nodes.

Lemma 5 Algorithm LID terminates for every node i ∈ V .

Proof: From the code of Algorithm LID we can see that it terminates for node i when Ui = ∅ or Pi\Ki =

∅, that is, when every neighbor replies (and node i gets less than bi positive replies) or enough neighbors
reply (for node i to get bi positive replies), respectively. The only case where the algorithm would not
terminate is if some node would wait indefinitely for a neighbor’s answer, i.e., if a communication cycle
exists: each node ni mod k in a group of nodes, {n0, n1, . . . , nk−1}, sends a PROP message to node
n(i+1) mod k and awaits for an answer in order to reply back to node n(i−1) mod k. In order to prove that
the algorithm terminates, we only need to prove that communication cycles cannot exist.

Assume there is a communication cycle {n0, n1, . . . , nk−1}. Since node ni mod k sent a PROP
message to node n(i+1) mod k and not to node n(i−1) mod k, we know that w(ni mod k, n(i+1) mod k) >

w(ni mod k, n(i−1) mod k). If we add up the respective inequalities for all i ∈ [0, k − 1], we get:

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
>

k−1∑
i=0

w
(
ni mod k, n(i−1) mod k

)
(30)

Using properties of the modulo operator to change the sum limits and since edge weights are symmetric
to their respective endpoints (see Equation (24)), we get the following:

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
=

k−1∑
i=0

w
(
n(i+1) mod k, ni mod k

)
=

k−1∑
i=0

w
(
ni mod k, n(i−1) mod k

)
(31)

which is a contradiction of Equation (32) and of the assumption on the existence of a
communication cycle. �
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5.3. ADAPTIVELID Algorithm

In a dynamic setting, where nodes join/leave the network or change preferences about their neighbors
at any time, there is a partial or full solution that is disturbed by a specific operation. In this case,
it is desirable to “repair” the solution locally instead of recomputing it globally. It would also be
advantageous to limit the repairs to the neighborhood of the operation, so that far enough nodes would
remain unaffected. Note that the locally-heaviest-edge property that we are using here seems ideal for
this purpose: it only makes sense to preserve and use it further to support dynamicity.

In the adaptive algorithm, ADAPTIVELID presented here, all three cases of dynamicity mentioned
above (join/leave/change) are supported. In the case of a joining (respectively departing) node,
neighboring nodes add (respectively delete) it to (respectively from) their preference lists. On the other
hand, when a node changes preferences, no change occurs to the neighboring nodes’ preference lists,
but edge weights may change radically. A common thread between these cases is that the nodes directly
involved in the operations must recalculate their marginal satisfactions for their neighbors and exchange
them so that their adjacent edges have the correct weights. Afterwards, they must re-evaluate their
connections: if they are not locally heaviest any more, the nodes abandon the least weighted ones and try
to get matched with the locally heaviest ones. Note here that this method avoids the recalculation of the
solution over the whole network, instead limiting it to a neighborhood around the network area where
the dynamic operation took place. An additional benefit is that the involved nodes maintain their current
connections unless proven to be non-optimal, i.e., they change them only if necessary.

The ADAPTIVELID algorithm uses at each node i five sets (Pi, Ki, Ai, Ri, Bi) and an incoming
message queue, queuei, and sends three kinds of messages (PROP, REJ and WAKE):

• A node i sends PROP messages to propose to its heaviest-weight neighbors the establishment of
a connection. If an asked node also sends a PROP message to node i, then the connection is
established (locked): note that this will happen at both endpoints. Set Pi stores the neighbors to
which node i proposed with a PROP message; Ai stores the neighbors that approached node i with
a PROP message; Ki stores the locked neighbors; Bi stores the neighbors that rejected node i, and
Ri the neighbors that node i rejected. Sets B∗

i and A∗
i are copies of sets Bi and Ai, respectively,

that do not contain neighbors of edges heavier than the edge of the worst connected neighbor.
• A node sends a REJ message when it has locked as many neighbors as it could. Nodes can send

additional PROP messages to available neighbors if they receive a REJ message. PROP messages
are sent to neighbors in decreasing ranking order, and there are at most bi such unanswered
messages originating from i at any time.
• Node i is constantly checking if its PROP messages are addressed to heaviest-weight neighbors,

as ranking can change due to a change in the network. If it detects a better available node than
the currently proposed ones, it sends a REJ message to the worst connected neighbor and a PROP
to the better candidate. However, if the better candidate has simultaneously rejected and been
rejected by node i, node i sends only a WAKE message.
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Algorithm 2 ADAPTIVELID()
ReceiveMsgs()

SendMsgs()

BookkeepingUpdates()

Procedure 1 ReceiveMsgs()

for msg ∈ queuei do
if msg.type = PROP then

Ai ← Ai ∪msg.sender

Bi ← Bi −msg.sender

if msg.type = REJ then
Bi ← Bi ∪msg.sender

Ai ← Ai −msg.sender

Ki ← Ki −msg.sender

Pi ← Pi −msg.sender

if msg.type = WAKE then
Bi ← Bi −msg.sender

Procedure 2 SendMsgs()

while (|Γi − Pi − (Bi −Ri)| ̸= 0)∧(|Pi| < bi) do
find heaviest edge

neighbor c that belongs in

(Γi − Pi − (Bi −Ri))

if c ̸= null then
if c ∈ Bi then

send a WAKE msg to c

Ri ← Ri − c

else
send a PROP msg to c

Pi ← Pi ∪ c

Ri ← Ri − c

Function 1 GetWorstNode(node i)

return

{
l : w (l, i) = min

j∈Pi

w (j, i)

}

Function 2 GetBestNode(node i)

return

{
h : w (h, i) = max

j∈(Γi−Pi−(Bi−Ri))
w (j, i)

}

Procedure 3 BookkeepingUpdates()
Ti ← (Pi −Ki) ∩ Ai

if |Ti| ̸= 0 then
Ai ← Ai − Ti

Ki ← Ki ∪ Ti

match node i to all nodes in Ti

if (|Γi − Pi − (Bi −Ri)| ≠ 0) ∧ (|Pi| ̸= 0) ∧
(|Ki| ̸= 0) then

l← GetWorstNode(i)

h← GetBestNode(i)

while (l ̸= null) ∧ (h ̸= null) do
if w (h, i) > w (l, i) then

if h ∈ Bi then
send a WAKE msg to h

Ri ← Ri − h

else
send a REJ msg to l

Ai ← Ai − l

Ri ← Ri ∪ l

Pi ← Pi − l

Ki ← Ki − l

send a PROP msg to h

Pi ← Pi ∪ h

Ri ← Ri − h
l ← GetWorstNode(i)

h← GetBestNode(i)

else if Pi = Ki then
for j ∈ (Γi −Ri −B∗

i + A∗
i − Pi) do

send a REJ msg to j

Ai ← Ai − j

Ri ← Ri ∪ j
break

else
break

unmatch node i from all nodes in

Bi
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5.4. Analysis of the ADAPTIVELID Algorithm

The following lemmas prove that the algorithm always converges after a finite amount of steps or, in
the case of changes in the network, in a finite amount of steps after the changes stop. Although implied by
the distributed nature of the algorithm, it is useful to note that the algorithm continues to run at all nodes
regardless of any changes that are happening in the network. In fact, as we show in the experimental
section, it manages to maintain a reduced but steady level of service while under extremely heavy stress
or possibly a network attack. However, convergence can be guaranteed after all changes complete, since
any changes that might occur require appropriate readjustment by the distributed algorithm.

Lemma 6 In a failure-free execution, edge weight updates that are caused by node or preference
changes complete in a finite amount of time.

Proof: When a node joins (leaves) the network, it gets inserted to (deleted from) neighboring nodes’
preference lists, causing changes that need to be communicated to their own neighbors. The same
happens to the node itself when it changes its own preference list. Therefore, every change causes
a weight update that propagates at a maximum distance of two and to a bounded amount of nodes
(bounded by the size of a distance of two neighborhood from the originating node). Note that the
neighbor’s neighbors (or the immediate neighbors in the case of simple preference change) accept the
weight update passively and do not propagate it further. Since we assumed that nodes do not fail and
messages do not get lost, it is evident that all nodes are fully updated in a finite amount of time after the
change. �

We define as available, with respect to node i, a node j in the neighborhood of node i that has neither
been proposed by node i nor rejected node i.

A node j is the locally heaviest node in the neighborhood of node i at some point in time if there are
no available nodes adjacent to node i that are endpoints of heavier edges. Note that edges with such a
node as an endpoint are candidates for being locally heaviest edges (hence, the name “locally heaviest
node”). In fact, when the endpoints of an edge consider simultaneously each other locally heaviest, the
edge between them is the locally heaviest edge.

Lemma 7 In a finite amount of time after a node or preference change, every node cancels all proposals
towards neighbors that are no longer locally heaviest and issues an equal amount towards available
neighbors that are locally heaviest.

Proof: Every change triggers weight updates at a distance of one (nodes that the joining/leaving node
connect to/disconnect from or direct neighbors of a node that changes preferences) and possibly at a
distance of two (neighbor’s neighbors of a joining/leaving node). By Lemma 6, the weight updates
complete in a finite amount of time. When procedure 3 executes next in any node i at a distance of one
or two from the change, it will repeatedly examine nodes that are either available or have simultaneously
rejected and been rejected by node i, as long as they are heavier than the proposed node of the lowest
weight. Every time it encounters a node of the latter category, it sends a WAKE message, prompting
the node to revoke its rejection, whereas every time it encounters a node of the former category, it sends
a PROP message, preceded by a REJ to the proposed node of the lowest weight (note that whether a
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node is considered locally heaviest or not may change during a single execution of procedure 3.). In
any case, at the end of procedure 3’s execution, all proposals from node i to its neighbors that are no
longer locally heaviest are canceled, and complementary proposals are sent to available neighbors that
are locally heaviest; the same is true for every node in the network. �

Lemma 8 The ADAPTIVELID algorithm terminates for every node i ∈ V after changes complete.

Proof: For the static case, Lemma 5 applies, and the algorithm terminates. For the dynamic case, a
change may cause some proposals to be canceled and reissued on nodes at a distance of one or two
(Lemma 7). The only cases in which the algorithm may not terminate on these nodes is when they wait
indefinitely for a neighbor’s answer or their preference list “oscillates”, with proposals being canceled
and reissued on the same neighbors in an alternating way over time. By Lemma 6, we can ignore weight
updates, since they complete in a finite amount of time.

For the first case, a node can wait indefinitely only if a communication cycle exists: each node
ni mod k in a group of nodes, {n0, n1, . . . , nk−1}, sends a PROP message to node n(i+1) mod k and
awaits for an answer in order to reply back to node n(i−1) mod k, that is w(ni mod k, n(i+1) mod k) >

w(ni mod k, n(i−1) mod k). By adding all such equations on the cycle and using properties of the modulo
operator, we get:

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
>

k−1∑
i=0

w
(
ni mod k, n(i−1) mod k

)
=

=
k−1∑
i=0

w
(
n(i+1) mod k, ni mod k

)
=

k−1∑
i=0

w
(
ni mod k, n(i+1) mod k

)
(32)

which is a contradiction.
For the second case, by Lemma 7 and since we assumed that the changes are completed, we have that

any potential canceling and reissuing of proposals finishes in a finite amount of time and therefore no
oscillations occur. �

Lemma 9 For every node i Algorithm ADAPTIVELID chooses all locally heaviest edges that are
adjacent to it, if there is enough quota bi available, or otherwise chooses the bi of those that are heavier
than any unchosen one.

Proof: For a static network, Lemma 4 is applicable. For a dynamic network, by Lemma 7, after a finite
amount of time, every node i cancels all proposals to neighbors that are no longer locally heaviest after
a change and proposes to the locally heaviest ones. Some of these proposals will result in a match if
the receiving node also considers the originating node locally heaviest. The same will happen to all
proposed nodes, as long as the originating and receiving nodes have available quotas. If some node
lacks in available quota, we know that its matched incident edges are heavier than its unmatched locally
heaviest, since by Lemma 7, it would have to cancel the appropriate proposals and issue new ones
towards locally heaviest neighbors. �
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Lemma 10 The ADAPTIVELID algorithm, when run on a network with changes, produces the same
matching with the LID algorithm that is run on the same network after the changes complete.

Proof: By Lemma 8, we get that the ADAPTIVELID algorithm terminates for every node, and by
Lemma 9, we know that at termination, it has chosen only the locally heaviest edges of maximum
weight. Since by Lemma 4 the static algorithm also selects the locally heaviest edges of maximum
weight at termination, it follows that the two algorithms make the same choices for the same networks.

�

5.5. Approximation Ratio for the Distributed Algorithms

Following the methodology in [8], in order to further analyze the distributed algorithm in both
variations, we present a centralized algorithm for many-to-many maximum weighted matchings, for
which we show that it behaves in the same way with the distributed algorithm and both have the same
approximation ratio of 1

2
.

Algorithm 3 LIC: Local Information-based Centralized algorithm for many-to-many maximum
weighted matchings
M ← ∅; P ← E

forall the v ∈ V do
counter(v)← dv

while P ̸= ∅ do
take a locally heaviest edge (a, b) ∈ P

M ←M ∪ (a, b)

P ← P\(a, b)

counter(a)← counter(a)− 1

counter(b)← counter(b)− 1

if counter(a) = 0 then
P ← P\ {(a, na) | na ∈ Γa}

if counter(b) = 0 then
P ← P\ {(b, nb) | nb ∈ Γb}

Algorithm LIC is a simple greedy algorithm with the distinctive feature of using only locally available
information, by selecting locally heaviest edges in a centralized way. Note that the comment of Section 5
about the recursive nature of the locally heaviest edges is still valid here: by systematically removing
from the edge pool P the edges we select (line 6, Algorithm 3), along with any unselected edges of
nodes with filled quotas (lines 8 and 9, Algorithm 3), we get the same dynamics as in the distributed
case (cf. Lemma 11). In the following theorem, using a similar proof strategy to the one used
by Preis [9] for his centralized one-to-one weighted matching algorithm, we prove that it achieves a
1
2
-approximation compared to the optimum algorithm (OPT) that selects edges with maximum weights

over the whole graph.

Theorem 2 The LIC algorithm produces a many-to-many maximum weighted matching MC that is a
1
2
-approximation of the matching MOPT produced by the optimal algorithm, OPT.
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Proof: Let VC be the set of nodes matched at least once by the LIC algorithm. We will show that
the condition:

w (MC) ≥ 1

2
w ({(u, v) ∈MOPT |u ∈ VC ∨ v ∈ VC}) (33)

holds for every step of the LIC algorithm, that is, the weight of matching MC , w(MC), is at least 1
2

of the
weight w(MOPT ) of the optimal matching MOPT when including only edges adjacent to nodes matched
by LIC. Note that the algorithm can leave two or more nodes (completely) unmatched, but only if they
are not connected in G(V, E) (if they are connected, they will be matched, since the possibility exists
and they have available connection quotas, leaving possibly one odd node unmatched). By the time LIC
terminates, for every (u, v) ∈ E, it would be either u ∈ VC or v ∈ VC , and Equation (33) will become
w (MC) ≥ 1

2
w (MOPT ).

For the initial condition MC = ∅ Equation (33) holds. Let us assume that at some step of LIC, edge
(a, b) is included in the matching MC and the left-hand side of Equation (33) increases by w(a, b). For
the right-hand side, there are only two options: either (a, b) is part of the optimal matching, MOPT , or
two other edges, (a, c) and (b, d), occupy the respective slots of nodes a and b in the optimal matching.
For these cases, we have the following:

• (a, b) ∈MOPT : The total weight of the right-hand side is increased by 1
2
w(a, b) and Equation (33)

holds.
• (a, c), (b, d) ∈ MOPT : If both c, d ∈ VC , then both edges are already taken into account

in the right-hand side’s weight sum, and Equation (33) holds. If one or both c and d are not
included in VC , then the total weight of the right-hand side is increased by 1

2
w(a, c), 1

2
w(b, d) or

1
2
(w(a, c) + w(b, d)) by the addition of (a, c),(b, d) or both, respectively. However, edge (a, b) was

selected as being locally heaviest, so Equation (33) holds even in the worst case, since:

w (a, b) ≥ w (a, c)

w (a, b) ≥ w (b, d)

}
⇒ w (a, b) ≥ 1

2
(w (a, c) + w (b, d))

�

The following lemma mirrors Lemma 4 and is the key lemma in proving the equivalence of both
centralized and distributed algorithms in the subsequent theorem.

Lemma 11 For every node i Algorithm LIC chooses all locally heaviest edges that are adjacent to it,
if there is enough quota bi available, or otherwise chooses the bi of those that are heavier than any
unchosen one.

Proof: If there are less than bi locally heaviest edges, algorithm LIC will choose all of them, since, by
construction, it will continue to select them until there are no quota slots available at either endpoint.
Otherwise, again by construction, it will choose the bi heaviest of them for node i. �

Theorem 3 The LID algorithm is a 1
4

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation algorithm for the

maximizing satisfaction b-matching problem, where bmax is the maximum connection quota in the graph
and s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor list sizes in the graph, Lmax and Lmin,

respectively.
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Proof: By Lemmas 11 and 4, we know that algorithms LIC and LID choose the same edges for
each node and therefore produce the same solution. This means that the LID algorithm is also a
1
2
-approximation algorithm for the many-to-many maximum weighted matching (as Theorem 2 suggests

for the LIC algorithm). Furthermore, the many-to-many maximum weighted matching we solve, by
theorem 1, is a 1

2

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation of the corresponding b-matching problem.

These two approximations combined give a 1
4

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation for the original

maximizing satisfaction b-matching, where bmax is the maximum connection quota in the graph. � From

the above theorem and Lemma 10, we also get the following theorem about the approximation ratio of
ADAPTIVELID:

Theorem 4 The ADAPTIVELID algorithm solves the adaptive b-matching with preferences problem
with 1

4

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation.

6. Experimental Study

The following extensive experimental study complements the preceding analytical part with useful
observations and conclusions about the behavior of the LID and ADAPTIVELID algorithms in a variety
of scenarios. Focus was given on the performance of the algorithms in regard to the following points:

• Convergence and reconvergence times
• Satisfaction levels, both in normal operation and under heavy stress (i.e., during a network-level

attack)
• Fairness properties of satisfaction-based optimization
• Behavior on different types of networks
• Behavior during different operations (joins, leaves, preference changes and churn)

6.1. Network Types

The networks used during the experiments were power-law and random networks, created with the
Barabási–Albert (BA) [14] and Erdős–Rényi (ER) [15] procedures, respectively, having mean degree and
initial (joining) degree of 0.05n and 0.05n, respectively (where n is the network size). These networks
were selected for their different node degree distributions: in power-law networks, the vast majority of
nodes has a very low degree, and few nodes have a very high degree (power-law distribution), while in
ER random networks, all nodes have comparable degrees (binomial distribution). In fact, high degree
nodes in BA networks are connected mostly with many low degree ones, which leads to the creation
of very different neighborhoods around individual nodes for these two network types. This difference,
coupled with the ADAPTIVELID algorithm’s ability to perform local repairing operations, leads to the
varying behaviors that can be seen in the experiments below.

On the other hand, nodes of both network types had full preference lists (consisting of all their
neighbors), but ranked uniformly at random and with a desired number of connections equal to half their
own degree. Focus was given on random preference lists, since previous research [4,5] showed that: (a)
a strict matching solution cannot always be found when they are used; and (b) the measured satisfaction
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of unconverged instances can be relatively low. These characteristics make random preferences a
challenging test case to evaluate the performance of the algorithms.

6.2. Experimental Procedure

The following experiments were conducted using the PeerSim [16] platform in a synchronous way,
i.e., execution proceeded in rounds, where each node in each round made a receive-respond-process step,
unless it had nothing to execute. This synchronous execution mode is not necessary for the algorithm,
but it is used here to measure the time needed by both algorithms to converge. For each of the following
experiments, networks of size n = 100, 250, 500, 750 and 1, 000 nodes were used, considering 30
network instances for each size, and the results presented here are the mean values over these instances.
For every network instance, a matching was calculated and, in the case of the ADAPTIVELID algorithm,
the following operations were performed on a varying amount of nodes (1% to 50% of the network size,
in increments of 1%): join/leave, where nodes enter/exit the network simultaneously; preference change,
where existing nodes change the ranking of their neighbors in their preference lists simultaneously; and
churn, where existing nodes exit and an equal amount of new nodes enter the network simultaneously.
For the first three cases, the network was left to reconverge after one operation, while in the case of
churn, the operation was repeated for several rounds before the network was left to reconverge.

6.3. Convergence and Reconvergence

The mean value and standard deviation of convergence speed for a variety of network sizes can be
found in Figure 3. It is easy to see that the convergence speed depends on the type of the network. For
example, BA networks of a size of 1,000 take almost twice the amount of time to converge than networks
of a size of 100, while ER networks of a size of 1,000 need less than twice the amount of time needed
by networks of a size of 100 and only a slightly higher amount of time than the networks of a size of 500
and 750.

Figure 3. Convergence speed per network size.
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Likewise, the time needed for reconvergence can be seen in Figures 4 and 5, for networks of a size
of 1,000 of both types and for the four types of operations under consideration. By focusing on low
percentages of affected nodes (i.e., up to 20% of the network size, which is a high volume of change), it
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is easy to see that reconvergence is obtained in most cases for a fraction of the rounds needed for initial
convergence. For join and leave operations, reconvergence is expressed not in rounds, but in relation to
the convergence time, since network sizes change significantly. Note here that this extreme change in
network sizes leads in some cases to percentages greater than 100%, i.e., more rounds are needed for
the reconvergence than for the initial convergence. For the preference change and churn operations, this
is not the case: the network size remains the same, either because no node joins or leaves (preference
change case) or the amount of nodes joining and leaving is the same (churn case), and the reconvergence
time is expressed in rounds.

Figure 4. Reconvergence speed per operation, joins/leaves, n = 1, 000.
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In the case of join operations, nodes arrive at the network and want to join the already established
equilibrium of connections by being more attractive choices for some of the nodes with whom they are
neighbors. This creates cascade effects of nodes rejecting old connections in favor of the newcomers,
the rejected nodes trying to repair their lost connections, and so on. Naturally, the more nodes wanting
to join the network, the bigger upheaval is created. A similar effect is generated during leave operations,
where previously rejected nodes suddenly become attractive choices for nodes that were left behind
by departing nodes. Note here that the BA networks reconverge much faster than the corresponding ER
networks in the case of join operations. This happens because new nodes (being of a low degree) connect
preferentially to relatively few high degree nodes, limiting the extension of the upheaval in the network.
In the case of leave operations, the same behavior poses a challenge, since departing nodes may happen
to be of a high degree themselves, leaving behind a lot of low degree nodes to repair their connections.
Notice though that in both cases (ER or BA networks), when a substantial percentage of the network
departs (i.e., above 35%), the remaining nodes repair their connections much more easily, since they
have more unformed connections than established ones.

Preference change affects both network types in the same way: a node that changes preferences
destroys some connections, creating waves of changes in its neighborhood. For the case of BA networks,
it may happen that a node changing preferences is a high degree one, causing a lot of nodes to repair
their connections. However, this effect dies off quickly, since most of its neighbors are of a low degree,
leading to an overall performance similar to the ER case.
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The two network types show their differences more prominently under churn (Figure 5). For the
ER networks, a joining node under churn can be seen as a “reincarnation” of a leaving node with all
its previous connections dropped and its preferences changed, since both of them have comparable node
degrees. However, the churn operation is detrimental for the BA network, since the joining nodes are of a
low degree and the departing ones of a potentially much higher degree. As a result, the degree distribution
itself is changing, leading to higher reconvergence times (cf. join operation). This phenomenon can be
seen more clearly when looking at networks of different sizes (Figure 6): high churn for small networks
is not particularly problematic (small slope on the graph for 100 nodes), since degree variation is limited,
but for networks of a size of 1,000 it is quite detrimental, leading to higher reconvergence times (high
slope on the graph for 1,000 nodes).

Figure 5. Reconvergence speed per operation, preference change/churn, n = 1, 000.
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Figure 6. Reconvergence speed for preference change and churn (Barabási–Albert).
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In both cases, though, by comparing the churn and preference change graphs in Figure 5, it is easy to
see that, somewhat counterintuitively, it takes progressively more time for the ADAPTIVELID algorithm
to reconverge when more nodes change preferences, but the reconvergence time stays more or less the
same even for high values of churn, or it is consistently lower than preference change, as is the case in
BA networks. Figures 6 and 7 show this phenomenon in more detail for all network sizes.
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Figure 7. Reconvergence speed for preference change and churn (Erdős–Rényi).

The reason behind this behavior is that in churn situations, there are more parallel events taking place:
a new, joining node that replaces a leaving one starts as an empty slate and sends an amount of PROP
messages equal to the desired number of connections. On the other hand, a node that changes preferences
might need to repair only some of its connections (which are now suboptimal) by sending appropriate
PROP messages. However, in both cases, some responding nodes might decline, which will lead to
additional PROP messages to be sent, and so on, until the issuing nodes are satisfied or no available
nodes are left.

One may even wish to compare the two situations from the point of view of what is a desirable action
by a node who changes preferences: to improve existing connections or to perform a leave and come
back (thus contributing to churn). This is especially meaningful in the case of ER networks, since for
BA networks churn is consistently cheaper in any case, due to their special structure and the parallelism
mentioned above. In the case of ER networks, comparing the reconvergence times of the two situations,
churn has the advantage over preference change in high values. This is only natural, since in that case
more nodes start with no connections and all possibilities are explored in parallel. In contrast, having
high values of preference change means that more nodes want to repair their connections, but other
nodes have already connections that they want to maintain, leading to longer times of reconvergence. It
could be useful in practical terms if there were a mechanism able to detect a high volume of preference
changes in the network and to enforce a policy of pseudo-churn, with nodes dropping all connections
when changing preferences. However, as is shown below, the amount of satisfaction under churn is far
less than the satisfaction under preference change before reconvergence, which is a significant argument
in favor of improving connections instead of dropping them and starting again.

6.4. Satisfaction

The mean satisfaction in the network achieved by both algorithms for a variety of network sizes can be
found in Figure 8, along with the values of minimum and maximum satisfaction in the network. Note that
satisfaction is slightly lower in the case of BA networks, due to differences in topology (i.e., minimum
satisfaction is lower, due to the large amount of low degree nodes), but it follows the same behavior as
in the ER case. It is easy to see that the algorithms achieve consistently high satisfaction values, which
are also increasing as network sizes increase. Of particular interest is that: (a) the minimum satisfaction
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in the network is being increased, also, meaning that individual nodes enjoy high levels of satisfaction,
too, implying asymptotically improved fairness properties, as well; and (b) the minimum satisfaction
does not significantly affect the mean satisfaction, which implies that the number of nodes having low
satisfaction is consistently very low compared to the size of the network.

Figure 8. Satisfaction per network size.
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Even though the reconvergence results showed that the ADAPTIVELID algorithm can efficiently
repair its solution once churn stops, it is interesting to see the levels of achieved satisfaction while
churn is in progress. The relative satisfaction for ER networks under churn (to the one achieved before
churn starts) can be found in Figure 9: the different graphs from top to bottom correspond to the relative
satisfaction when churn affects 5% to 50% of the network’s nodes (in steps of 5%), for a network of
100 nodes. It is obvious that the amount of satisfaction achieved remains fairly constant during churn
and depends greatly on the amount of churn. However, even though churn is an intense operation, it is
possible to retain a significant percentage of the original satisfaction, even for churn as high as 50% (i.e.,
when half of the network is changing at every round).

Figure 9. Satisfaction while churn is in progress, affecting 5% to 50% of the network’s
nodes (in steps of 5%, top to bottom).

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

On the other hand, the satisfaction drop is significant compared to the one caused by preference
change. Figure 10 shows the relative satisfaction for both preference change and churn on ER networks,
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right after the change happens, for various amounts of affected nodes, supporting our argument in favor
of improving connections instead of rebuilding them from the beginning.

Figure 10. Satisfaction right after preference change or churn per amount of affected nodes.
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7. Discussion

Locality Regarding the convergence complexity of the proposed algorithms, note that they achieve
guaranteed approximation using only local information, and there is a well-known trade-off (as shown
in [13]) between the amount of local information and the quality of the global solution for matching
problems. In addition, by arguing as in the classic Chandy and Misra [17] Drinking Philosophers
algorithm, we have the following:

Observation 2 Following the main argument of the classic Chandy and Misra [17] Drinking
Philosophers algorithm, the convergence complexity is bounded by the longest increasing edge weight
path in the network.

Symmetry Breaking The locally unique edge weights are assumed as a means to make sure that there
are no cyclic dependencies. There may be other ways to break symmetry and perhaps achieve higher
parallelism; we expect that it can be possible to build further on this paper’s results, e.g., also via working
with other, more elaborate algorithms for standard weighted matching as a starting point.

Other Related Work In general, matching is a quite well-studied problem in various contexts
(e.g., [18]). In the simplest forms of matching, the maximum cardinality matching and the maximum
weighted matching problems, the aim is to find a subset of edges in which no pair of them shares a
common endpoint and which includes as many edges as possible or exhibits the maximum sum of edge
weights (if they exist), respectively. Other popular variations, such as the stable marriages/roommates
problems, assume that nodes have preference lists regarding their potential partner nodes and prefer to
be matched to the ones of higher ranking in their preference list. In all of the above cases, the literature
usually assumes a one-to-one matching of nodes, but even less studied variations of many-to-many
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connections appear to be solvable in polynomial time by centralized algorithms [6,12,19,20], with the
exception of particularly difficult subcategories of the stable marriages and roommates problems [1–3].

Of particular interest in distributed and overlay applications, it has been shown [13] that exact
solutions of even simple matching problems cannot be derived locally in a distributed manner, and
there is significant research interest for distributed approximation algorithms [8,21,22]. Prominent
examples of this research area are the one-to-one weighted matching algorithms of Manne et al. [23] and
Lotker et al. [21,24], with the former having proven self-stabilization properties and the latter having
variants that can handle joins and leavings of nodes. However, whether it is possible to extend
these techniques to many-to-many matchings remains an open research question. On the other hand,
Koufogiannakis et al. [25] proposed a randomized δ-approximation distributed algorithm for maximum
weighted b-matching in hypergraphs (with δ = 2 for simple graphs); but it addresses only static graphs,
and its elaborate nature makes its extension to support a dynamic setting non-trivial.

Additionally to the approaches above, there is an extensive research focus on many-to-many
matchings with preferences [4,5,7,26]. First, Gai et al. in [4] proved that in the case of an acyclic
preference system, there is always a stable configuration and also supplied examples of preference
systems based on global or symmetric metrics. Mathieu in [5] introduced the measure of node
satisfaction as a metric aimed to describe the quality of the proposed solutions. Previously, Lee [26] had
used a similar credit metric in order to optimize the proposed solutions from their heuristic algorithms.
Other approaches regarding the treatment of preferences include the notion of popular matchings, which
is a relaxation of a maximum cardinality matching and where the aim is to maximize the amount of nodes
that prefer a given matching over any other [27]. While particularly suitable for game theoretic studies,
this approach does not offer a way to quantify the potential of possible connections and evaluate potential
matchings. The algorithms proposed here are, to our knowledge, the first to address the b-matching
with the preferences problem from an optimization-oriented perspective, suitable for overlay networks.
Furthermore, they are the first to support dynamic operations for the same problem and offer convergence
and approximation guarantees.

Proposal-Refusal Schemes In the literature, many of the algorithms for matching with preferences
are inspired by the proposal-refusal algorithm of Gale and Shapley [20]. Here, we also utilize the
proposal-refusal scheme, but in order to address a different problem with unique characteristics: while
the Gale–Shapley algorithm is focused on absolute stability, we aim at solving an optimization problem
with the maximum possible satisfaction. For example, in the case of the Gale-Shapley algorithm, it is
important to guarantee that no cycles exist, since, given the distributed nature of the algorithm, a reply
may not be possible to be given immediately by a node to another node’s proposal. This is not necessary
here, since any cycles in preference lists are broken by reducing the original problem to an acyclic
weighted many-to-many matching, upon which the algorithm operates (cf. also Lemma 8). On the other
hand, by focusing on optimization, we are able to develop both non-adaptive and adaptive variations of
our algorithm in order to tolerate and work under changes in the underlying network (cf. Lemma 10).

The best mate initiative described in [5] has certain similarities to the way nodes propose connections
to their neighbors according to the ADAPTIVELID algorithm. In particular, according to the best mate
initiative, a node knows at every moment which of its edges is the best blocking edge and chooses to
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propose to that neighbor. By contrast, according to the ADAPTIVELID algorithm, a node proposes to
its neighbors by descending order of ranking (related to their truncated satisfaction), but these edges
might not be the best blocking edges at that point in time (i.e., the neighbors might not reciprocate with
a proposal of their own). However, by the termination of the ADAPTIVELID algorithm, it is indeed
the case that every node would be connected to the endpoints of the best blocking edges related to the
truncated satisfaction metric. Finally, the ADAPTIVELID algorithm needs only local information, does
not utilize the notion of blocking pairs and can operate in a fully distributed setting.

Approximation In Theorem 3, we proved that the proposed distributed algorithm in both variations
is a 1

4

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation algorithm for the maximizing satisfaction b-matching

problem. This approximation breaks down into: (a) 1
2

(
1 + b−1

max

(
1 + 1−b−1

max

2s+b−1
max

))
-approximation

between the original maximizing satisfaction b-matching problem and the modified version we are
using (Theorem1); and (b) 1

2
-approximation of a distributed many-to-many weighted matching using

the LID or ADAPTIVELID algorithms (see proof of Theorem 3). The first of these approximations is
due to the satisfaction estimation in Lemma 1, and there is no indication whether it is a tight bound or
not. The second term is due to the specific approximation algorithm used to compute a many-to-many
weighted matching, in this case, the simple distributed algorithm, LID of Section 5, which is based
on the one-to-one weighted matching algorithm found in [8]. Although there is a rather limited choice
of algorithms for distributed many-to-many weighted matchings, it may be possible to convert some
algorithms, such as the ones in [21,24] mentioned above for the simple (one-to-one) weighted matching.
However, even the conversion of state-of-the-art algorithms, such as these, may give an approximation
factor of

(
1
2
− ϵ
)
; so, further improvement of this term is the subject of future research. At the same

time, this conversion, depending on whether the instances of the one-to-one matching algorithms can
be executed in parallel or have to be synchronized in rounds, may hold potential implications for the
computational complexity, and this, too, is the subject of future research.

8. Conclusion

In this paper, we studied the distributed b-matching problem and suggested a novel modeling
that focuses on optimization of connections instead of strict matching stability (as defined in [12]).
Following this modeling, we presented a distributed algorithm in two variants, an adaptive and a
non-adaptive, which enables peers with preference lists to form an overlay network while collectively
achieving a guaranteed level of quality for their requested connections. Each peer is free to form
its preference list according to any suitability metric it chooses, based on, e.g., the peer’s distance,
interests, recommendations, transaction history or available resources. We showed that both variations
of the algorithm provably terminate and succeed in maximizing the total satisfaction in the overlay with
guaranteed approximation using only local information. In addition, the ADAPTIVELID variation is able
to handle dynamicity, i.e., joins/leaves of peers or changing preference lists.

Besides, an extensive experimental study of the proposed algorithms encompasses a variety of
scenarios, including ones that put the adaptive algorithm under heavy stress and that have been previously
used in the literature to simulate network attacks. In these scenarios, the adaptive algorithm succeeds
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in maintaining a reduced but steady level of network service while under attack and resumes to normal
service levels after the attack stops. Furthermore, both algorithms show attractive properties with respect
to the satisfaction they can achieve and the convergence time (and hence overhead) needed. Regarding
changes in particular, the experiments clearly strengthen the argument that it is preferable to improve
connections and adapt to changes instead of rebuilding all the connections from the ground up.

To the best of our knowledge, the distributed algorithm presented here in both its adaptive and
non-adaptive variations is the first method able to solve the b-matching with preferences problem with
satisfaction and convergence guarantees. We expect that this contribution will be helpful for future
work in the area, since the method can facilitate overlay construction with guarantees in a wide range
of applications, from peer-to-peer resource sharing, to overlays in intelligent transportation systems and
adaptive power grid environments. Finally, interesting paths of future research would be to develop
variations of the proposed algorithm that can give minimum satisfaction guarantees individually to each
collaborating peer or that can take into account scenarios in which malicious nodes actively try to disrupt
the algorithm’s execution.
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