
DLOREAN: Dynamic LOcation-aware
REconstruction of multiwAy Networks

Fredrik Johansson
Chalmers University
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Abstract—This paper presents a method for learning time-
varying higher-order interactions based on node observations,
with application to short-term traffic forecasting based on traffic
flow sensor measurements. We incorporate domain knowledge
into the design of a new damped periodic kernel which lever-
ages traffic flow patterns towards better structure learning.
We introduce location-based regularization for learning models
with desirable geographical properties (short-range or long-range
interactions). We show using experiments on synthetic and real
data, that our approach performs better than static methods for
reconstruction of multiway interactions, as well as time-varying
methods which recover only pair-wise interactions. Further, we
show on real traffic data that our model is useful for short-term
traffic forecasting, improving over state-of-the-art.

Keywords—Traffic prediction, structure learning, higher-order,
spatio-temporal, kernel-reweighting, hierarchical inclusion

I. INTRODUCTION

Understanding road traffic flow has been of fundamental
interest to urban planners for several decades [1]. Modern
urban traffic control systems (UTCS) collect large amounts
of heterogenous data including flow rate, occupancy, camera
feeds, etc. which is used in design of Intelligent Transport
Systems (ITS). A key component of such systems is prediction
of traffic flow over short-time intervals.

Several methods have been investigated for short-term
traffic forecasting (STTF) e.g. time-series methods such as
ARIMA [2] and seasonal ARIMA [3], state-space mod-
els [4], [5], nonparametric methods [6], neural networks [7],
simulation models [8], Bayesian methods [9], [10], random
forests [11], [12] etc. See [13], [7] for survey of earlier
methods, and [6], [14], [15], [16] for more recent advances.

It is now recognized that a key aspect of above problem
is finding the dependencies between traffic flow at different
(nearby) locations [5], [17], [18]. This can be posed as
an instance of structure learning within the framework of
probabilistic graphical models [19], wherein the structure (de-
pendencies between nodes) of the graphical model is learnt
based on node observations. Structure learning is an extremely
well-studied problem [19], which is computationally hard in
general [20].

Further, modeling the dependencies between traffic at dif-
ferent nodes introduces two additional caveats: the dependen-
cies between traffic at different nodes vary over time, while
showing periodic trends [5]; and, the dependencies between
several nodes might be coupled and consequently, cannot

be represented using pair-wise interactions alone [21]. We
explain the two problems in greater detail below.

The temporal variation in dependencies between traffic
at different location is well-known. For example, the traffic
flow patterns, and the resulting traffic jams, differ drastically
between peak hours of 4 − 5 pm, compared to other times.
One possible interpretation is that the model structure itself
changes over time, and therefore, the node observations cannot
be assumed to be generated independently and identically
distributed (i.i.d.) from some underlying static model. Several
methods [22], [23], [24], [25], [26] have investigated learning
of time-varying graphical models with pair-wise interactions
based on node observations at different time points.

In several contexts [27], [28], pair-wise interactions alone
are not representative of the complex interactions present in
the system. Hypergraphs [29] present the natural extension
of graphs for representing such multiway interactions. Within
the graphical models framework, multiway interactions can
be easily represented using factors involving several vari-
ables1. Tractable learning algorithms are obtained by making
additional assumptions on the structure of the higher-order
graphical model such as bounded tree-width restriction [30],
[31], [32] and hierarchical constraints [21], [33]. A number of
recent works [34], [32], [35], [21] have presented fast methods
for tractable learning of higher-order graphical models, and
have used resulting algorithms for inferring static dependencies
between traffic at different locations based on sensor mea-
surements. The resulting models with higher-order interactions
show better likelihood compared to models based on pair-wise
interactions alone.

All the methods discussed above [34], [32], [35], [21]
yield a higher-order graphical model but ignore the temporal
variation in model structure. In contrast, the time-varying
methods [22], [23], [24], [25], [26] yield a time-varying
graphical model having only pair-wise interactions.

The first contribution of this paper is to devise a procedure
for learning time-varying higher-order graphical models, based
on a kernel-reweighting method for aggregating influence of
observations at nearby time points; followed by learning of
sparse graphical model which respects hierarchical constraints
at each time independently by extending the approach of

1In this paper, we use the terms multiway interaction, higher-order interac-
tion and hyperedge interchangeably to mean a factor node connected to several
variable nodes.



Schmidt and Murphy [21]. At a high level, the kernel-
reweighting procedure [22], [36] multiplies the likelihood due
to an observation at a nearby time instant with a higher factor
compared to an observation at a distant time instant; thus
reweighting based on interval between current time instant and
observation time instant. It decouples the temporal dependence
and structure learning steps, and therefore, can be used with
other methods for learning higher-order graphical models [30],
[32], [35]. We show using synthetically generated data and
real traffic measurements that our hybrid approach does better
than static higher-order structure learning [21] as well as time-
varying structure learning with only pair-wise interactions [22].

We next focus on discovering repeated traffic flow patterns.
For example, if we want to find the dependencies that occur on
weekdays between 4− 5 pm given real traffic measurements,
we should reweight the observations at 4−5 pm on weekdays
higher than observations at other times on weekdays, or obser-
vations on weekends. Our second contribution is designing a
periodic damped kernel which captures daily variation in our
approach, following similar ideas in signal processing [36]. We
show using experiments on real traffic data, that our damped
periodic kernel captures trends much better than simple kernels
which just consider the interval between two time instants.

We then ask the following question with a focus towards
interpretability of the learnt model: What if we want to dis-
cover long-range interactions alone? Or alternatively, we are
interested in learning graphical models where the interactions
are between nearby nodes alone? The traditional methods for
traffic flow prediction do not handle this. We address this by in-
troducing location-based regularization, i.e. the regularization
term for a higher-order interaction depends on the geographical
locations of the interacting nodes. For example, when one
wishes to learn a short-ranged graphical model, we penalize
the higher-order interactions involving nodes which are very
far apart with a large regularization term. We show, using
experiments on real traffic data, that our location-based regu-
larization yields more interpretable models exhibiting desired
geographical properties.

II. RELATED WORK

a) Short-Term Traffic Forecasting: Short-term traffic
forecasting methods provide traffic flow forecasts typically for
next 5 − 10 minutes up to an hour into the future [9], [7].
Karlaftis and Stathopoulos [37] investigate spatial variation and
different time resolutions (daily, monthly, yearly); and observe
that traffic flow exhibits spatial variation but does not show
much variation during most months of the year as well as
during weekdays.

Traditional time-series methods such ARIMA and vari-
ants focus on univariate prediction of traffic flow, ignoring
the spatio-temporal correlations in the measurements. Subse-
quently, a number of techniques (e.g. [38], [17], [18]) have
been developed which take into account the spatial correlations
between traffic flow at “nearby” nodes. However, most existing
work considers either a fixed number of nodes (e.g. [17], [18])
or distance dependent measure (e.g. [38]) to find “nearby”
nodes, ignoring that the significant variation which might occur
e.g. traffic at an expressway, and city network [39].

To the best of the authors’ knowledge, none of the existing
methods have approached both of the following two problems:
Does the set of “nearby” nodes used for making short-term
traffic predictions at a given node change with time? Do
there exist complex interactions (captured using higher-order
correlation terms) which can improve predictive performance?

Solving the first problem requires insight into how the set
of “nearby” nodes (neighbouring nodes used in making traffic
prediction) varies over time. Intuitively, the set of neighbours
should not change too much in short intervals e.g. 5:00 and
5:10 p.m. Further, one might observe periodic trends e.g. traffic
flow at a stadium affecting nearby stations before and after
games.

For the second problem, a naive approach to modelling
higher-order correlations is intractable since number of un-
known parameters far exceeds the observations. Instead, se-
lecting few higher-order interactions which give best predictive
improvement under reasonable model assumptions seems more
suitable. The remainder of this paper addresses above problems
using the framework of probabilistic graphical models.

b) Learning time-varying graphical models: Several
methods have focussed on inferring time-varying interactions
based on the assumption that interaction networks change
slowly over time [40], [22], [23]. Song et. al. [22] infer sparse
time-varying gene interaction network under above assumption
by first using kernel-reweighting to aggregate influence of
observations at nearby time points, and subsequently inferring
sparse network at each time independently using `1 regulariza-
tion. Ahmed and Xing [24] and Kolar et. al. [25] have studied
alternative losses for modeling piece-wise constant networks
with sharp structural changes between different segments, as
well as networks with smooothly (linearly) changing model
parameters. Fu et. al. [23] explore dynamic version of Mixed
Membership Stochastic Blockmodels (MMSB) [41] wherein
the interaction dynamics is governed by a state-space model.
Other methods have focussed on dynamic network inference
under tighter assumptions on network structure based on
domain knowledge [42], [26].

c) Learning higher-order graphical models: Chechetka
and Guestrin [32] and Shahaf et. al. [35] present fast in-
ference techniques for learning bounded tree-width graphical
models [30], which they use to learn the static dependencies
between traffic at different locations based on sensor measure-
ments (of traffic at each location) at different time points.

Schmidt and Murphy [21] provide a tractable procedure for
learning model structure under the assumtption of hierarchical
inclusion constraints [43], [44], which specifies that a higher-
order interaction of order k i.e. involving k nodes, is active
only if all interactions involving subsets of the k nodes are also
active. They use overlapping group `1 regularization [43] to
enforce the hierarchical constraint. The resulting optimization
is solved using spectral projected gradient where Dykstra’s
algorithm [45] is used to compute the projection. While the
method supports learning of higher-order models, it has no
inherent support for modeling dynamic networks.

III. PRELIMINARY

We are given observations xt = [xt1, . . . , x
t
n]> at time

instant t ∈ T where xti ∈ X denotes the measurement at node



i for time t, and X is a discrete set. In the context of traffic
flow prediction, node i denotes a physical sensor placed on
some highway, while xti represents the traffic flow measured
at the sensor at time t.

The problem of (static) structure learning is to find a
hypergraph G = (V, E) with nodes V = {1, . . . , n} and
subsets of vertices (hyperedges) E ⊆ 2V ; with associated set
of potential functions Φ = {φe}e∈E which maximizes the log-
likelihood:

Φ̂ = arg max
Φ

∑
t∈T

logP (xt|Φ) (1)

In this paper, P (x|Φ) is the log-linear model [46], given by

P (x|Φ) = exp

(∑
e∈E

φe(xe)−A(Φ)

)
(2)

where A(Φ) denotes the normalization function at time t
respectively; and the potential function φe(xe) depends only
on the node observations xe = {xi}i∈e of nodes present in
the hyperedge.

Following the notation of Schmidt and Murphy [21], we
use we to denote the parameters associated with potential
function φe; and w to denote the full set of parameters. In
general, when e ⊆ V contains m nodes, then we will have
length |X |m. For example, if e = {1, 2} and x1 and x2

are binary, then a possible over-complete representation is
φ1,2(x1,2) =

∑1
i,j=0 I(x1 = i ∧ x2 = j)wi,j .2

A. Convex structure learning

This subsection reviews the approach by Schmidt and
Murphy [21] which learns hierarchical log-linear models [46],
[47] obeying the following constraint:

Definition 1 (Hierarchical inclusion restriction). A log-linear
model with model structure G = (V, E) and associated
parameters {we : e ∈ E} satisfies the hierarchical inclusion
restriction if the following is true:

If wa = 0 and a ⊂ b, then wb = 0 ∀a, b ∈ E

Schmidt and Murphy [21] learn higher-order networks
while enforcing the hierarchical inclusion restriction by in-
troducing additional mixed-norm regularization terms based
on overlapping groups of nodes [44], [43], resulting in the
following constrained optimization problem:

min
w,g
−
∑
t∈T

log p(xt|w) +
∑
e

λege s.t. ge ≥ ‖w∗e‖2 (3)

where λe is a per-edge regularization factor and w∗e is a vector
obtained by concatenation of all parameters we′ which satisfy
e′ ⊂ e. g is a vector of auxilliary variables ge, introduced to
bound the norm of weights we of each group e.

The constrained optimization in (3) is solved using a pro-
jected gradient method [48] where the projection is computed
using Dykstra’s algorithm [45]. Higher-order interactions are
added to the model incrementally with the caveat that a higher-
order interaction e is added only if all subsets of that hyperedge

2The function I(ϕ) equals 1 if ϕ holds true and 0 otherwise

e′ ⊂ e are already part of the model (hierarchical constraint),
and further, it satisfies the condition∥∥∇we

∑
t∈T

log p(xt|w)
∥∥

2
> λe (4)

For large graphs, pseudo-likelihood [49] is used instead of
exact likelihood resulting in the following optimization:

min
w
−
∑
t∈T

log p(xti|xt−i,w) +
∑
e

λe
(∑
e′⊆e

‖we′‖22
)1/2

(5)

where xt−i := [xt1, . . . , x
t
i−1, x

t
i+1, . . . , x

t
n]> denotes the states

of remaining nodes (except node i) at time t. This improves
speed of learning for larger models since the higher-order
moments do not need to be computed.

B. Kernel-reweighting

This section reviews the kernel-reweighting method intro-
duced in Song et. al. [22], following similar ideas in time-
series analysis [36]. The kernel-reweighting method allows
learning different pair-wise interaction networks at each time
t, by relaxing the i.i.d. observation assumption; yet taking
into account the slowly changing nature of the time-varying
network. More concretely, it infers a sparse network wt at
each time point t ∈ T , using the observations (in terms of
log likelihood) available at nearby time instant s ∈ T , whose
influence on the network inference is reweighted depending on
the time gap between two time points (t−s), using a symmetric
kernel function Khw

(·). This yields the optimization problem
at each time t given by:

min
wt
−
∑
s∈T

ρt(s) log p(xs|wt) + λ‖wt‖1 (6)

where ρt(s) denotes the weight for observation at time s when
inferring network wt at time t, given by ρt(s) =

Khw (t−s)∑
sKhw (t−s)

and λ is the parameter associated with `1-regularization
term (‖wt‖1), which governs the sparsity of the obtained
network.

The kernel function Khw
(t) controls the degree of influ-

ence of nearby time instant s when inferring network at time
t with increasing time gap (t − s), where hw is the kernel
bandwith. In this paper, we investigate two kernel functions

• Gaussian kernel Khw(t) = exp(−t2/hw). This was
originally used by Song et. al. [22] for inferring time-
varying gene interaction network (see Figure 1 (a)).

• Laplace kernel Khw
(t) = exp(−|t|/hw). We find this

kernel performs better in experiments reported here.

The model of Song et. al. [22] is used for comparison in
Section VI and is denoted KELLER.

IV. LEARNING TIME-VARYING MULTIWAY INTERACTIONS

This section presents our hybrid approach to learning time-
varying multiway interactions satisfying hierarchical inclusion
restriction at each time instant, using a natural extension of
kernel-reweighting method to higher-order structure learning
approach of Schmidt and Murphy [21].



We consider the problem of inferring the multiway interac-
tion network wt at time t based on the following optimization:

min
wt
−
∑
s∈T

ρt(s) log p(xs|wt) +
∑
e

λe‖wt
∗

e ‖2 (7)

where ρt(s) denotes the reweighted influence of an observation
at time s while learning the multiway interaction network
at time t as in Equation (6). In this paper we focus on
improving the network reconstruction by incorporating domain
knowledge into the design of an appropriate kernel Khw

(·) and
choice of regularization parameter λe to obtain better-fitted and
more interpretable networks.

The kernel-reweighting decouples the structure learning
problem at each time instant t, which can then be solved using
the existing approach of Schmidt and Murphy [21]. Notice
that setting ρt(s) = 1 makes (7) equivalent to (3) for static
multiway network reconstruction by treating measurements at
all time instants as i.i.d. observations.

We show in Section VI using synthetic dataset as well as
real traffic measurement that the hybrid approach performs
better than static multiway reconstruction as well as learning
time-varying pair-wise networks.

A. Damped periodic kernel

The section presents our damped periodic kernel for lever-
aging the periodic (daily) patterns in road traffic towards
learning better networks. Suppose we are interested in learning
a multiway interaction network at 5 p.m. on Friday (Feb. 22,
2013). The kernels described in Section III-B will assign high
weight to nearby time instants, say 4.50 p.m. and 5.10 p.m. on
the same day, which agrees with the intuition that the networks
at those times should be very similar to the underlying network
at 5.00 p.m. on the same day.

On the other hand, the kernels also assign higher weight
to observations to e.g. 11.00 p.m. on the same day, compared
to weight assigned to observations at 5.00 p.m. on Thursday,
or those at 5.00 p.m. last Friday. However, it is well-known
that traffic show periodic patterns e.g. in many countries,
5.00 p.m. is peak traffic time in general and more so on
Fridays. Therefore, it makes sense to design a kernel which
accounts for these trends.

At the same time, the traffic pattern on Friday at 5.00 p.m. a
few months back might be very different due to any of several
reasons e.g. road blocks, construction, special events, etc.; and
consequently, those observations should be considered with a
grain of salt (assigned less weight).

We account for these patterns by using a damped periodic
kernel K̃T

hw,β
(t) computed by convolving the basic kernel

Khw
(·) with a damped periodic delta train with period ∆T

and damping function lβ(·), where β controls the degree of
damping; following similar ideas in signal processing [36].
Mathematically, one can write

K̃T
hw,β(t) = Khw

(t) ~

(∑
i

lβ(t− iT )δ(t− iT )

)
(8)

where δ(·) denotes Dirac’s delta function, and ~ denotes the
convolution operator. Figure 1 presents an example of damped

periodic kernel function, obtained using damping function
lβ(x) = exp(−|x|/β).

In the remainder of this paper, we focus on daily trends by
choosing T = 24 hours, and using damping function lβ(x) =
exp(−|x|/β) with appropriately chosen β found using grid
search. It is simple to design a kernel focussing on weekdays,
weekends or monthly trends [37] by simply choosing lβ(·)
appropriately.

Experimental results on traffic data (Section VI-B) show
that the damped periodic kernel performs better (in terms
of log-likelihood), compared to hybrid model compared in
previous section.

V. STRUCTURED LOCALIZATION

This section presents our spatial (location-based) regular-
ization for learning more interpretable networks. Specifically,
one might want to learn networks with most interactions
occurring between nearby sensors (which we call a short-range
model), or conversely, models with long-range interactions.
While hard restrictions has been made previously, e.g. using a
simple distance threshold [18], to the best of our knowledge,
this problem has not been approach by means of regularization.
We formalize this notion below.

Let ~pi = [pix piy ]> denote the geographical location of
sensor i respectively. Then, for any interaction e ∈ E , we use
the maximum Euclidean distance between any two nodes u
and v which are part of the interaction (u, v ∈ e) as a measure
of the range of the interaction i.e.

de = max
u,v∈e

‖~pu − ~pv‖2 (9)

Under such a definition, we are interested in finding a short-
range model i.e. a network for which de is small for most
edges.

We enforce this by penalizing long-range interactions as
part of the regularization by using a distance-dependent regu-
larization function for each edge e ∈ E as:

min
wt
−
∑
s∈T

ρt(s) log p(xs|wt) +
∑
e

λe‖wt∗

e ‖2 (10)

where λe is the regularization parameter for interaction e,
which in turn depends on the range de of the interaction3.
In this paper, we use regularization function of the form

λe = η × (de)
γ (11)

where de represents the range of the interaction e, while η and
γ are parameters governing the geographical properties of the
learnt model. For example, choosing γ greater than zero favors
short-range models, while negative values of γ lead to models
with high number of long-range interactions.

Experimental results on traffic data (Section VI-B) show
that location-based regularization can recover more inter-
pretable models with desired geographical properties (long-
range or short-range) with a trade-off in terms of model
performance.

3Schmidt and Murphy [21] use the same λ for all interactions
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Fig. 1: Example showing (a) Basic kernel, (b) Damped periodic operator, and (c) Damped periodic kernel.

VI. RESULTS

In this section we present the results of evaluating our
method on synthetic data and traffic data. For baseline com-
parison, we use our base model (HYBRID) as well as (a)
static network construction using all available data (at different
time points) as i.i.d. observations (STATIC) and (b) pair-wise
network reconstruction using kernel-reweighting (KELLER).

We adapt code provided by Mark Schmidt4 to implement
STATIC, HYBRID and variations described in Section IV-A.

A. Synthetic experiment

We first evaluate our method on a synthetically generated
data set (node observations), where the underlying model
structure is changing slowly over time (Section VI-A).

1) Data set: We consider a hypergraph with n = 10
nodes and hyperedge probability p = [0.15, 0.10, 0.05], where
p(i) denotes the probability of random hyperedge of size
(i+1). The potential functions are chosen with weights in [1, 2]
uniformly at random (analogous to procedure in [22]). We gen-
erate two hypergraphs HA = (V, EA) and HB = (V, EB) from
the above model. If there are common edges i.e. e ∈ EA∩EB ,
we remove them from the hypergraphs.

We generate a sequence of nT = 50 hypergraphs where the
model structure changes slowly from HA to HB . Specifically,
each hyperedge e ∈ EA in hypergraph HA switches off (i.e. is
removed from the model structure) at random instant te chosen
uniformly at random over the interval [0, T ] independent of
other edges. The hyperedge e ∈ EA with associated time te
is present in all models Et with 0 ≤ t ≤ te. Conversely, each
hyperedge e ∈ EB in hypergraph HB switches on at time
instant te chosen uniformly at random over the interval [0, T ],
and is present in all hypergraphs Et having te ≤ t ≤ T .

The hypergraph Ht = (V, Et) has the conditional distri-
bution P (e ∈ Et|Et−1) depending on the previous hypergraph
Ht−1, with C = 1/(T − t+ 1), given by

P (e ∈ Et | Et−1) =


1− C if e ∈ EA ∩ Et−1

1 if e ∈ EB ∩ Et−1

C if e ∈ EB ∩ Ēt−1

0 otherwise

(12)

At each time t, we generate m = 200 i.i.d. node ob-
servations xt,1, . . . ,xt,m from hypergraph Ht, out of which

4http://www.di.ens.fr/∼mschmidt/Software/

TABLE I: Edge recovery (F1-score) for edges of cardinalities
2, 3 and 4 averaged over different time instants t ∈ T , and
negative log-likelihood (NLL) values for network reconstruc-
tion.

F1 (2) F1 (3) F1(4) NLL
STATIC 0.2721 0.0800 0.2080 478.4193

KELLER 0.3144 – – 465.5713
HYBRID 0.3153 0.1386 0.0512 462.5704

50% are used as training data while the remainder are used
as test samples for computing the log-likelihood of the trained
model. This is the high-dimensional region where the number
of unknown variables p ∼ O(n4) is much larger than number
of samples m ∼ O(n2).

2) Results: We use the Laplace kernel Khw
(t) =

exp(−t/hw) with kernel bandwidth hw = 10 and compare
our method using kernel-reweighted estimation of time-varying
network with static network inferred using [21]. We choose
(default) regularization parameter λE = 10.

Table I (right) shows a comparison of average negative
log-likelihood (NLL) at each time t ∈ T for the methods
averaged over 10 trials. Both KELLER and HYBRID which
take the temporal variation of the model into account perform
significantly better (lower NLL) than STATIC method which ig-
nores the temporal variation in the underlying model. Further,
HYBRID outperforms KELLER slightly by taking into account
the higher-order edges.

For each method (STATIC, KELLER, HYBRID) and at time t,
we partition the recovered edges as Êt = Êt2∪Êt2∪Êt4 where Êti
denotes the set of hyperedges of size i, i.e. Êti := {e ∈ Êt :
|e| = i}. We compute the recovery of edges w.r.t. original
hyperedges Et = Et2 ∪ Et3 ∪ Et4 (where Ei := {e ∈ E : |e| = i})
using F1-score fi = 2piri

pi+ri
, where pi, ri and fi denote the

precision, recall and F1-score in recovery of hyperedges of
size i respectively.

Table I (left) shows F1-score for recovered edges compared
to true hyperedges Et at different sizes (|e| = 2, 3, 4). The hy-
brid method (HYBRID) recovers higher-order interactions while
KELLER (by definition) only returns pair-wise interactions.



TABLE II: Negative pseudo log-likelihood (NLL), and aggre-
gate geographical distances within inferred interactions using
different methods on the PEMS-SF dataset.

NLL dmin davg dmax
STATIC 73.15 0.0099 0.24 0.44
KELLER 71.67 0.0002 0.22 0.44
HYBRID 70.63 0.0002 0.27 0.44
DP-HYBRID 69.65 0.0002 0.28 0.44
DP-HYBRID/LR 70.06 0.1147 0.30 0.44
DP-HYBRID/SR 71.62 0.0002 0.07 0.17

B. Learning traffic flow networks

We evaluate our method on the dataset of measurements of
traffic occupancy rates collected as part of the PeMS5 project.
We investigate the behaviour of the following models, DP-
HYBRID, our hybrid approach with damped periodic kernel,
DP-HYBRID/LR, hybrid approach with damped periodic kernel
and location-based regularization for finding models having
long-range interactions and DP-HYBRID/SR, same as previous
but for short-range interactions.

1) Dataset: The PeMS dataset was compiled for UCI
Machine Learning Repository6 and consists of measurements
of occupancy rates in different car lanes in the San Fransisco
bay area. In the experiments, we have selected a subset of the
data comprising 14 days of measurement from 32 different
measurement stations, the same number commonly used in
previous work [32], [21]. We discretized the data into 2 bins,
enabling comparison with KELLER. The dataset was then split
in two halves, the first 7 days used for training and the second
for testing. We denote this dataset PEMS-SF. We trained and
evaluated our model on 12 noon on each day, using hourly
measurements.

2) Kernels & parameter selection: For the hybrid ap-
proaches, as well as KELLER and STATIC, we have chosen
parameters using grid-search, to maximize the pseudo likeli-
hood of the trained models with respect to the test set. The
bandwidth parameter hw was selected from the range [50, 200].
For β, we chose values from [1000, 5000] and for λ from
[1, 20] based on grid search. The period T of the periodic
kernels was set equal to the number of samples per day.

For the location-based regularization we used the best
parameters found for DP-HYBRID, while selecting γ through
grid-search in the range [1, 8] for short-range interactions, and
[−8,−1] for long-range interactions. The factor η was chosen
as 10γ .

For all of the experiments, we used a Laplace base kernel,
Khw

(t) = exp(−|t|/hw). This was found to have the best
performance on synthetic data as well as in early experiments
on PEMS-SF.

3) Results: The results of our experiments, in terms of
negative pseudo log-likelihood on the test set and distances
of inferred interactions, are presented in Table II. We used the
following parameters to obtain these results: for all methods,

5http://pems.dot.ca.gov
6http://archive.ics.uci.edu/ml

λ = 1, for KELLER and HYBRID, hw = 100, and for DP-
HYBRID, DP-HYBRID/LR and DP-HYBRID/SR we used hw =
80 and β = 2500. For DP-HYBRID/SR we used γ = 8 and for
DP-HYBRID/LR, γ = −8.

We see that all hybrid methods outperform both bench-
marks. Further, we note that HYBRID has better performance
than KELLER, indicating that including higher-order interac-
tions contribute to higher likelihood of the model. HYBRID
also improves on STATIC, showing that accounting for temporal
variations in the underlying networks allow for a better fit to
the data. Moreover, adding periodicity to the kernel with DP-
HYBRID improves the likelihood even more, indicating that
a domain-specific adaptation (accuounting for day-cycles of
traffic) increases the likelyhood of the model. In conclusion,
incorporating both temporal dynamics and higher-order fac-
tors, into traffic structure prediction, offers an advantage over
existing methods.

We also report the minimum, average and maximum inter-
action distances, denoted dmin, davg and dmax respectiveley.
We define dmin = mine∈E de and analogously, dmax =
maxe∈E de and davg = 1

|E|
∑
e∈E de where de is defined as

in (9). The numbers are meant to serve as indicators of the
performance of our spatial regularization.

In Table II, we note a significant difference in the aggre-
gate distances when using location-based regularization. For
instance, the average and minimum distances are increased
when using DP-HYBRID/LR and conversely, the average and
maximum distances are decreased when using DP-HYBRID/SR.
We note that STATIC has a comparatively high minimum
distance, yet low average distance, making it less suitable
for geo-targetted structure prediction. Lastly, we note that the
likelihood of the models using spatial regularization, while
increasing slightly in NLL compared to hybrid, still performs
better than STATIC and KELLER.

C. Short-term traffic forecasting

We evaluate the predictive capabilities of our model by
comparing it to state-of-the-art method by Chandra and Al-
Deek [17], [18] for short-term traffic forecasting. Chandra and
Al-Deek [18] use a Vector Autoregressive model (VAR) for
predicting flow based on past p = 6 flow measurements at
nearby nodes. A VAR model of n variables has the form,

xt = v +A(1)xt−1 + ...+A(p)xt−p + et (13)

where xt is an (n × 1) observation vector at time t, A(p)

is a (n × n) coefficient matrix for lag p, v is a constant
term and et is a time-dependent noise term. Specifically, (13)
defines a VAR model of lag p, i.e. using p previous samples
for prediction, denoted VAR(p).

Estimating a VAR model amounts to fitting all coefficients
A = [A(1), . . . , A(p)] using least-squares estimation. Often,
a restricted subset of the variables is used for predicting a
distinguished variable resulting in reduced complexity and
higher interpretability. Chandra and Al-Deek (and others, see
e.g. [38]) have used spatial restriction by selecting 5 nearest
neighbours to model traffic at a distinguished node.

In this experiment, we compare the results using standard
VAR model with spatial restriction to select the neighbours;



with results using predictions based on nodes selected using
our HYBRID approach which takes into account the tempo-
ral variation in the relevant neighbourhood (set of “nearby”
nodes), as well as higher-order interactions.

Straight-forward extension of VAR to handle higher-order
correlations is computationally intractable since a naive ap-
proach would require modelling parameters (Aijk) for each
order 3 correlation leading to O(n3) variables. Our prediction
method incorporates each higher-order interaction obtained by
HYBRID approach into the VAR model by regressing on an
augmented feature vector with each term corresponding to
product of neighbours (vertices other than the distinguished
vertex) in an hyperedge, as described below.

Let G = (V, E) denote the hypergraph inferred using
HYBRID model with maximum order k (i.e. maximum size
of any hyperedge in G). Let Ei = {e ∈ E : i ∈ e} denote
the neighbourhood of vertex i. We perform regression by con-
sidering the neighbours Ei where for each hyperedge e ∈ Ei,
we consider the corresponding feature as yi,e =

∏
u∈e∧u 6=i xu,

yielding an augmented vector yti = [yti,1, . . . , y
t
i,mi

]>, where
mi = |Ei| denotes number of hyperedges incident to vertex i.

In order to predict traffic flow xti at vertex i at time t, we
use linear regression on time-series yti as

xti = vi + eti +

p∑
l=1

β
(l)
i

>
y

(t−l)
i (14)

where eti denotes the noise term; and, vi ∈ R and
β

(1)
i , . . . , β

(p)
i ∈ Rmi are the unknown parameters which are

estimated using the data.

1) Results: Using the extended model in (14), we predicted
the occupancy rates of (n = 32) stations at 12 (noon) around
Berkeley, selected from the PeMS dataset. We trained both the
STATIC and HYBRID models with maximum order (k = 3) to
obtain the hypergraphs Gstatic and Ghybrid, the difference be-
ing that in the HYBRID case, our inferred hypergraph is based
on damped periodic kernel (as described in Section VI-B)
and therefore, captures the neighbourhood which is relevant
at 12 (noon).

The original VAR was used for comparison without mod-
ification, except for leaving out constant and error terms as
in Chandra and Al-Deek [18]. Two restrictions are made
on the variables used for predictions. VAR/SR includes only
stations within L = 10 miles of the one being predicted, while
VAR/FULL includes all stations.

We evaluate the predictions using the Average Relative
Error [50] (ARE) defined as,

AREt =

∑k
i=1 |xti − x̂ti|/xti

k
(15)

For all experiments, a lag of p = 10 was used. The results of
the prediction experiments can be seen in Table III. The best
parameters values for STATIC and HYBRID were (λ = 10) and
(λ = 15, hw = 50) respectively. The number of parameters fit-
ted in the VAR models are stated, as a measure of complexity.

We make a note that both of our extensions perform better
than the original VAR model, while retaining comparable
complexity. This indicates that higher-order interactions does

TABLE III: Prediction results using the VAR and modified
VAR models in terms of ARE (see text). #PARAM denotes the
average number of parameters. #2-EDGE and #3-EDGE denote
the average number of 2-edges and 3-edges respectively.

ARE #PARAM #2-EDGE #3-EDGE
VAR/SR 0.1910 956 9.4 0
VAR/FULL 0.1599 10240 32 0
STATIC 0.1400 16600 25.9 14.0
HYBRID 0.1263 11193 24.7 8.16

improve the quality of the prediction. Further, we note that the
HYBRID model performed better than STATIC, indicating that
the kernel-reweighting scheme also contributes to the perfor-
mance. Lastly, we point out that there is no straight-forward
way of adding parameters to VAR/FULL since it already uses all
observations in prediction. The threshold distance L of VAR/SR
was set to 20 values in [2, 1000]∪ {∞} and gave a monotone
decrease in ARE with increasing distance (until all stations
were included). The results for VAR/SR in Table III (L = 10)
are thus reported for comparison only.

VII. DISCUSSION

We present a hybrid method for inferring multiway time-
varying interaction networks based on an extension of convex
structure learning method of Schmidt and Murphy [21] using
kernel-reweighting [22], with application to traffic data. We
develop a domain-specific kernel which captures periodic
traffic patterns; and introduce location-based regularization for
learning networks with desired geographical properties.

We show using experiments on synthetic and real traffic
data that our method is capable of inferring networks that better
fit the data than existing methods by capturing the dynamic and
higher-order interactions. Further, we show that our method
improves performance over state-of-the-art in short-term traffic
forecasting, while maintaining similar model complexity.

Our approach can be significantly improved by leveraging
heterogenous data sources e.g. camera feeds, GIS information,
vehicle co-location, etc. which are part of modern Intelligent
Transport Systems (ITS). Another interesting aspect is integra-
tion and validation with large-scale simulation models [51].
Lastly, extension to large-scale networks remains a practical
challenge, where distributed optimization techniques [52] and
parallelization frameworks [53] might prove extremely useful.
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