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Abstract—We attempt to maximize the sensitivity of a sensor
system, where the system sensitivity is expressed by a goal
function formulated in terms of the Fisher information matrix.
Given a large set of sensor candidates, we formulate the problem
as a sensor selection problem by means of introducing a weight
for each sensor candidate. Such a weight corresponds to the
fraction of measurements that is performed by a specific sensor
and it is allowed to vary continuously, which yields a convex
optimization problem.

Index Terms—antenna system, convex optimization, Cramér-
Rao inequality, Fisher information, optimal measurements

I. INTRODUCTION

Tracking of the position of an object equipped with an
electromagnetic transmitter has many applications. For quasi-
magnetostatic sensor systems, this approach is referred to
as magnetic tracking and it is exploited for a number of
biomedical engineering problems such as tracking of the
human eye [1], catheter tracking [2] and real-time organ posi-
tioning during radiotherapy [3]. We have applied optimization
techniques to such quasi-magnetostatic sensor systems [4],
where we optimize a sensor arrangement intended for the
positioning of a source coil. In particular, we attempt to find
the sensor arrangement that yields the maximum sensitivity
with respect to displacements of the source coil.

Here, we present an extension of our optimization technique
for electrodynamic problems that involve antennas. Thus, the
objective is to determine the position of a radiating antenna by
means of a set of receiving antennas, i.e. the sensor antennas.
Given a set of sensor candidates, we formulate an optimization
problem that maximizes the sensitivity with respect to the
position of the radiating antenna. The original sensor selection
problem is relaxed with respect to its integer constraints
and this yields a convex optimization problem [5], which is
attractive from a computational perspective.

II. OPTIMIZATION PROBLEM

The objective is to estimate the position ~r t
q = (xt
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of a transmitting antenna, where the position is described by
the parameter vector d = [xt

q, y
t
q, z

t
q]
T . (The parameter vector

d could involve other parameters such as the orientation of
the antenna but, in this abstract, we limit the discussion to the
position as we assume that the orientation is known and fixed.)
Let u(−)

p (d) be the received voltage for sensor antenna p and
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the parameter vector d at the position d0. We assume additive
complex Gaussian noise np ∈ CN (0, 2σ2), where the noise
term for the sensor antenna p is independent with respect to
all the other sensor antennas.

The Fisher information matrix F can be used as a perfor-
mance metric for the parameter estimation problem. For ex-
ample, the Cramér-Rao inequality [6], cov d̂ � F−1, provides
a lower bound for the covariance of the estimated d̂ for all
unbiased estimators. For our problem, the Fisher information
matrix can be expressed as
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In the following, we wish to maximize log det(F) in order to
find a sensor arrangement that yields a large sensitivity.

Now, we wish to find N sensors among a given set of sensor
candidates, where the number of sensor candidates is denoted
K and these are located at ~r r

1, . . . , ~r
r
K . In order to formulate

this as a computationally attractive optimization problem, we
allow the p-th sensor to perform mp measurements and we
denote the total number of measurements by M . The fraction
of the total number of measurements for sensor p is denoted
wp = mp/M and, for large M , we can relax the constraint
wp ∈ Q to be wp ∈ R. This relaxation allows us to solve the
convex optimization problem [7]

minimize
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)
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wp ≥ 0, p = 1, . . . ,K

(1)

We use CVX, a package for specifying and solving convex
programs [8], [9], to solve the optimization problem.

III. SENSOR SYSTEM MODEL

In this section, we describe the physical model of the sensor
system and its transmitting antenna, which we wish to track.
We denote the receiving antennas (i.e. the sensor antenna
candidates) with the index p = 1, . . . ,K and the transmitting
antenna with the index q = K + 1. In the model that we
use in this abstract, each antenna is connected to a coaxial
cable, which allows us to also incorporate the mismatch of



the antenna in relation to its transmission line. The received
voltage u
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where

apq =
e−jk0rpq

rpq
~Gp(−r̂pq) · ~Gq(r̂pq). (3)

where Za
q denotes the impedance of antenna q and ∆ξq is

the distance between the antenna port and the reference plane
associated with the scattering parameters for port q. For the
cable connected to the antennas, we have the characteristic
impedance Zc and the propagation constant kc. In free space,
we denote the wavelength by λ0 and the wave impedance
η. Further, ~rpq = ~rp − ~rq is the vector from the antenna
located at ~rq to the antenna located at ~rp, which gives the
unit vector r̂pq = ~rpq/|~rpq|. Equation (3) can be used when
antenna p and q are sufficiently separated, such that the far-
field approximation is valid. For closer distances, we exploit
the method of moments to compute a database of values for
apq and ∇dapq .

IV. PRELIMINARY RESULTS

In this abstract, we present some preliminary results that
only depend on exp(−jk0rpq)/rpq . Our ambition is to show
results that are valid for physical antennas at the conference.
In the present text, we assume that ~Gp(−r̂pq) · ~Gq(r̂pq) = η2

and, consequently, we deal with omnidirectional antennas
that do not have any losses associated with the polarization.
Furthermore, we assume that Za

p = Za
q = Zc for all

antennas, i.e. that the antennas are perfectly matched to the
transmission lines. Finally, we put the port very close to the
antenna for all antennas, i.e. kc(∆ξp+ ∆ξq)� 1 which gives
e−jk

c(∆ξp+∆ξq) ' 1. Thus, we have
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We consider a transmitting antenna at (0, 0, z0) above the
xy-plane containing the receiving antennas. Due to the rota-
tional symmetry of the transmitted field around the z-axis, the
optimized sensor configuration will be circularly symmetric
around the origin. Therefore, we arrange the candidate sensors
in a polar grid with ϕ ∈ {0, 2π/3, 4π/3} and ρ ∈ [0, z0]
where the radial resolution is z0/1000. Due to the symmetry
of the problem, all sensors with a specific ρ will take identical
weights. Results show that only one sensor circle with radius
ρopt is present in the optimized solution. The radius ρopt is
not influenced by the number of uniformly distributed sensors
over the circle circumference Ns, as long as Ns ≥ 3.

Figure 1 shows ρopt as function of frequency. The optimized
radius is ρopt = 0.535z0 when the transmitter is close to

Fig. 1. Optimized radius ρopt of the circular sensor configuration as a
function of scaled frequency. Note that ρopt has been normalized with z0,
that the scaled frequency is expressed as z0/λ0, and that c0 denotes the speed
of light in free space.

the sensor plane in terms of wavelengths, i.e. z0 < 10−2λ0,
and ρopt = 0.707z0 when the transmitter is far away from
the sensor plane, i.e. z0 > λ0. For the latter case, the angle
between the z-axis and ~rpq for the sensors at ρopt is 45◦.

V. CONCLUSION

In this abstract, we have presented a sensor selection method
for maximizing the sensitivity of electromagnetic measurement
systems that yields a convex optimization problem. Prelimi-
nary results were given for a simplified sensor system model.
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