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Abstract

To have reliable experimental data when forming mathematical models has al-
ways been an important aspect within numerous fields of engineering. Specifi-
cally, working with models concerning the contact between road surface and tyre,
it is vital to have knowledge of the mechanical properties of the rubber compound
in the tyre. Values given in tables may not always be completely accurate. The
aim of this thesis is to present and evaluate a method of investigating dynamical
material properties of rubber compounds, i.e. viscoelastic materials.

The fundamental principle of this method is a velocity profile comparison. The
response of a sinusoidally excited, beam-like rubber sample is measured along the
sample with a laser Doppler vibrometer. A velocity profile is interpolated from
the solution of a finite-element model. The error that arises from the comparison is
minimized using a gradient descent algorithm that continuously updates the ma-
terial data the finite-element model.

The method proposed successfully determines stiffness and damping over a broad
frequency range. Results depict good agreement of the velocity profiles, and in-
dependent measurements indicate repeatability of the method. The limits of the
methods seems to be governed by measurement accuracy.

Keywords: Tire tread material, viscoelasticity, finite-element modeling, error op-

timization, model updating.



En metod för att uppskatta materialparametrar i gummimaterial-
med hjälp av finita element-modeller.
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JONAS SVENSSON
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Sammanfattning

Att ha pålitlig material data när man ställer upp och löser matematiska modeller
har alltid varit en viktig del inom flertalet ingenjörområden, så också inom vibra-
tionsakustik. Arbete med modeller som berör kontakten mellan däck och vägyta
kräver kunskap om däcksgummits dynamiska egenskaper. Målet med detta exa-
mensarbete är därför att presentera och utvärdera en metod för att undersöka dy-
namiska egenskaper av däcksgummimaterial, det vill säga viskoelastiska material.

Metodens grundläggande princip är en hastighetsprofilsjämförelse mellan mät-
ning och numerisk modellering. Responsen av ett sinusexiterad, balkliknande
gummiprov mäts utmed provet med en laser Doppler vibrometer. En hastighet-
sprofil interpoleras fram från lösningen av en finit element-model. Felet mellan
hastighetsprofilerna minimeras av en gradient algorithm som updaterar material-
parametrarna i finita element-modellen.

Den presenterade modellen uppskattar framgånsrikt styvhet och dämpning över
ett brett frekvensområde. Hastighetsprofilerna visar god överensstämmelse och
oberoende mätdata visar på repeterbarhet hos metoden. Mätnogranheten är den
huvudsakliga begränsande faktorn hos metoden.

Nyckelord: Däcksgummimaterial, viskoelasticitet, finit element-modellering,

optimerings algoritmer, modelluppdatering.
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Chapter 1

Introduction

The introduction chapter gives a brief background to the purpose and the prob-
lems behind this thesis. It also provides a short summary of the chapters included.

1.1 Purpose and background

To enable computation of mathematical models, input data is required in order
for the models to produce meaningful output. When working with e.g. tyre/road
contact models it is the rubber tread in the tyre which is the material in question.
Therefore it lies a great interest in having reliable testing methods that reveals the
properties of the material. Numerous different methods and testing equipment
have been used during the years in order to obtain this information, but still no
method has proven to be superior in a wide frequency range.

The purpose of this thesis is to investigate and evaluate a method of accumulating
material properties out of rubber tread materials. The material parameters that
is being estimated are dynamic stiffness and damping. The method is based on
a velocity profile comparison between results from a numerical model and mea-
surements. The rubber tread is cut into beam shaped samples. The samples are
submitted to sinusoidal excitation by a mechanical shaker. The response is mea-
sured along the center line of the sample with a laser Doppler vibrometer. This
provides a measured velocity profile and also information used for input data in
the numerical model. The model is a finite-element model consisting of a block of
solid elements. A velocity profile is then interpolated from the node values of the
finite-element solution. This is being compared with the measured velocity profile
and the squared error between them is calculated. The error is then used as the
object function for a descent algorithm optimization. More specifically, the mate-
rial parameter values in the finite-element model are updated and a new error is
computed. This process is repeated until the error converges to a minimum value.
The procedure is conducted at discrete frequencies between 500 Hz and 5000 Hz.
This method is in this thesis referred to as the "velocity profile matching method"
(VPMM).

1



2 Chapter 1. Introduction

1.2 Limitations

The thesis aims at determining dynamic stiffness and damping in the form of a
Young’s modulus and a loss factor, for tyre tread materials. The goal is to give val-
ues within circa a 10% interval. Testing is conducted within the frequency range
between 500 Hz and 5000 Hz. The particular frequency range is chosen in order
to cover a wide frequency range that is of interest for tyre/road noise research.
The higher end of the frequency range is expected to possibly reveal the frequency
limitation of the method.

The thesis focuses on presenting the method and show results for single samples,
it does not claim to present results that show full statistical significance. Although
measurement and simulations are carried out more than once to test repeatability.

1.3 Structure

The thesis is structured as following;

• Chapter 2 considers the tread material investigated by the presented method.
The chemical composition of rubber compounds and how it behaves under
various conditions, e.g frquency and/or temperature changes, are give. The
concept of viscoelasticity is described.

• Chapter 3 provides an overview of some existing methods of determining
material properties of viscoelatstic materials. A brief description of how they
work, what kind of information is gained from them and why there still is of
great interest to investigate new methods, is given.

• In chapter 4 the velocity profile matching method is presented. The funda-
mental physical principles, how data is collected and evaluated and limita-
tions for the method. The numerical model behind calculations and the pro-
cess for updating the material parameters in this model, is explained. The
measurements that were conducted in order to gather data, are presented.

• In chapter 5 the material properties revealed by the method is presented. Also
some typical velocity profiles are presented. The results are discussed briefly.

• Chapter 6 provides the finial conclusions reached after completion of this the-
sis. Also possible future work that might improve the method is mentioned.

The appendix includes some additional information that may be of interest to the
reader. In the main body excessively detailed theory, behind the finite-element
method, is avoided. Mathematical derivations that might be of concern for the
inclined reader can be found in Appendix A. Some information about the Laser

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 1. Introduction 3

Doppler Vibrometer, used for the measurements, is included in Appendix B. Addi-
tional results not included in results section is inserted in Appendix C. These results
contain velocity profiles for all the tested frequencies. Appendix D reveals which
type of equipment was used to conduced the measurements.

1.4 Notation

Abbreviations

FEM Finite Element Method
LDV Laser Doppler Vibrometer
VPMM Velocity Profile Matching Method
e.g. exempli gratia
etc. et cetera
i.e. id est

Roman upper case letters

B Bending stiffness [m2 ·N ]
C Damping matrix [N ·m−2]
D Consitutive matrix [Pa]
E Young’s modulus [Pa]
F Force [N ]
G Shear modulus [Pa]
K Stiffness matrix [Pa]
M Moment [Nm]
M Mass matrix [Kg]
R External force matrix [N ]
U Volume force [N ]
W Object function weight [-]

Roman lower case letters

c Damping coefficients [s],[s2]
e Natural logarithm base [-]
f Frequency [Hz]
h Search direction [-]
j Imaginary unit

√
−1 [-]

k Wave number [rad ·m−1]
p Material parameters [Pa],[-]
u Displacement [m]

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



4 Chapter 1. Introduction

t Time [s]
v Velocity [m · s−1]
v Weak formulation weight function [-]
x Distance [m]
z Error [-]

Greek letters

α Step size [-]
β Bending angle [rad]
γ Momentum term factor [-]
γ Shear strain [-]
δ Phase shift [rad]
ε Extensional strain [-]
η Loss factor [-]
λ Wavelength [m]
ν Poisson’s ratio [-]
π 3.141592. . . [-]
ρ Density [kg ·m−3]
ξ Normal displacement [m]
σ Extensional stress [Pa]
τ Shear stress [Pa]
ψ Shape function [-]
ω Angular frequency [rad · s−1]

Subscripts and superscripts

+ Positively traveling
- Negatively traveling
j Near field
Calc Calculated
Meas Measured
app Approximate

Various symbols

ℜ[. . . ] Real part of argument
ℑ[. . . ] Imaginary part of argument
X DenotesX as a complex number
X DenotesX as a vector or a matrix

X̂ Denotes the amplitude of X

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 1. Introduction 5

X ′ Storage modulus of complex modulus X
X ′′ Loss modulus og complex modulus X
XT Transpose of X

Ẋ Time derivative of X

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11
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Chapter 2

Polymer-elostomers

The material used in tyre treads can be a composite of various types of rubber.
Rubber is an elastomer belonging to the polymers. These types of materials show
a viscoelastic behavior, meaning they have booth viscous (dissipation of energy)
and elastic (storage of energy) properties. The elastic and viscous behavior of the
polymer is not constant, varying significantly e.g. with frequency and temperature.

2.1 Viscoelasticity

Polymers are materials composed of long intertwined and cross-linked molecular
chains. The internal interaction between the molecules cause the material to have
certain stiffness and damping properties. A rubber tread is a viscoelastic material,
meaning that it shows both elastic and viscous behavior. Elastic means that the
vibrational energy is stored in the material while viscous means that it is dissi-
pated (normally in the form of heat). These properties vary with temperature and
frequency but it is linear, within certain limits, with respect to vibration amplitude
(Jones 2001). However, it is not stated that the material properties are constant with
respect to large strain amplitudes. For example polymer used for vibration damp-
ing underneath heavy machinery, where the strain is constantly high, the material
can not be assumed linear with respect to vibration amplitudes. If the material is
homogenous and isotropic, its viscoelastic properties are independent of where in
the material your are looking or in which direction the material is loaded.

It is very convenient to work in the frequency domain with mechanical vibrations
of viscoelastic materials. Because the time history of the stress and strain in the
material are harmonic with a time lag between them (see Figure 2.1). If sinusoidal
excitation is assumed it is possible to express the strain and the stress with an
amplitude and a phase. The phase shift between the stress and the strain can take
an arbitrary number between 0 and π

2
, depending on the viscoelastic properties of

the material. The more viscous the material is the bigger the phase shift becomes.
The phase shifted strain can be composed of two part, one part in phase with the
stress and one part π

2
out of phase with the stress (see Figure 2.2). The phase lag

7



8 Chapter 2. Polymer-elostomers

can mathematically be expressed by using complex notation when defining the
stress-strain (constitutive) relation according to,

σ = Eε. (2.1)

This relation is known as Hooke’s law, andE represents a material dependent term
referred to as Young’s modulus or modulus of elasticity and is defined as,

E = E′ + jE′′ (2.2)

To get the physical quantity stress, the real part is extracted of equation (2.1) ac-
cording to,

ℜ[σ] = ℜ[εE] = ℜ[(E′ + jE′′)(ε̂e−jωt)] = ε̂(E′cos(ωt) + E′′sin(ωt)) (2.3)

Following the prior reasoning of having two strain portions, one in phase and one
out of phase with the stress, it is clear that the amplitudes (E′ and E′′) determines
the phase shift between stress and strain. Hence, the phase lag between stress and
strain is modeled by the complex modulus. The real and imaginary part of the
complex modulus are referred to as storage modulus (E′) and loss modulus (E′′).
Sometimes it is of interest to give the ratio between storage- and loss modulus, this
is referred to as the loss factor (η), and is defined as,

η ≡ ℑ[E]

ℜ[E]
=
E′′

E′
. (2.4)

Using the loss factor notation the complex modulus can be written as,

E = E′(1 + jη). (2.5)

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 2. Polymer-elostomers 9

Figure 2.1: Figure depicts the phase difference between stress and strain for sinusoidal
deformation.

Figure 2.2: Figure depicts the strain divided into 2 parts, one in phase and one π
2

radians
out of phase with the stress.

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



10 Chapter 2. Polymer-elostomers

There are several ways of describing the stress-strain relationship, varying from
very simple models as Maxwell and Voight models (see Figure 2.3) to more com-
plex ones. Maxwell and Voight models both describes the material with two ele-
ments, one ideal spring and one dashpot (dissipative element). Maxwell’s model
puts them in series while Voigt’s model puts them in parallel. More complicated
methods are e.g. the fractional derivative model which states that the material
damping is proportional to fractional derivatives of the displacement (Yuan and
Agrawal 1998). All three models show different advantages in different situations,
whereas Voight and Maxwell elements (or combinations of them) work for lesser
degree of freedom systems (more degrees of freedom means large matrices to in-
vert resulting in computational problems) in the frequency domain, the fractional
derivative model is preferable in the time domain (where causality issues have to
be considered) (Jones 2001).

(a) (b)

Figure 2.3: (a) depicts Maxwell’s viscoelastic model, E describes a springs and c a dashpot.
(b) depicts Voight’s viscoelastic model.

2.2 Chemical composition of treads

Tread rubber can be a mixture of different types of rubber, e.g. ploybutadiene -,
natural - and styrenebutadiene rubber (Andersson 2005). The rubber can be fused
with vulcanizing chemicals, oils and filled with carbon black and silica. The pur-
pose of the vulcanization is to impair the motion of the polymer chains at lower
frequencies causing an increased stiffness. Fillers can be used in different propor-
tions in order to change the ratio between the dissipative and the storing part of
the modulus. The rubber samples used for testing in this thesis are polymer filled
with black carbon. These composition is commonly used for road vehicle tires.

The material examined by the method is assumed to be homogenous and isotropic.

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 2. Polymer-elostomers 11

Even-though the processes in the making of the rubber compound can render
slight anisotropy in the material. Traditional compression molding together with
the proper blending of the ingredients is likely to produce non-homogeneity and
anisotropy of negligible magnitude. The rubber is assumed to be nearly incom-
pressible (i.e. ν=0.499), usually accepted when small hydrostatic stresses are con-
sidered. The strain dependence of the material parameters is neglected as only
small strains are considered. Referring to Coja (2005), this is an adequate assump-
tion to make for small dynamical strains in the audible frequency range.

2.3 Frequency-thermal zones of rubber

Frequency and temperature are tightly connected when it comes to their effect
on the viscoelastic behavior of elastomers. It has been shown that a change in
temperature can be described by a shift in frequency (Jones 2001). The complex
modulus, of most polymer materials has got a significantly unlinear frequency re-
sponse. To simplify the response the material is usually divided in to different
frequency/temperature zones. These are referred to as the terminal-, the plateau-,
the transition- and the glassy zone (see Figure 2.4). These names give a very good
idea of the complex modulus behavior over frequency.
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Figure 2.4: Figure depicts the behavior of storage (solid line)- and loss modulus (dashed
line) as functions of frequency. Figure taken from Andersson (2005).

At the very low frequencies of the terminal zone the polymer chains can, because
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12 Chapter 2. Polymer-elostomers

of the long period time, move trough the entanglements completely rearranging
their conformations. This causes high viscosity in the material thus a relatively
high value of the loss modulus. This does not occur for strongly vulcanized, car-
bon filled elastomers (like tread materials) where the polymer chains are more
fixed in their location.

When moving higher in frequency the terminal zone is replaced by the plateau
zone. In the plateau zone, as the name indicates, the storage modulus stays com-
parably constant over frequency while the loss modulus suffers a minimum. This
zone expands over the frequency range where most tread material property test-
ing is conducted.

For the frequencies encompassed by the transition zone the time span is to short to
allow sever configurational changes in the material. Thus the strain corresponding
to a certain stress is less, compared to the plateau zone. The modulus increase with
frequency. Most of the energy is dissipated as heat because of the increased friction
between the polymer chains (Mark et al. 1994). The transition zone is characterized
by the fact that the polymer is losing its elastomeric quality and is perceived, to be-
come first leathery and then hard as frequency increases.

The extremely short period time at the high frequencies of the glassy zone prohibits
all form of configurational changes, only local motions occur. The lag between
stress and strain becomes shorter and the material acts less and less viscous. The
material is perceived as "glassy".

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 3

Traditional methods for determining
material properties

Determining mechanical material properties of materials such as rubber treads
has proven to be of a highly complicated nature. Especially dynamical proper-
ties when moving up in frequency. Testing methods can be separated into two
subgroups, static and dynamic methods. Static methods, reveal a static stiffness
commonly in the form of a modulus. Dynamic methods determine properties such
as dynamic stiffness and dynamic losses (damping).

3.1 Static testing

Tensile stress-strain properties

Tensile stress-strain testing is probably the most common testing method of poly-
mers mechanical properties (Brown 1999). The main reason for this ought to be
the simplicity of the testing. The fundamental principle of the test is to stretch a
sample until it breaks and measure the force and elongation, either continuosly or
at various stages (see Figure 3.1). This test method provides you with information
of the strength, elongation at break and modulus. The most common way is that
the material samples are shaped in the form of dumbbells and placed in a machine
that applies tension to the sample. One has to consider the change in cross section
area of the specimen when conducting a test of this nature.

Compressional stress-strain properties

Compression measurements is obviously an appropriate method of evaluating ma-
terial properties of rubber since there are many practical scenarios where rubber
is used for its compressional characteristics. Like when it is being used as vibra-
tion isolation underneath heavy machinery. Despite this fact testing of this kind is
far less common than tensile testing (Brown 1999). For a test like this it is of out-
most importance that the test sample hight is very small in comparison with the
compressed area, to avoid effects caused by buckling of the sample.

13



14 Chapter 3. Traditional methods for determining material properties

Shearing stress-strain properties

In opposite to tensile and compressional forces, which works perpendicular to the
material surface, shear forces act parallel to the surface. Shear testing is not more
difficult to perform than a tensile test and often the shear stress-strain relationship
is linear for higher strains than the tensile strain-stress relation. Despite of this fact
this test method is not often conducted (Brown 1999). This kind of test is conducted
in order to get information about a materials shear modulus.

Flexural stress-strain properties

This type of testing is practiced almost as much as the tensile testing (Brown 1999).
Its popularity is partly explained by the fact that the beam shaped geometry used
is easier to produce than e.g. dumbbell. The test configuration is usually made up
in one a the following ways; three- or four point loading or a simple clamped beam.
The principal of the testing is to induce a flexural stress which gives rise to tensile
stress on one side of the beam and compressive stress on the opposite side. The
stress-strain relationship (most commonly the tensile) then leads to information
about the modulus.

Figure 3.1: Figure depicts schematically, how tensile, compression, shearing and flexural
testing methods work.

CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11CHALMERS, Civil and Enviromental Engineering, Master’s Thesis 2006:11



Chapter 3. Traditional methods for determining material properties 15

3.2 Dynamic testing

Vibrating beam configurations

The concept of vibrating beam configurations has been applied for several years.
The principle of the technique is to vibrate a beam (consisting of material sample
and some kind of boundary condition), collect and evaluate the data. There are
different ways of evaluating the data depending, mostly, on the frequency range
of interest. Some of the more common are "half power bandwidth" where the in-
formation at the resonance frequencies are considered or a one dimensional wave
propagation. What they have in common though is there limitation at higher fre-
quencies. The half power bandwidth method collapses when the resonances ap-
pear so close that the "half power range" include more than one resonance. A one
dimensional wave propagation seize to work when, as the name implies, the prop-
agation no longer can be considered as one dimensional.

Different beam configurations are frequently used. The most common ones are
Oberst-, van Oort- or sandwich beam configuration (see Figure 3.2). The Oberst
beam configuration is based on a multilayer cantilever beam consisting of the in-
vestigated material placed upon a rigid beam (steel,iron). Excitation and pickup
are normally located at the free and of the beam. The cantilever configuration
has been found to be the most effective way of avoiding several of the problems
associated with other types of boundary conditions (Jones 2001). One possible
problem with the Oberst beam is the asymmetry of the configuration. Thermal ex-
pansion happens at different rates in the investigated beam respectively the rigid
beam which may cause bending problems at extreme temperatures. The van Oort
beam reduces this problem by placing the investigated material on both sides a the
rigid beam, thereby creating a symmetric configuration. When investigating softer
materials or if a complex modulus is probed the sandwich beam configuration is
common. The sandwich beam places the investigated material in between two
rigid beams. Then the effect of bending of the inner layer can be neglected leading
to simple equations for the evaluation (Jones 2001). All these configurations can be
viewed in Figure 3.2.

3.3 ISO standards

In ISO 4664-1:2005 it is stated how testing of dynamical properties in rubber ought
to be conducted. It states which types of apparatus should be utilized, how the
laboratory conditions should be monitored. In the standard there are some as-
sumptions, about the e.g. test equipment, that disables that the standard has fol-
lowed during the development of the proposed method. There some paragraphs
in the standard that can be followed within the framework of the proposed meth-
ods. This includes guidelines such as preconditioning of the test samples. The
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16 Chapter 3. Traditional methods for determining material properties

Figure 3.2: Figure depicts a Homogenous beam (upper), an Oberst- (second upper), a
sandwich beam (second lower) and a van Oort beam (lower).

apparatus described in the standard is said to require the following elements:

a) Clamping or supporting arrangement that permits the test piece to be held
so that it acts as the elastic and viscous element in a oscillating mechanical
system.

b) Device for applying an oscillatory load (stress) to the test piece. The preferred
for of impressed strain is sinusoidal, and the strain shall be impressed on the
test piece with a harmonic distortion which is as low as possible, in no case
greater than 10%

c) Detectors, for determining dependent and independent experimental pa-
rameters such as force, deformation, frequency and temperature.

d) Oven and controller, for maintaining the test piece at the required tempera-
ture.

e) Instrumnets for measuring test piece dimensions, in accordance with ISO
23529.

Item a) an b) are basic conditions for all types of dynamic property testing of rub-
ber. Naturally these conditions are met by the proposed method. A temperature
controlled laboratory has not been used during the test presented in this thesis but
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the method itself does not prohibit it. Test pieces can be prepared and conditioned
in accordance with ISO 23529:2004, although that is not necessarily the case for the
test procedure within the limits of this thesis.

3.4 Limitations of traditional methods

The presented methods are not sufficient especially at high frequencies, conse-
quently new methods are frequently being developed and evaluated. Most meth-
ods normally show a severe limitation in their valid frequency ranges due to that
they evaluate the material response at resonance frequencies, i.e. at high frequen-
cies resonances appear in all dimensions making it difficult to distinguish the res-
onances. Highly damped materials is also problematic to evaluate at resonances
since the resonance peaks become broader and it can be hard to distinguish them
from each other. Another problem commonly associated with traditional testing
methods is to avoid loading the material (with e.g. an accelerometer) when mea-
suring the response of them. Figure 3.3 show a typical mobility as function of
frequency. It is clear that the resonances are hard to distinguish when frequency
increases.

Figure 3.3: Figure depicts a typical mobility plot. The half power bandwidth is indicated.
At higher frequencies the resonance frequencies become harder to clearly define. Figure
taken from Andersson (unpublished)
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Chapter 4
Velocity profile matching method

The velocity profile matching method (VPMM), first mentioned in Andersson (2005),
is the purpose of this thesis and it proposes a way of acquiring stiffness and damp-
ing out of rubber compounds. The method is based on a velocity profile match be-
tween measured- and numerically modeled data. A rubber sample is excited with
a sinusoidal signal fed mechanical shaker and the response is measured along the
centerline with a laser Doppler vibrometer (LDV). The calculated velocity profile
is the results of a finite-element model of the rubber sample used for the measure-
ments. The material parameters, stiffness and damping, are updated until a least
squared error between measured- and calculated results is achieved. The updating
process is governed by either a descent algorithm or a grid search.

4.1 Physical principles of the method

The fundamental principle of this method is that a finite-element model gives
the vibration pattern of a rubber sample with such high precision so that, when
compared with measured results, the dynamic properties of the material can be
extracted from the models. The intention is to excite a rubber sample with a si-
nusoidal mechanical excitation and measure the velocity along the center line of
the top surface of the sample (see Figure 4.1). The measurements should be done
without interfering with the vibrational pattern of the sample. A finite-element
model is then created in a computer software. Boundary information from the
measurements are used in order to get a correctly modeled boundary condition.
The finite-element model ought to be solved for the same frequency that is used
for the sinusoidal excitation in the measurement setup. A top surface, center line
velocity profile is interpolated from the nodal point values of the finite-element
solution. This velocity profile is then compared with the measured equivalence,
yielding an error. The error is the sum of all the discrete point deviations squared,
along the velocity profile. The material parameters in the finite-element model are
adjusted and a new error is computed. This process continues until the error con-
verges to a minimum value. The material parameters used to create the solution
yielding the least error is the method’s estimation of the material parameters in the
rubber sample (see Figure 4.2).

19



20 Chapter 4. Velocity profile matching method

Figure 4.1: Figure depicts top surface, centerline.

Figure 4.2: Flow chart describing the process of estimating the material parameters based
on gradient search method.

4.2 Modeling

4.2.1 Finite Element Method

Theory

The finite element method (FEM) is, as the name implies, a way of breaking down
problems into finite sized "elements". There is a physical phenomenon which is
described by a set of differential equations, that might not have or where it is hard
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Chapter 4. Velocity profile matching method 21

to obtain an analytical solution. This set (could extend from one to several) of
differential equations is broken down into finite element equations. If these are
chosen well, they ought to provide a good approximation to the original set of
equations (see Figure 4.3). Even though the differential equation might vary in a
highly non-linear way over a certain domain it might be reasonable to assume that
over a sufficiently small region it behaves linearly (or quadratic etc.). The elements

Physical
phenomenon

Model
//

Differential
equations

Approximation
//

Finite-element
equations

Figure 4.3: Schematic figure showing the steps from reality to numerical approximation.

are characterized by so called shape functions. Those functions describe how the
investigated quantity behaves over the element. Shape functions are polynomials
of chosen order (see Figure 4.4). The elements are assigned discrete values only
at its nodes. How many nodes an element has got depends on the element shape
function and the geometry of the element. Elements that are described by a first
order polynomial has only got nodes (numerical values) at its corners (ends if it is
1-D), and between them the investigated quantity varies linearly. Thus, the higher
order polynomial describing the shape function of an element the closer the finite
element solution is to the analytical solution of the modeled problem. Although
with higher order polynomials the computational cost also increases. The elements
are only linked to each other trough their boundaries, i.e. nodes at the vertices of
an element is shared by the neighboring elements. This is an important feature of
the method, each element is only connected to its neighbor elements. The system
of elements is collected in large matrices describing the relevant properties of the
elements. For example a solid mechanics problem could utilize matrices describing
properties such as, mass, stiffness and damping. Because each element is only
connected to its neighboring elements the system matrices are sparse and banded
(only a band around the matrix diagonal are populated by values that differs from
zero) which is a significant advantage in terms of computational cost. The solution
of the finite-element model, is only given at the nodes. A solution at any other
point (which is not a node) must be interpolated between nodal point values.

A structural mechanical problem can provide three types of relations which in-
formation can be benefited from. They are constitutive properties, kinematic re-
lations and equilibrium conditions. They are connected as shown in Figure 4.5.
Since there is no structural information the solution process has to go from exter-
nal load through the stress and the strain to the displacement which is the desired
information. The equilibrium condition, together with kinematic- and constitutive
relations yields the differential equation which can be modeled with finite-element
technique (see Appendix A).
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22 Chapter 4. Velocity profile matching method

Figure 4.4: Figure depicts a one dimensional, first order element. The shape functions
vary linear over the element.
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Figure 4.5: Figure depicts how displacement (u), strain (ε), stress (σ) and external load
(U ) are connected.

Implementation

The finite-element model was constructed in MULTIPHYSICS. A commercially
available software from Comsol. The rubber beam was modeled with solid ele-
ments in a block with the dimensions of the rubber sample. Quadratic Lagrange el-
ements, with linear viscoelastic properties were selected. Quadratic means that the
element shape functions are represented by a second order polynomial. This im-
plies that nodes exist within the element as opposed to just on the element bound-
aries as for a linear element. The term "Lagrange" indicates that the polynomials
describing the shape functions are found trough the Lagrange interpolation for-
mula (Ottosen and Petersson 1992). Sufficient discretisation in the finite-element
mesh was chosen as to be greater than ten nodes per wavelength. This gives the
maximum element size for the model. The mesh is then constructed by an algo-
rithm in MULTIPHYSICS (see Figure 4.6).

The control mass was modeled as ablock with high stiffness and little damping in
order to get approximately a rigid rotation. The dimensions of the control mass
was set as; 10 mm x sample width x sample thickness. This saves a computational
cost compared to modeled the mass with its real dimensions, and the effect on the
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Chapter 4. Velocity profile matching method 23

Figure 4.6: Figure depicts the meshed finite element model. This model includes the full
dimensions of the control mass, not used in the calculation process but included here for
easy separation between control mass and sample.

velocity profile is considered as negliable. The boundary conditions were given as
displacements on each edge of the control mass. These displacement were taken
directly from the measurement data. From the solved finite element model the
center line velocity profile was interpolated using MatLab function postinterp.m.

Figure 4.7: Figure depicts how the measured displacements were given as boundary con-
ditions on the edges of the control mass.

The damping in the finite-element model is implemented as Rayleigh damping
(standard in the software). Rayleigh damping means that the damping is con-
sidered to be proportional to the stiffness- and mass matrix of the solution. It is
defined as two proportionally constants, one for stiffness respectively mass. If in
the model the mass proportionally constant (cM ) is set to zero, the damping can
be stated as a loss factor (η) divided by the investigated angular frequency instead
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24 Chapter 4. Velocity profile matching method

of a stiffness proportionally constant (cK ) 1. Considering the equilibrium equation
(see Appendix A),

(−ω2M + jωC + K)u = R, (4.1)

and replacing the damping term C with the Rayleigh damping model according
to,

(−ω2M + jω(cMM + cKK) + K)u = R. (4.2)

Following the reasoning above (cM =0 and cK = η
ω

) equation 4.2 yields,

(−ω2M + K(1 + ηj))u = R. (4.3)

Thereby the stiffness matrix (K(1+ηj)) has complex notation which includes both
stiffness and damping according to viscoelastic theory.

4.2.2 Wave model

The normal surface displacement can be described as the sum of four components
when considering a one dimensional wave propagation, i.e. if only bending waves
are considered. That is normally acceptable because they are the main contribu-
tors of normal displacement. This approach also assumes that the beam can be
considered as infinite, i.e. reflections from boundaries are not included. These four
components are, a wave traveling in positive direction, a wave traveling in neg-
ative direction and respective near fields. Near fields are exponentially decaying
local deformations that do not transport energy. They occur at excitation points
and boundaries. Hence, the normal displacement (ξ) can be expressed as a func-
tion of time and x-coordinate,

ξ(x, t) = [ξ+e
−jkx + ξ−e

−jkx + ξ+je
kx + ξ−je

kx]ejωt (4.4)

Considering time invariant conditions it is possible to neglect the time function
and the normal displacement reduces to a function depending only on the length
direction of the beam (x). In order to get the unknown amplitudes ([ξ+ ξ− ξj+
ξj−]T ) it is necessary to formulate four equations (as many as there are unknowns).
The information benefited from the boundary conditions can be used. The dis-
placement and the rotation at one end of the beam are known from measurements
and at the free end of the beam the force and the moment is zero. Considering
small rotation angles, displacement and rotation are connected as,

β(x) =
∂ξ(x)

∂x
(4.5)

1In the FemLab software these proportionality constants are called α and β, but that notation are
used for other purposes in thesis thesis.
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Similarly there also are relations, trough constitutive relations, between rotation
and moment (equation (4.6)) and moment and force (equation (4.7))

M(x) = −B∂β(x)

∂x
(4.6)

F (x) = B
∂M(x)

∂x
(4.7)

where B denotes bending stiffness. Applying equation 4.4 to our rubber sample
using the relations above yields the equation system below,









1 1 1 1
−j j −1 1

je−jkL −jejkL −e−kx ekx

−e−jkL −ejkL e−kx ekx

















ξ+
ξ−
ξj+
ξj−









=









ξ = ξ0
ξ = β0/k

ξ = F/k3 = 0
ξ = M/k2 = 0









where ξ0 is the measured displacement and β0 the measured rotation.
This model is usually based on so called Euler-Bernoulli beam theory. This frame-
work assumes that the cross section rotates stiffly, perpendicular to the natural
axis of the beam and that the rotational angles are small. This theory normally
works fine (the error does not exceed 10 %) when the wave propagation in the
beam mainly occurs in its length direction. Although when the wavelengths be-
come approximately in the order of six times the cross sectional dimensions (which
ever of the dimensions is smallest) it is normally no longer sufficient (Cremer and
Heckl 1987). There are other frameworks that incorporate certain consideration of
the cross section thereby allowing smaller wavelengths (higher frequencies). One
of them is Timoshenko beam theory which still assumes a stiff cross section but
does no longer require it to be perpendicular to the neutral line, as assumed by the
Euler-Bernoulli theory.

4.3 Measurements

4.3.1 Sample preparation

The sample pieces were cut with a water-jet cutter. An extremely high pressured
stream of water that, together with abrasive, cuts through the raw rubber tread
pieces. The samples were cut into three different sizes (see Figure 4.9) referred to
as A, B and C. Five specimens of each sample size were cut. The sample cutting
took place at Chalmers Waterjet Lab at Chalmers Lindholmen. Figure 4.8 (a) shows
the process of the high pressure water-jet cutting trough one of the rubber "plates"
into the desired dimensions. In Figure 4.8 (b) the cage in which the process took
place can be viewed.
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26 Chapter 4. Velocity profile matching method

(a) (b)

Figure 4.8: (a) shows the water jet cutter in the progress of cutting a sample. (b) shows
the encapsulation from the outside.

Figure 4.9: The different sample sizes, from the left A, B and C

Sample length width thickness

A 130 9.60 6.50
B 84.0 145 10.0
C 130 3.60 2.20

Table 4.1: The table shows the dimensions, in mm, of the different sample sizes.
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The samples were cut into the dimensions presented in Table 4.1. Two samples of
each size were selected and dived into two groups. These groups will be referred
to as measurement set one and measurement set two. The same measurements
were performed for booth sets (see Table 4.2 )

Freq

[hz]
500 750 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
√ √ √ √

B
√ √ √ √ √ √ √

C
√ √ √ √

Table 4.2: The table shows which samples were intended to be measured and at what
frequencies.

4.3.2 Setup

The aim of the measurements were to acquire velocities as function of the beams
length direction, for single frequencies. A mechanical shaker was attached with its
backside on a rigid object. The mechanical shaker was fed with sinusoidal signals
at different frequencies. A force transducer was placed between the control mass
and the mechanical shaker. The stinger connecting the shaker and the force trans-
ducer were made short enough to disable stinger resonances in the considered
frequency range. The force transducer provided information of the magnitude of
the applied force and works as a reference for the phase, although only amplitudes
are considered in the velocity profile comparison. At the lower end of the control
mass the rubber tread sample was attached (See Figure 4.10 and Figure 4.11). The
control mass was suspended by springs to decouple it from the rest of the set up,
in terms of vibrations. The velocities along the center line on the top surface of
the sample was measured with a laser Doppler vibrometer. The measurements
were conducted in a laboratory assuring a temperature of 22 ± 0.5 ◦ C. Due to rela-
tively short testing periods and small strain amplitudes the vibration induced heat
increase in the sample was assumed to have an insignificant effect on the materi-
als viscoelastic properties. Measurements were conducted in order to investigate
the temperature rise in the sample during excitation. A temperature probe was
inserted in a sample piece and the heat increase over time was recorded for a sam-
ple excited with a large amplitude at 1000 Hz. The temperature increase proved
to flatten out after approximately an hour and the rise was so small that its effect
was considered negligible. Although exciting the sample with higher frequencies
would most certainly effect the temperature rise greater, the effect was considered
to still be negligible.
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28 Chapter 4. Velocity profile matching method

Figure 4.10: Scematic drawing showing the measurements setup. 1. Control mass.
2. Meachanical shaker. 3. Stinger and force transducer. 4. Spring. 5. Sample.

Figure 4.11: Figure shows a picture of the measurements setup
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4.3.3 Measuring boundary conditions

To in a controlled matter be able to define the boundary in which the sample is
attached in the excitation point, a control mass is introduced. The excitation of the
beam cause certain rotational motion of the sample as oppose to only translatory
motion (see Section 4.5). Thus, this rotation also has to be modeled as a boundary
conditions in the finite element model. The control mass has and approximately
rigid rotation in the considered frequency range (see Figure 4.12). Thus, if it is pos-
sible to measure the displacement of the mass over a certain distance it is possible
to obtain the rotational angle. The displacement (ξ) at a certain point subtracted
with the displacement at another point yields, through a trigonometrical relation,
the bending angle according to,

β = arctan

(

ξ(x2)− ξ(x1)

x2 − x1

)

(4.8)

where x1 and x2 are two measurement points.

Figure 4.12: The control mass rotates stiffly while the rubber sample deforms according to
a vibrational pattern.

4.3.4 Limitations

Due to noise

Nodes are the points on a vibration pattern that during vibration remain still. Thus
the regions around the nodes have low vibration amplitude. In these regions the
signal to noise ratio is poor. At a certain level the signal is as low as the noise, hence
vibration amplitudes of this order cannot be registered.(Figure 4.13) This limitation
due to noise level is considered when defining the error between calculation and
measurement, see Section 4.4.

Due to discretization

The measurement points along the rubber sample were chosen with approximately
one millimeter between them. Due to the distance between the discrete measure-
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(a) (b)

Figure 4.13: (a) depicts the wave pattern on the beam, the dashed lines indicates the noise
level. (b) depicts the vibration amplitudes, the dashed line indicates the noise level.

ment point errors can occur in the mismatch between measurement and calcula-
tion in agreeing were the control mass ends and where the rubber sample begins.
The first measurement point on the rubber sample can be determined within a
precision of plus/minus half the distance between two measurement points. This
differentiation is done by ocular inspection by examining the measurement data.
This effect ought to mainly effect the estimation of the Young’s modulus due to
the fact that it is mainly the stiffness that controls the spatial aspect of the velocity
profile. This means that the measured and calculated velocity profiles may be, at
the maximum, shifted ±.5 mm along the x-axis. Making the material appearing
less or more stiff than what it actually is. This effect ought to be minimized though
by repeating the measurements a sufficient number of times. Calculations reveal
this mismatch problem to yield a Young’s modulus error of less than the 10% con-
fidence interval that was aimed at. The error in the loss factor is insignificantly
small.

Figure 4.14: Figure depicts the possible mismatch measurement points and actual begin-
ning of the beam.
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4.3.5 Primary evaluation of measurement results

Before analysing the measurement results and comparing them to modeled results
a primary review of the measurements were made. It clearly showed that the re-
sults for sample C turned out to be severely influenced by noise (see Figure 4.15).
It is difficult to see a clear vibration pattern on the sample. This ought to be be-
cause at this frequency the vibration is greatly damped close to the free end of the
sample. Therefore, the sample C was cut into a new sample size. Keeping its cross
sectional dimension the length was reduced to 600 mm. The measurements where
repeated for the frequencies originally intended for sample C (i.e. 3500-5000hz).
Only one measurement set was conducted for this reduced sample C. Thus, re-
sults for sample C are not included in measurement set one and measurement set
two in Chapter 5 but instead as a third measurement set; Measurement set reduced
sample C.
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Figure 4.15: Figure depicts the measured velocity profile for sample C at 5000hz.

Freq [hz] 3500 4000 4500 5000

Reduced C
√ √ √ √

Table 4.3: The table shows at which frequencies reduced sample C was measured.
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32 Chapter 4. Velocity profile matching method

4.4 Algorithms for updating material parameters

4.4.1 Object function

To obtain the best possible fit between the velocity profiles, the measured (vmeas)
and the numerically modeled (vcalc), the error between them ought to be min-
imised. The error between them (z) is defined as the sum of all velocity discrepan-
cies squared and weighted according to,

z =
I

∑

i

|vmeas
i − vcalc

i (E, η)|2Wi, (4.9)

where i denotes the discrete points in the length dimension of the beam. The
weight function (W = [W1,W2, . . .WI ]

T ) is supposed to compensate for the prob-
lems with low signal to noise ration close to bending nodes. That means errors in
points with high signal to noise ration is more significant to the total error than
error in points with low signal to noise ratio. The weight function was chosen as,

W =
|vmeas|

max(|vmeas|) . (4.10)

Where v = [v1, v2, . . . , vI ]
T . The weight was changed to a unit vector (W =

[1, 1 . . . , 1]), of size I , at higher frequencies due to that vital information about wave
pattern that occurs close to the free end is otherwise disregarded by the descent al-
gorithm.

4.4.2 Descent algorithms

The function described in equation (4.9) is the object (natural merit) function which
is to be minimized. Since vcalc is a function of the material parameters E and η, if
everything else is kept constant in the finite-element model and (vmeas) is a con-
stant, z is also a function of E and η; z=f (E,η) ℜ2 → ℜ. Thus the goal is to to
minimize a two dimensional real valued function. To, in an intelligent manor,
update E and η and thereby finding the global minimum of the object function,
a gradient algorithm is implemented. The most known gradient algorithm is the
steepest descent algorithm invented by Cauchy more than 100 years ago. The main
concept of the algorithm is to find the gradient of a function and from there, seek a
smaller (larger) function value in the direction of the gradient. This process is con-
tinued until a minimum (maximum) is found. First the search direction is chosen
according to,

hi = −∇z(pi). (4.11)

Then the parameters are updated as,

pi+1 = pi + αihi. (4.12)
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Chapter 4. Velocity profile matching method 33

Where the step size (α) is computed, satisfying the following criteria;

αi ∈ α(pi) , arg( min(z(pi + αhi))), α ≥ 0 (4.13)

A problem with this kind of algorithm is that its step size criteria (equation (4.13))
is difficult to implement (Polak 1917). When this algorithm was implemented a
constant step-size (α) was used. Another problem with the steepest descent al-
gorithm is the fact that each new search direction is orthogonal to the previous
one, causing the algorithm to oscillate heavily (see Figure 4.16). As a result, the
algorithm can leap back and forth and thereby leading to slow convergence or
stepping over the minimum. A simple way to avoid the oscillations commonly as-

Figure 4.16: Figure depicts the oscillating motion of the steepest descent algorithm.

sociated with the steepest descent algorithm is to add a momentum term, resulting
in something called gradient descent algorithm. This means that instead of each
new search direction being orthogonal to the previous one it is a compromise of
the two. The search direction results in,

∆pi = hi + ∆pi−1. (4.14)

A desired part (γ) of the momentum is added to the search direction of steepest
descent resulting in,

pi+1 = pi + γα∆pi (4.15)

The momentum term can be arbitrarily chosen between zero and one. Using a
slightly more sophisticated method of choosing the search direction can be done
by choosing the term γ according to Fletcher and Reeves,

γi+1 =
ht

i+1hi+1

ht
ihi

(4.16)

or to Polak and Ribiere (Heath 2002).

γi+1 =
(hi+1 − hi)

thi+1

ht
ihi

(4.17)
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34 Chapter 4. Velocity profile matching method

More detailed information about the descent algorithms can be found in Polak
(1917) or Heath (2002).

The parameters of the optimization models were tuned to values appropriate for
the intended calculation process. The descent algorithms (both steepest descent
and gradient descent) was implemented in Matlab. The finite-element model was
made as a function that was called from a m-file containing the descent algorithms
see Figure 4.17.

READ input and measurement data

Initial guess: Call Wave Model pi−1

Compute objective function: Call MULTIPHYSICS zi−1=|vmeas-vcalc(pi−1)|2

LOOP i=1,2,. . . ,n
Calculate gradient:∇ zi−1

Update coefficients: pi← pi−1

Solve FE-model: Call MULTIPHYSICS vcalc(pi)
Compute objective function: zi=|vmeas-vcalc(pi)|2 w

END

Figure 4.17: Figure depicts the implementation of the steepest descent algorithm.

4.4.3 Grid searches

A grid search is a fairly simple minimisation technique. The principle is to give
a highest and a lowest value of the function variables, (pmin pmax) build a large
matrix and locate the combination which yields the least error (in some meaning).
This search can continue by making a new matrix around that minimum value in
order to seek a global minimum. Mathematically this is described, for the case of
p ∈ ℜ2, according to

min(z) = min











z(p1,1) z(p1,2) . . . z(p1,n)
z(p2,1) z(p2,2) . . . z(p2,n)

...
...

. . .
...

z(pn,1) z(pn,2) . . . z(pn,n)











. (4.18)

Where z is quadratic matrix containing the errors that arise when using the vari-
ables in p. The routine that performed these mathematical operations were pro-
grammed in Matlab.
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4.5 Primary work

Some work was performed in order to finalize the method to the manner in which
it is presented in this chapter. This section provides a short summary of the work
and discarded ideas leading to the final method.

In the first measurement setup there was no control mass, instead the rubber sam-
ple was mounted directly on an impedance head 2 (see Figure 4.18). This proved
to cause difficulties in the comparison process that matches the measured- with
the numerically modeled velocity profile. It turned out that the velocity profiles
never matched close to the excitation point, making it impossible to fit them with-
out excluding this part. When excluding the points close to the excitation, vital
information is neglected and results are no longer dependable. The impedance
head does not just transfer the translatory translative force from the shaker. There
is also a bending stiffness of unknown magnitude created in the excitation point.
In the finite-element model the rotation, caused by the bending stiffness was not
included which gave rise to this mismatch problem close to the excitation point.
Hence the control mass was included in the measurement setup. Figure 4.19 shows
the problem close to the excitation point due to the rotation. It also shows that in
the early stages of the development, the method was dealing with mobility profiles
due to that force, in stead of displacement, were given as boundary condition in
finite element model.

Attempts were made in order to implement more sophisticated methods in choos-
ing proper step sizes for the descent algorithm. The step size were to be chosen as
the first number in an series of (1

2
)n, n = 0, 1, 2, . . . ,m to satisfy the Armijo criterion

as done in Dussault (2000). This idea had to be discarded though due to the large
computational cost when the finite-element model had to be solved several addi-
tional times in each iteration just to "optimize" the step size. Instead in the final
Matlab-script where the algorithm was implemented a constant predefined step
size is used. This is not believed to compromise the results of the minimisation,
only the computation time of process.

2Measurement device that measures both velocity and applied force in the mounting point. Force
divided by velocity equals mechanical impedance.
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36 Chapter 4. Velocity profile matching method

Figure 4.18: Figure depicts the measurement setup which had the rubber sample placed
directly on an impedance head.
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Figure 4.19: Figure depicts the obvious mismatch of transfer moblilities close to the exci-
tation point, located where x is zero.
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Chapter 5

Results

5.1 Dynamic modulus and loss factor

All calculated material parameters for measurement set one, measurement set two
and measurement set reduced sample C are presented both in a plot and a table.
Due to unknown reasons the measurement at 2000 Hz, for measurement set one,
turned out to show only noise. Due to noise for sample C in measurement set one
and measurement set two no results are produced for them.

Measurement set: 1

Sample size A B C

Freq [hz] E [MPa] η [-] E [MPa] η [-] E [MPa] η [-]

500 44.8 0.162
750 45.6 0.245

1000 49.8 0.257 55.0 0.257
1500 51.0 0.301 57.0 0.315
2000
2500 51.3 0.322
3000 53.8 0.351
3500 54.2 0.368
4000 58.8 0.393
4500
5000

Table 5.1: Table show the material parameters for the frequencies and samples for which it
was possible to produce results. For measurement set 1.
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Figure 5.1: Figure depicts Young’s modulus as a function of frequency.
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Figure 5.2: Figure depicts loss factor as a function of frequency.
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Measurement set: 2

Sample size A B C

Freq [hz] E [MPa] η [-] E [MPa] η [-] E [MPa] η [-]

500 41.5 0.164
750 45.7 0.232

1000 46.0 0.233 65.0 0.241
1500 52.5 0.286 68.2 0.270
2000 71.5 0.294
2500 77.9 0.309
3000 78.3 0.346
3500 71.0 0.360
4000 74.0 0.384
4500
5000

Table 5.2: Table show the material parameters for the frequencies and samples for which it
was possible to produce results. For measurement set 2.
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Figure 5.3: Figure depicts Young’s modulus as a function of frequency.
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Figure 5.4: Figure depicts loss factor as a function of frequency.

Measurement set: reduced C

Sample size Reduced C

Freq [hz] E [MPa] η [-]

3500 69.0 0.337
4000 72.8 0.345
4500 70.7 0.360
5000 73.0 0.376

Table 5.3: Table show the material parameters for the reduced sample C.
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Figure 5.5: Figure depicts Young’s modulus as a function of frequency.
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Figure 5.6: Figure depicts loss factor as a function of frequency.
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5.2 Scatter
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Figure 5.7: Figure depicts a scatter plot of all estimated Young’s moduli.
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Figure 5.8: Figure depicts a scatter plot of all estimated loss factors.
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Figure 5.9: Figure depicts the velocity profiles for sample B at 2500 Hz for both measure-
ment sets

5.3 Discussion

Based on the results from the independent measurement sets and different sam-
ples it seems as if the loss factor is decided with greater accuracy than the Young’s
modulus. The loss factor increases consistently with frequency while the Young’s
modulus fluctuates some. Judging from literature (e.g. see Figure 2.4) it seems
more logical that the material parameters wold show a gradually increasing be-
havior within the investigated frequency range.

Notice the overlap, where both samples are tested at the same frequency for mea-
surement set one, in Figure 5.1 and Figure 5.2. The values of the material parame-
ters do not differ more than approximately 10%, i.e. within the limits of what was
aimed at. This is not true for the overlaps in Figure 5.3 and Figure 5.4, depicting
the second measurement set. Here the Young’s modulus values differ by around
30%, while the Loss factor values still lie within a 10% interval. Comparing the two
independent measurement sets show an interesting fact. The calculated material
parameters for sample A do not differ significantly between the two measurements
sets, though for sample B they do. For sample B the Young’s modulus values differ
between 20-30%, while the Loss factor values again show relatively low difference
between the measurement sets. The large difference in estimated Young’s modu-
lus is a results of the velocity profile difference between the measurement sets (see
Figure 5.9). Wether this is due to accuracy in the measurement process or slight
dissimilarity between the samples is difficult to argue. One problem might be the
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effect of torsional motion if what is assumed to be the centerline of the sample does
not coincide with the neutral axis of torsion.

The overlap of frequencies (i.e. 3500 and 4000 Hz) between measurement set one
and two, and for the reduced sample C also shows interesting results. While the
error between measurement set two and reduced sample C are small (< 5%) they
both disagree with measurement set one.
Figure 5.7, showing all the calculated Young’s moduli in a scatter plot, shows an
interesting trend. The modulus seems to increase with frequency but they might
be a bit to spread out to draw any final conclusions in the matter. It would be in
great interest to test a bigger set of rubber samples to see if the calculated moduli
follows any statistical distribution.

Figure 5.8, which depicts the scatter of calculated loss factors, shows a very distinct
trend. The loss factor value seems to have a clear increasing behavior over fre-
quency. Again is there not sufficiently many independent measurements to draw
any type of statistical conclusions.

Except for the discrepancy between the velocity profiles of measurement set one
and two there are other factors that might influence the results. Insufficient dis-
cretisation in the finite-element model might cause an underestimation of the ro-
tational motion occurring at the boundary. This could result in the optimasation
algorithm focuses on the parts close to the excitation, due to the higher levels there.
Thereby disregarding the wave patter close to the free end of the beam where the
levels are lower. The loss factor is not as greatly influenced by the boundary rota-
tion as the Young’s modulus.
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Chapter 6

Conclusions

The velocity profile matching method as described in this thesis is a relatively reli-
able method of determining dynamic stiffness and damping in rubber compounds.
The method is based on a velocity profile matching between measured and numer-
ically modeled data.

The method has proven to have a number of positive aspects to it. It is a rela-
tively simple method of testing rubber treads. The measurements do not require
any equipment that cannot be found in a standard vibrational acoustics laboratory.
Although the method of sample cutting presented in this thesis might not be pos-
sible to conduct in such a laboratory. The calculations can be done on a standard
computer that has access to any computational- and finite-element software. De-
pending on the frequency range, and thereby element size, of interest though the
computational cost has to correspond to the capacity of the computer.

Another positive aspect about the method is that the rubber sample does not have
to be cut according to exact, predefined dimensions or shape. The geometry of
the rubber sample used for the measurements can just be prescribed when the
finite-element model is defined. Although beam shaped samples, as used i n this
thesis, are very convenient they are not required. This implies that preexisting
samples, originally not intended for testing, can be investigated by the velocity
profile matching method.

Maybe the most interesting aspect of the proposed method is that it, unlike many
other testing methods, does not evaluate the sample at resonance frequencies. This
means that the method is not as limited in frequency. The velocity profile match-
ing method does not seize do work when clear resonance frequencies no longer
can be distinguished. It also means that the sample only has to be measured at
those frequencies that is of interest for the particular situation.

The different optimisation algorithms used show different advantages in different
situations. The grid search is a good method for narrowing down the possible
range of the parameter values and if repeating the process several times and each
time making the grid narrower yields convergence. However the accuracy and
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stability of the descent algorithms are in some cases greater. The biggest advan-
tage with the grid search algorithm is the simplicity in using it. The only required
input is an upper and a lower limit of parameter values and the resolution of the
grid. The descent algorithms, as implemented here, require some tuning with the
step sizes before working satisfactory. Despite this the accuracy and stability of the
descent algorithms cause them be being used exclusively for the results presented.

Future work would be to try improve the repeatability of the measurements. To
investigate the sensitivity of the measurement process it could be of interest to dis-
mount and remount the setup between two measurements. Or maybe to change
some parameters, such as amplitude, between measurements on the same sample.
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Appendix A

FEM applied to structural mechanics

The finite-element method is a very widely used method within a number of fields
of engineering. Considering our case which is a structural mechanical problem
the mathematical approach of putting up the equations, breaking them down to
finite element equations and finally solving them will be explained in this section.
it will start with the kinematic relations and via the constitutive relations end up
with the equilibrium relations. This equation will then be broken down to a final
approximate solution with the help of finite element technique.

Under the assumption of small strains ((∂ux

∂x
)2 ≪ 1) it can be deduced that the

normal strains are equal to the respective first derivative of the displacement field
while the shear strain is the derivatives, with respect to the plane of the shear, of
the same displacement field. This means that the quadratic terms in the Lagrange-
Green strain tensor is neglected. These strains are sometimes referred to as en-
gineering strains and are collected in the so called Voight matrix representation
according to (A.1)

ε = ∇̃u (A.1)

Here ε represents the strain vector while ∇̃ is a matrix differential operator and u

is the displacement field.

ε =

















εx
εy
εz
γxy

γyz

γxz

















, ∇̃ =



















∂
∂x

0 0

0 ∂
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0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
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0 ∂
∂x

0 ∂
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∂
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

















,u =





ux(x, t)
uy(x, t)
uz(x, t)



 .

Since small strains are considered it is assumed that the material has a linear re-
sponse. Thus the constitutive relation we use is Hooke’s generalized law (A.2) or
Cauchy elasticity,

σ = Dε, (A.2)

where σ represents the stress field and D the constitutive matrix. The constitu-
tive relation is assumed to be hyperelastic, meaning that the strain energy is not
dependent of how the strain state was obtained but only the sate itself.
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σ =

















σx

σy

σz

τxy

τyz

τxz














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,D =
1

E

















1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

















Here E is the Young’s modulus and ν is the Poisson’s ratio, which is the ratio of
transverse contraction strain to longitudinal extension strain in the direction of
stretching force. Now consider the equilibrium relations. More precisely dynamic
equilibrium which states that the force acting on a body is equal to the inertia force.
This might be more familiar as Newton’s second law. If we also assume that our
structure experiences viscous behavior, which ought to be correct since we previ-
ously stated that our tread material is considered to have viscoleastic properties,
damping can be added in the equilibrium equation as being proportional to the
displacement rate (velocity). This yields,

∇̃Tσ + U + cu̇ = ρü. (A.3)

Where U is a volume force field acting on the body, c is the viscous damping factor,
ρ is the density of the body and ∇̃T is a matrix differential operator. Now the
combination of the kinematic, constitutive and equilibrium relations give,

ρü + cu̇− ∇̃TD∇̃u = U. (A.4)

If harmonic excitation is considered the displacement can be expressed as an am-
plitude times a phase as,

u = ûejωt. (A.5)

Where j denotes imaginary number (
√
−1) and ω the angular frequency (2πf ). If

the conditions are considered as time invariant. This together with stating that
manipulations are done in the frequency domain gives a simple derivation (with
respect to time) of the displacement term. Since it is known that the first and the
second time derivative of the displacement gives velocity respectively acceleration
this gives the simple relations,

v = u̇ = ûejωt = jωûejωt = jωu (A.6)

and,

a = v̇ = ü = v̂ejωt = jωv̂ejωt = jωv = −ω2u. (A.7)

Where v denotes velocity and a acceleration. Now it is possible to write the equi-
librium equation as a function of only the displacement field variable u,

(−ω2ρ+ cjω + K)u = U. (A.8)
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Where K replaces the expression ∇̃TD∇̃. This formulation of the equilibrium
equation is commonly referred to as the "strong" formulation. However this equa-
tion is in most cases not possible to solve analytically. Therefore the weak form is
introduced. What is done mathematically is that the equilibrium equation is mul-
tiplied by an arbitrary weight function (v) and integrate over the relevant region.
This yields,

∫

Ω

v[(−ω2ρdΩ + cjω + K)u−U] = 0 (A.9)

Where Ω is the domain (region) of interest. This equation can be separated into,

−
∫

Ω

vω2ρudΩ +

∫

Ω

vcjωudΩ +

∫

Ω

vKudΩ =

∫

Ω

vUdΩ. (A.10)

The solution for the elements in the variable u is approximated as

uapp = ψa (A.11)

Where a is a vector of unknown parameters ([a1 a2 . . . an]T ) and ψ is a vector of
trial(basis) functions ([ψ1 ψ2 . . . ψn]) depending on the spatial dimensions over
which you integrate (normally x,y,z). Replacing u with uapp (which is a vector
containing uapp for all spatial dimensions) in equation A.10 yields a numerical
solution for the equilibrium equation which compared to the analytical solution
gives an error e. This error is commonly referred to as the residual (Ottosen and
Petersson 1992). The residual depends on the parameters in a. To minimize the
residual (error) the weight functions v ought to be chosen so that ve=0. This
minimization can be done with several different methods, e.g. "Point collocation
method", "Least-squares method" or "Galerkin’s method" mentioned in Ottosen
and Petersson (1992). Dealing with finite element techniques Galerkin’s method
is a very common and powerful method (Ottosen and Petersson 1992). Galerkin’s
method says that the weight functions should be chosen so that they are equal to
the trial/base function. This implies that the trial/base functions are orthogonal to
the residual (vT e=0). Dividing the problem into finite elements and choosing the
weight functions according to Galerkin will yield four matrices, one matrix con-
taining the load at each node which will be referred as R, one matrix containing
the stiffness of each element (K), one containing the mass of each element (M) and
one containing the damping of each element (C). These matrices are defined as

M =

∫

Ω

ρdΩ (A.12)

K =

∫

Ω

∇̃TD∇̃dΩ (A.13)

C =

∫

Ω

cdΩ (A.14)
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R =

∫

Ω

UdΩ (A.15)

This leads to the final formulation of our problem in the meaning of a finite element
solution. Equation A.16 shows this formulation.

(−ω2M + jωC + K)u = R (A.16)
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Appendix B

Theory of Laser Doppler Vibrometer
(LDV)

B.1 Fundamental physics of the LDV

The laser Doppler vibrometer used for the measurement setup described in this
thesis is a Helium Neon laser. This means that the medium inside the laser is a
gas mixture a Helium and Neon. The LDV measures the normal displacement of
the object it is set on. This works as following, an output excitation (or an outside
source) causes a certain object to vibrate. The LDV sends out a laser beam which
reflects of the vibrating object. The backscattered light interferes with a references
beam inside the scanning head and the interference pattern is recorded by a photo
detector (see Figure B.1). A voltage level proportional to the vibration velocity is
sent out by the vibrometer. The voltage is then digitalized and processed in he
software.
This is based on the so called Doppler effect. The Doppler effect is the phenom-

Figure B.1: A schematic explanation of the data acquisition of the LDV.
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ena that occurs when an object that is radiating waves, is in motion. This causes
a shift in wavelength compared to a object that would be still or move in another
direction. Thus, is the vibrating object is moving towards the origin of the laser the
backscattered light will have shorter wave length than the reference signal. Anal-
ogous, is the vibrating object is moving away from the laser source the light has a
longer wave length than the reference signal. The interference pattern between the
backscattered light and the reference signal provides information of the magnitude
of the vibration but not the phase. The phase information comes from frequency
modulating the reference signal so that when the amplitude of the vibrating object
is zero forward and backward direction is already defined.

B.2 Averaging

The LDV gives a complex number in each scanning point in the frequency domain.
The recorded time signal is Fourirer transformed, and an average of all the record-
ings is made. This means that the measurements are performed several times (de-
pending on the settings) in the same point and than averaged. This is done in order
to reduce the influence of noise in the measurement data. Since noise is commonly
of random nature, a sufficient number of averages will make the interference due
to noise is negligible. If Ci denotes a complex number, in the frequency domain,
then the frequency domain averaging is done according to:

avr(C) =

∑N
i=1ℜ[Ci] + i ∗∑N

i=1ℑ[Ci]

N
(B.1)

where N is the number of averages chosen in the settings.
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Appendix C

Velocity profiles

C.1 Sample set: 1
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Figure C.1: (a) Figure depicts the velocity profiles for sample A at 500hz. (b) Figure
depicts the velocity profiles for sample A at 750hz.
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Figure C.2: (a) Figure depicts the velocity profiles for sample A at 1000hz. (b) Figure
depicts the velocity profiles for sample A at 1500hz.
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Figure C.3: (a) Figure depicts the velocity profiles for sample B at 1000hz. (b) Figure
depicts the velocity profiles for sample B at 1500hz.
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Figure C.4: (a) Figure depicts the velocity profiles for sample B at 2500hz. (b) Figure
depicts the velocity profiles for sample B at 3000hz.
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Figure C.5: (a) Figure depicts the velocity profiles for sample B at 3500hz. (b) Figure
depicts the velocity profiles for sample B at 4000hz.
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C.2 Sample set: 2
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Figure C.6: (a) Figure depicts the velocity profiles for sample A at 500hz. (b) Figure
depicts the velocity profiles for sample A at 750hz.
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Figure C.7: (a) Figure depicts the velocity profiles for sample A at 1000hz. (b) Figure
depicts the velocity profiles for sample A at 1500hz.
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Figure C.8: (a) Figure depicts the velocity profiles for sample B at 1000hz. (b) Figure
depicts the velocity profiles for sample B at 1500hz.
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Figure C.9: (a) Figure depicts the velocity profiles for sample B at 2500hz. (b) Figure
depicts the velocity profiles for sample B at 3000hz.
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Figure C.10: (a) Figure depicts the velocity profiles for sample B at 3500hz. (b) Figure
depicts the velocity profiles for sample B at 4000hz.

C.3 Sample set: reduced sample C
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Figure C.11: (a) Figure depicts the velocity profiles for shortened sample C at 3500hz. (b)
Figure depicts the velocity profiles for shortened sample C at 4000hz.
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Figure C.12: (a) Figure depicts the velocity profiles for shortened sample C at 4500hz. (b)
Figure depicts the velocity profiles for shortened sample C at 5000hz.
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Appendix D

Measurement equipment

The following equipment were used for the measurements conducted in this the-
sis:
Shaker; B& K Type 4810
Force transducer; B& K Type 8203
Signal amplifier; NAD SA 3020
Charge amplifier; B& K Type 2635
LDV; PSV 300
Temperature probe; Labfacility model 2020L
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