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Chalmers University of Technology

Abstract
This thesis deals with topological field theories derived from maximally supersymmetric
gauge theories. The main part of this work is the three appended research papers, each
of which investigates some different aspect of these theories. Leading up to these is the
first part of the thesis which aims at introducing the above-mentioned concepts in such
a fashion that the papers become legible to even those readers who are less familiar with
notions such as topological field theory and N = 4 Yang-Mills theory from the start. This
introduction begins with the concept of symmetry, and both gauge- and supersymmetry
are explained. This leads on to the introduction of maximally supersymmetric gauge
theories, and then finally to outlining the possible ways to create topological field theories
from these.

The two last chapters of this thesis are dedicated to the theories featured in the
appended papers. Papers I and II both deals with the geometric Langlands-twist of
N = 4 Yang-Mills theory and the five-dimensional analog of this. In paper I, spherically
symmetric solutions to the localisation equations of both the four- and five-dimensional
topological field theories are investigated, whereas paper II presents an explicit expres-
sion for the action of the five-dimensional theory. The final paper deals with a topological
twisting of (2,0) theory, which was conjectured to be relevant in the understanding of the
AGT-correspondence. However, this suggested twist is shown to not result in a topolog-
ical field theory on a general background by showing that the stress-tensor of the theory
cannot in general be both Q-exact and conserved.

Keywords: Topological Field Theories, Supersymmetric Gauge Theory, Extended Su-
persymmetry
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The hardest thing to explain
is the glaringly evident

which everybody has
decided not to see.

− Ayn Rand

vii



viii



Chapter 1:

Introduction

If one is to believe Rand, it is fortunate that this thesis revolves around a world rarely
considered evident in everyday life; the very smallest constituents of the world as we know
it. These are at the present best understood in terms of kinematics and interactions of
elementary particles, and the laws governing these appear amazingly simple and concise.
More than that, there seem to be clues pointing towards that all forms of interactions
known to man today may be described by one theory; a theory of everything. From
such a theory, all other interactions and known laws could in principle be derived. The
promises such a theory offers are tempting ones indeed but in the quest for it, there are
many obstacles to overcome and with every answer, more questions are presented.

The universe is a system of enormous complexity to say the least and to attempt at
describing all of it by one consistent theory poses a huge challenge. This is the reason
why research in fundamental physics today to a large extent circles around theories that
we know to not be “true” in the sense that they do not describe the world in which we
live. However, they do provide us with a simpler setting, a playground so to say, which
allows physicists to study certain aspects of the more complicated system which is reality.
It is such theories which will have the principal role in this thesis; the so-called maximally
supersymmetric Yang-Mills theory together with its more mysterious cousin (2,0) theory.
More precisely, this thesis will deal with certain topological versions of these theories.

In the following chapters, I will make a whole-hearted attempt to give a comprehen-
sible introduction to these theories and the concept of supersymmetric gauge theory in
general. However, to do this in full has proven to be an overwhelming task. The in-
evitable result of this is that some previous knowledge on the readers part of quantum
field theory as well as introductory group theory must be assumed and required to fully
appreciate the work of this thesis.

The structure of this work is as follows: The first three chapters will be of a more
general character and provide an introduction to the areas which have been studied in
the appended papers. The first one of these will briefly introduce the concept of quantum
field theory after which focus will be shifted to the different symmetries possible in such
theories. In particular, the concepts of supersymmetry and extended supersymmetry
are introduced. Chapter 3 is in full devoted to theories with maximal supersymmetry:
maximally supersymmetric Yang-Mills theory and (2,0) theory. The final one of these,
chapter 4, will provide an overview of the area of topological field theories and the process
of topological twisting, thus completing the first part.
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Chapter 1. Introduction

In the two last chapters of the thesis, the concepts introduced in the first part are
combined into the particular topological twistings of the maximally supersymmetric the-
ories which have been the subjects of papers I-III. Chapter 5 will attempt to provide
a motivation, introduction and summary of the first two of the papers presented in this
thesis, and chapter 6 will be likewise related to paper III.

2



Chapter 2:

The World as We Know it:
− Symmetries and Quantum Field Theory

Quantum field theory is the main framework used in modern physics to describe the
subatomic world. In this framework, particles are thought of as excitations in some
underlying, space-time dependent fields and are emergent after quantisation of these. It
is thus the fields which are the fundamental constituents of the theory, and a theory can be
completely specified by its field content together with the transformation properties and
equations of motion of all fields. A more convenient way of describing the kinematics and
interactions of the theory is through the Lagrangian formalism, relying on the possibility
of writing down the action of the theory and deriving corresponding equations of motion
from the principle of least action.

A well-known feature in most theories in physics is the appearance of some forms of
symmetries, which may in certain cases reduce problems that at first glance seem virtually
impossible to trivial, or at least solvable. This thesis revolves around theories which are
highly symmetrical creatures, and without the presence of this amount of symmetry in
them, the work presented in the research papers appended herein would not be possible.
In this chapter we shall make an attempt at explaining the kinds of symmetries relevant
for this work.

2.1 Space-Time Symmetries

The symmetries which may be easiest to grasp are the global symmetries of space-time,
and thus this is where we take our starting point.

The translational symmetries of space and time might be some of the most well-
known symmetries present in physical theories. These symmetries correspond to the
laws of physics being the same at all points in space-time, meaning that the outcome
of a certain experiment will be the same regardless of whether if it is carried out here
and now, or in Paris tomorrow morning for example. In an equivalent fashion, rotational
invariance of space corresponds to the laws of physics not favouring any specific direction.

With the introduction of special relativity, time and space are treated on equal footing,
and rotations in space-time is required to be a symmetry of all physical theories hoping to
be compatible with the theory special of relativity. The invariance under this symmetry
is known as Lorentz invariance. All of these symmetries may from a group theoretical
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Chapter 2. The World as We Know it:
− Symmetries and Quantum Field Theory

perspective conveniently be described by stating the group formed by the symmetry
transformations, the generators of which will form the corresponding Lie algebra. For
example, the Lorenz transformations in d space-like- and one time-like dimension form
the group SO(d,1) with the corresponding Lie Algebra so(d,1).

In 1967, Coleman and Mandula showed that Lorentz symmetry together with trans-
lational symmetry in space-time is the largest amount of global symmetry which may be
present in any theory with a mass gap. This maximal amount of symmetry is known
as Poincaré symmetry. In the special case where all particles are massless, the Poincaré
invariance may be extended to so-called conformal invariance, meaning invariance under
scalings which preserve angles. This is however as far as this kind of global symmetry
reaches [1].

In the Lagrangian formalism, the symmetries of a theory are captured by the invari-
ance of the Lagrangian under the action of the corresponding symmetry group.

2.2 Local Symmetries and Gauge Theories

In addition to the global symmetries, where we have now reached our maximal amount
according to Coleman and Mandula, the action of the quantum theories relevant for
describing our surroundings also admits another kind of continuous symmetry. This is
formed by introducing a coordinate dependence of the generators of the symmetry group.
Such a local symmetry is known as a gauge symmetry, and the group formed by the
gauge transformations has received the rather unimaginative name gauge group. Every
generator of this group will give rise to a vector field, called a gauge potential, which,
(or more often whose field strength) will be present in the Lagrangian of the theory.
During quantisation of the theory, these gauge fields give rise to the gauge bosons, or
force mediating particles, present in the theory.

Amongst the simplest examples of theories like these is the theory of QED, which has
a gauge group of U(1). This group has only one generator, and thus there is a single gauge
field present in the theory. The field-strength of this is the familiar electromagnetic field
strength, which will be present in the Lagrangian of the theory, and after quantisation,
this gauge field will give rise to the photon as we expect in a theory describing electro-
magnetism. These concepts naturally generalise to non-abelian gauge groups. Theories
of this kind have been amongst, if not the most successful at describing the world in the
history of science.The Standard model of particle physics, which describes all fundamen-
tal forces of nature with the exception of gravity, is for example a gauge theory with
gauge group G = SU(3)× SU(2)× U(1).

Non-abelian gauge theories like this one are in general referred to as Yang-Mills the-
ories after Yang and Mills who first introduced the concept by using the gauge group
of SU(2) × U(1) in order to satisfactory formulate the theory of weak interactions as a
gauge theory [2].
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2.3. Supersymmetry

2.3 Supersymmetry

The Coleman-Mandula theorem is, though highly useful, not entirely water-proof. There
is a loophole present in the theorem in that it only applies to bosonic symmetry gener-
ators, i.e. symmetries which transforms bosons into bosons and fermions into fermions.
There is nothing which prevents us from a further generalisation of the concept of sym-
metry − analogues as done when going from global to local − from bosonic to fermonic.
Such a symmetry will relate fermionic- and bosonic fields to one another, and is known
under the name of supersymmetry.

The history leading up to the formulation of supersymmetry as we know it is long,
with aspects in both two-dimensional field theory and string theory in the late 60’s and
early 70’s. It was not until it was formulated in the setting of a four-dimensional quan-
tum field theory that it became widely known. This original supersymmetric quantum
field theory is the now-famous Wess-Zumino model [3, 4]. In 1975, a new, more gen-
eral version of the Coleman-Mandula theorem was presented in [5], which also included
fermionic symmetries, and the work on classifying the different possible supersymmetries
commenced. Finally, a classification of all supersymmetries possible and of their repre-
sentations in dimensions larger than d = 1+1 was presented by Nahm in 1977 [6]. In the
next section, we shall occupy ourselves further with the implications of the introduction
of these new fermionic symmetry generators.

As in the case of the bosonic symmetries presented in sections 2.1 and 2.2, where the
generators form a Lie algebra, the generators of the supersymmetry form the supersym-
metry algebra. In general, all symmetry generators may be combined to form a super-Lie
algebra, where fermionic objects are represented by anti commuting, i.e. Grassman-odd,
quantities whereas bosonic objects are represented by Grassman-even ones. Straight
from these claims, one may deduce that two supersymmetry generators must combine to
a bosonic symmetry generator, which amongst others will have important consequences
in the recipe of topological twisting presented in section 4.2.

There is nothing which prevents us from having more than one generator of the su-
peralgebra, and theories which admit these kinds of symmetries are said to have extended
supersymmetry. The amount of supersymmetry present in the theory is often specified
by the number of times the minimal amount of supersymmetry a theory contains, i.e.
the number of generators of the superalgebra, and is denoted by N . The group which
rotates the different supercharges is called the R-symmetry group of the theory.

However, there is a natural upper limit on the amount of supersymmetry possible,
which may be understood by considering the action of the supersymmetry charges on the
fields. The supersymmetry generators are as previously mentioned fermionic generators
with corresponding charges, Q, of helicity −1/2, thus they lower the helicity of the fields
they act on by one half. Similarly, Q̄ raises this helicity by the same amount. Thus the
number of generators of the supersymmetry algebra will effect the helicity content of the
theory.
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Chapter 2. The World as We Know it:
− Symmetries and Quantum Field Theory

The maximal amount of supersymmetry possible is in our case decided by the re-
quirements that the theory should not include gravity, that is, there should not be any
fields in the theory with helicity larger than one. Such theories are known as having
maximal supersymmetry. In ten dimensions, this restriction from helicity content means
that there is only one unique supersymmetric Yang-Mills theory [7], whereas in four di-
mensions, there are three different theories, all with different amount of supersymmetry:
N = 1, N = 2, and finally the maximally supersymmetric N = 4 Yang-Mills theory.

It shall be noted that, in theories where this symmetry remains unbroken, any su-
perpartners will have identical quantum numbers with the exception of spin (since the
supersymmetry generators commute with all bosonic symmetry generators of the theory).
Thus mass and charge will remain unchanged by a supersymmetry transformation, and
with this simple observation, we may conclude that any supersymmetry present in nature
must be broken at the energy levels available for us to study today. This since our world
is void of particle such as a bosonic cousin of the electron or the neutrino. The manners
in which this symmetry is broken by nature is a bustling field of research, but lies beyond
the scope of this work. All theories featured herein will be theoretical models in which
at least some amount of supersymmetry remains unbroken.
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Chapter 3:

A Brief History of Theories with
Maximal Supersymmetry

Theories with maximal supersymmetry provide excellent training grounds for physicists
to study “real world”-problems and phenomena in a simpler setting, since more symmetry
in general means easier calculations. Two such theories have been the starting point of
the papers appended to this thesis and this section is aimed at providing an introduction
to these two theories.

3.1 N = 4 Super Yang-Mills theory

Four-dimensional N = 4 Yang-Mills theory has been claimed to be the fruit fly of fun-
damental physics. It is both maximally supersymmetric as well as conformal; thus a
much simpler, much more restricted theory than any theory which one may hope would
describe the world as we know it. It is this simplicity that allows for calculations to be
carried out therein. These calculations can then in turn be shown to provide (at least)
parts of the answers to physical problems.

After this brief introduction to the theory, and the attempt to adequately describe
the benefits of studying it, it is high time to consider the actual formulation of the theory
itself. Whereas the above section was specific to the four-dimensional case, we shall for
the moment adopt a more general approach, applicable to maximally supersymmetric
Yang-Mills theory in ten dimensions or less. The starting point will be the unique,
maximally supersymmetric Yang-Mills theory in ten dimensions. The process where this
is used to obtain lower-dimensional theories is known as dimensional reduction.

The ten-dimensional theory has an amazingly simple Lagrangian formulation, given
by:

S =
∫
M10

d10x Tr
(
−1

4FMNF
MN + i

2 λ̄DMΓMλ
)
, (3.1)

where M,N denotes indices in ten-dimensions. FMN is the field strenght of the gauge
field AM , and the fermionic degrees of freedom in the theory are contained in the
Majorana-Weyl spinor λ (when M10 is of Minkowski signature). ΓM denotes here the
ten-dimensional gamma matrices which satisfy the Clifford algebra. The action in (3.1)
is invariant under a set of supersymmetry transformations, which are best represented as
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Chapter 3. A Brief History of Theories with
Maximal Supersymmetry

the expression for the variations of the individual fields, and may as such be written as:

δAM = iε̄ΓMλ δλ =1
2FMNΓMNε, (3.2)

where ε is a the supersymmetry parameter.
The fields in the ten-dimensional theory are naturally dependent on all ten coordi-

nates, but by restricting this and only allowing them to depend on the d first coordinates,
a lower-dimensional theory is obtained. In such a setting, the group rotating the (10−d)
remaining coordinates will be the R-symmetry group of the d-dimensional theory. Simi-
larly, the gauge field along these (10−d) directions turns into scalars. The fermion content
of the lower-dimensional theory may be obtained by studying how the spinor represen-
tation decomposes when space-time is taken to be a product of some d-dimensional-
and some 10 − d dimensional manifold. In such a way, all maximally supersymmetric
Yang-Mills theories in dimensions less than ten may be obtained [7].

Especially, it should be noted that this gives the symmetry group of the four-dimensional
N = 4 Yang-Mills theory as Spin(4)×Spin(6)R (in Euclidean signature), where the latter
factor is the R-symmetry group. This is seen by letting the ten-dimensional space-time
be a product of some four-manifold M4 and some six-manifold M6 and taking all the
fields to be independent on the coordinates along the latter. The Lorentz group of the
four-dimensional manifold on which the theory now lives will thus simply be given by the
Lorentz group of M4, whereas the R-symmetry group will rather be given by the Lorentz
group of the manifold subject to dimensional reduction, i.e. Spin(6). The corresponding
field content may be obtained by studying the decomposition of the spinor- and vector-
representations of the ten-dimensional theory under such a restriction of space-time.

In general, such a lower-dimensional theory will contain auxiliary fields in order to
make the supersymmetry invariance manifest. In some dimensions however, these may
easily be removed from the formulation by altering the requirement on the spinor field λ
to be either Majorana and/or Weyl. This is the case in four or six dimensions.

3.2 The Mysterious (2,0) Theory

There are other theories which do enjoy maximal supersymmetry but cannot be derived
from the nice, ten-dimensional super-Yang-Mills theory of equation (3.1). One of the
most mysterious of these theories is the six-dimensional self-dual superconformal field
theory known as (2,0) theory [8, 9]. This theory is interesting for many reasons, amongst
others being that it is the highest-dimensional superconformal field theory possible∗ [6].
That such a superconformal field theory actually exists in dimensions higher than four
was a surprising fact when first presented, and the theory seems to have more surprises
in store since it does not seem to behave like any other theory we know of.
∗out of theories not involving gravity. In the supergravity case, the maximum number of dimensions

is eleven

8



3.2. The Mysterious (2,0) Theory

First and foremost, there appears to be an absence of any Lagrangian formulation of
this six-dimensional theory, yet, on a quantum mechanical level, its existence is clear [9].
The theory moreover contains no parameter which in some way may be seen as “small”,
so calculations using perturbation theory is impossible.

If one chooses to restrict to the non-interacting sector of the theory, that is to the
free tensor multiplet, the mysteries fade slightly. For this abelian version of the theory, a
classical formulation in terms of equations of motion exists, as well an expression for the
component-wise supersymmetry transformations of the fields. It is this restriction of the
theory which has been the starting point of paper III.

Let us now briefly describe the content of the tensor multiplet of (2,0) theory. The
eight real fermionic degrees of freedom are represented by a chiral spinor obeying a
symplectic Majorana-Weyl condition, Ψ. This resides in the spinor representation of
both the Lorentz group as well as the R-symmetry group of the theory. The bosonic
degrees of freedom are slightly more complicated. In general for a 4k + 2-dimensional
space with Minkowski signature it is possible to have a self-dual middle-dimensional, real
form. In the (2,0) theory, such a form is present as the three-form field strength, H,
which is a singlet under the R-symmetry. Finally, there are five real bosonic Lorentz
scalars, ΦM , transforming in the vector representation of the R-symmetry group which
complete the tensor multiplet.

The description of this theory is, as mentioned, existent on the level of equations of
motion, and the supersymmetry transformations induce an isomorphism on the space
of solutions of these. Let M,N,P denote six-dimensional Lorentz indices, K denote an
index in the vector representation of the R-symmetry group and α, β be spinor indices.
The equations of motions for the free abelian tensor multiplet on a flat background are
then given by:

DMDMΦ = 0 (3.3)
dH = 0 (3.4)

ΓMDMΨ = 0. (3.5)

Similarly, the supersymmetry transformations may in the same situation be written as:

δHMNP = 3∂[M
(
Ψ̄αΓNP ]ε

α
)

(3.6)
δΦK = 2(ΓRK)αβΨ̄αεβ (3.7)

δΨα = i

12HMNPΓMNP εα + iMβγ∂M(ΓRK)αβΦKΓMεγ. (3.8)

In spite of its many mysteries, there exist clear connections to the well-known N = 4
Yang-Mills theory. By compactifying the (2,0) theory on circle, it gives rise to maximally
supersymmetric Yang-Mills theory in five dimensions [10], and when instead compactified
on a Riemann surface C, one obtains just precisely the four-dimensionalN = 4 Yang-Mills
theory [11]. However, one must remember that the (2,0) theory should be considered to

9



Chapter 3. A Brief History of Theories with
Maximal Supersymmetry

be fundamentally different from the ten-dimensional maximal supersymmetric Yang-Mills
theory since no known relation between these two maximally supersymmetric theories
exist. This six-dimensional theory is of a different, more mysterious kind with many
questions still unanswered.
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Chapter 4:

Topological Field Theories

In the previous chapter, the maximally supersymmetric theories which will be featured
in this thesis were introduced. However, paper I-III deals with some topological field
theories originating from these theories presented in chapter 3. Here we will give a brief
introduction to the concept of topological field theories in general, and how one may
obtain them from supersymmetric field theories.

The characteristic of a topological quantum field theory is, as the name suggests, that
all observables (i.e. the correlation functions of the theory) are topological invariants of
the manifold on which the theory is placed and thus completely independent of any met-
ric. Naturally, this presents a huge advantage when one wishes to perform calculations.
The metric independence of the theory makes several otherwise unavailable techniques
possible, one of the most useful being the ability to localise the path integral on classical
field configurations, something which is further described in section 4.3.

One of the main accomplishments in the field of topological quantum field theory
is the physical interpretations that have been provided to objects which were previously
seen as strictly mathematical beings. The two earliest examples of this are the Donaldson
polynomial of four-manifolds [12] and the Jones polynomial [13] of knots [14, 15].

The latter one of these accomplishments of finding a physics solution to a prob-
lem which was previously considered as purely mathematical; finding an intrinsic three-
dimensional definition of the Jones polynomial of a knot, was the starting point of what
would be an ongoing 25-year period filled with activity on both the mathematics- and
the physics side to unveil the mysteries of these theories and an ongoing search for more
interesting areas where they may be applicable. This field has since its infancy held
a position in the twilight zone between mathematics and physics, and both areas have
greatly benefited from this collaboration.

There are two main classes of topological quantum field theories today, the first one
of these being theories of Schwarz type [16], which are topological for the simple reason
that the formulation of these theories does not require the introduction of any metric.
A famous example from this family of topological field theories is the Chern-Simons
theory [15]. In the other class of theories, those of Cohomological type, however, the
metric independence is much more subtle. The theories which are featured in the work
presented herein belong to this latter class of theories, and we shall thus spend a moment
in explaining this further.

11



Chapter 4. Topological Field Theories

4.1 Theories of Cohomological Type

Theories of this class of supersymmetrical topological quantum field theories can as previ-
ously mentioned not be formulated with a manifest metric independence, but the feature
they have in common is that they contain (at least) one nilpotent supersymmetry gener-
ator, denoted by Q which satisfies Q2 = 0.

The theory may be restricted to only considering states which are closed under this
operator, or equivalently: restricting the observables of the theory to the cohomology
classes of the operator. This means that the physical states of the theory will be those
that obey {Q,Ψ} = 0, and any two states Ψ and Ψ̂ will be considered equivalent if
they differ by something Q-exact (meaning that they differ by a quantity on the form
{Q, . . . }).

A common property for theories of this type is that their stress-tensor must be Q-
exact, which makes the metric variation of any observable, which in this case will be the
correlation functions of the theory, vanish in cohomology. In this way, the observables of
such theories are indeed topological invariants, even though the formulation of the theory
itself contains the metric.

4.2 Topological Twisting

Topological field theories of cohomological type, as described above, requires the existence
of a nilpotent, scalar supersymmetry charge. Under certain circumstances, a theory
containing such a supercharge may be created through a process known as topological
twisting from an ordinary supersymmetric quantum field theory. This procedure was
first introduced in [14], and will, if certain requirements are fulfilled, result in a theory
which contains at least one nilpotent supercharge. The cohomology of this will then
consistute the physical observables of the theory.

This recipe all revolves around the relatively simple and well-known fact that the
supersymmetry charges are spinors and thus transform under both the Lorentz group
as well as the R-symmetry group of the theory. The aim is to find a suitable diagonal
subgroup of these two, such that the spinor representation of the original Lorentz- and
R-symmetry groups decomposes into at least one scalar representation. If this such a
subgroup is found, this will leave us with a theory containing at least one supersymmetry
charge which is scalar under this new diagonal group.

The corresponding supersymmetry generator, Q, will then be nilpotent directly by
the supersymmetry algebra. The argument to why this is may in short be expressed as
follows: It is clear that Q2 must be given by a bosonic symmetry operator which is scalar
under both the Lorentz- and R-symmetry groups, but no such symmetry exist in the
theory. Thus the only reasonable possibility is to have Q2 = 0, which is precisely what
is required if we wish to obtain a topological field theory of cohomological type. The
physical interpretation of the theory may now be changed such that we choose to only
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4.3. Localisation

consider Q-invariant path integrals, observables and states. Furthermore, anything of the
form {Q, . . . } will be regarded as trivial. In short, we follow the procedure outlined in
section 4.1 and take the physical states and observables of the theory to be the cohomology
classes of this scalar, nilpotent supersymmetry charge Q.

When the background on which the theory is placed has vanishing curvature, the
twisting procedure amounts to a convenient relabelling of the field content of the theory,
but the situation is more intricate when curvature of the background is introduced. Then
corrections to both the equations of motion and supersymmetry transformation rules, as
well as to the action itself may be required to maintain the supersymmetry invariance of
the theory. These corrections must, to my knowledge, be manually added to the theory
and follows no general approach or procedure. In most cases, they are however possible
to find using a reasonable amount of effort, (as for example is the case in paper II), but
this does not appear to always be the case, as exemplified in paper III.

The twisting itself is defined by the homomorphism used to embed the Lorentz group
in the R-symmetry group, and this choice also then naturally defines the topological
field theory obtained. Thus, this process may be used to find a variety of topological
field theories, and the number of possible topological field theories which may be created
from a certain supersymmetric quantum field theory will be given by the number of
ways to create a subgroup of the Lorentz- and R-symmetry groups such that the spinor
representation decomposes into at least one scalar representation.

To illustrate this, we consider four-dimensional maximally supersymmetric Yang-Mills
theory. This has been shown to admit three inequivalent topological twistings, [17, 18,
19, 20], one of which has been the focus of papers I and II. This twisting in question
is known as the GL-twist in four dimensions, and will, together with its five-dimensional
analog, be described in detail in chapter 5, and in even greater detail in papers I and
II respectively.

It should also be noted that since the concept of topological twisting amounts to
finding an embedding of the Lorentz group in the R-symmetry group (fulfilling certain
criteria), topological twisting naturally resides in Euclidean signature. This since cases
where the background is of Minkowski signature will have a non-compact Lorentz-group
and there will thus be no way of embedding this in the compact R-symmetry group.
However, this issue may be circumvented on some occasions if the time-like direction
is somehow singled out from the space-like ones, as for example has been done in the
topological twistings presented in papers II and III.

4.3 Localisation

One of the more appealing features of topological field theories (which was briefly men-
tioned in section 4.2) is that the path integral may be localised on field configurations
which are invariant under the nilpotent operator Q. This concept of localisation in the
context of supersymmetric theories was first suggested in the early 1980’s [21], and ap-
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plied shortly thereafter [22]. Under favourable circumstances, which are better specified
in [19], it suffices to consider bosonic field configurations which are invariant under Q.
The variation of the bosonic quantities can be consider to vanish trivially, since they
transform into fermionic quantities under the supersymmetry transformations which in
some sense anyhow are considered to be infinitesimal. Thus the only requirement we are
left with is that the variation of the fermionic fields must vanish. This is equivalent to
only considering field configurations which satisfy:

{Q, λ} = 0, (4.1)

where λ denotes the fermionic fields of the theory. In cases where we have a topological
field theory of cohomological type as described in section 4.1, the path integral may be
localised on configurations satisfying equation (4.1), as shall be explained below.

A quite straight-forward way of viewing this localisation process is to note that any
observable in the theory may, when written in the pant-integral formalism, be expressed
on the form: ∫

D . . . e−S , (4.2)

where S denotes the action. Since we have choosen to restrict ourselves to observables
lying in the cohomology of Q, this allows for the freedom of adding anything Q-exact∗
to the action of the theory without changing the physical interpretation. By using this
freedom, and choosing this “something” in a clever way, one may reduce the infinite-
dimensional configuration space of the path integral to a finitely-dimesional one. The
magical term which accomplishes this will be

−1
ε

∫
V
Tr
 ∑

all fermions λi

{Q, λi}2

 , (4.3)

where λi denotes the fermion fields of the theory and the sum runs over all of these.
As ε → 0, this term diverges unless {Q, λi} = 0 for all fermionic fields λi. Hence the
path integral in equation 4.2 is suppressed for any field configurations that does not
fulfil this, and as such indeed localises on configurations which satisfy the above equation
(4.1). Because of obvious reasons, these equations are often referred to as the localisation
equations of the theory.

∗anything satisfying x = {Q, . . . }.
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Chapter 5:

The GL-twist in Four- and Five Dimensions

After all this rather general introduction to the field, we are finally at a point at which
a discussion of the theories investigated in the papers appended to this thesis may com-
mence.

Paper I deals with the four-dimensional topological field theory which was first
mentioned in [17], and later shown to have applications to the geometric Langlands
program in [19], as well as the five-dimensional analog of this. This five-dimensional
theory is also the focus of paper II, though the settings differ. The four-dimensional
theory is named after its applications as the geometric Langlands-twist, or GL-twist
for short, of N = 4 Yang-Mills theory. The five-dimensional has, to my knowledge, no
commonly accepted name yet, and will herein simply be referred to as the five-dimensional
analog of GL-twisted Yang-Mills, since this name is very descriptive of the theory.

5.1 The GL-Twist in Four Dimensions

Starting from the four-dimensional maximally supersymmetric Yang-Mills theory as it
is presented in section 3.1, we recall the symmetry group of this theory, (in Euclidean
signature) is Spin(4)×Spin(6)R. The Spin(6)R will, as the notation indicates, denote the
R-symmetry group. As mentioned in section 4.2, this theory admits three inequivalent
twistings. In this section, the details of the particular twist that has been studied in
papers I and II, the so-called GL-twist are presented.

To perform the twisting, it is convenient to notice that Spin(4) ' SU(2)l×SU(2)r as
well as Spin(6) ' SU(4). Furthermore, we may now note that SU(4) contains a subgroup
of SU(2)lR × SU(2)rR × U(1)R. The twisting procedure now replaces the four SU(2)’s by
a new group, which shall be denoted by SU(2)′l × SU(2)′r. This new SU(2)′l × SU(2)′r is
defined such that SU(2)′l is the diagonal subgroup of both the Lorentz-SU(2)l and the
R-symmery one, SU(2)Rl , and vice versa for SU(2)′r.

We now restrict ourselves to consider only the theory invariant under this new sym-
metry group. The decomposition of the spinor representation under this identification
will result in two scalar representations with opposite charges under the remaining U(1),
which means that the recipe of topological twisting has given us a theory with two scalar
supersymmetry charges.

A schematical image of the twisting, as well as how the spinor representation trans-
forms under it, can be seen in table 5.1. Therein, the representations under the SU(2)’s
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are denoted by bold face numbers and the charge under the U(1) is denoted by a super-
script.

SU(2)l × SU(2)r × SU(2)R
l × SU(2)R

r × U(1)R
twist−−−→ SU(2)′l × SU(2)′r × U(1)

Spinor (2,1,2,1)+1/2 ⊕ (2,1,1,2)−1/2 (1,1)±1/2 ⊕ (2,2)±1/2

rep. ⊕(1,2,2,1)+1/2 ⊕ (1,2,1,2)−1/2 ⊕(3,1)+1/2 ⊕ (1,3)−1/2

Table 5.1: Table describing the decomposition of the spinor representation under the four-
dimensional GL-twist. Bold face numbers denotes representations under the SU(2)’s and
superscript the charges under the U(1).

The original six scalar fields which arose in the process of dimensional reduction will
under this twisting split into one one-form as well as one complex scalar field. Moreover,
the gauge field decomposes hereunder into a one-form, and in the same manner the
fermion fields decompose into two zero-forms, two one-forms as well as one two-form,
which is conveniently split into its self-dual- and anti-self-dual parts. This may all be
obtained by studying how the corresponding representations of fields change during the
twistng procedure.

Likewise, the action and equations of motion for the twisted theory may be obtained by
studying how their constituents alter during the twisting procedure. The full Lagrangian
for this theory, on a general, curved background, was presented by Kapustin and Witten
in the geometric Langlands-paper of 2007 [19]. This shows that this twist indeed results
in a good, topological field theory.

5.2 The Five-Dimensional Analog of the GL-Twist

The five-dimensional analog of the topological twisting described above was first intro-
duced by Witten in 2011 [23] in the context of Khovanov homology for knots [24]. The
five-dimensional theory has not been as well-studied as its four-dimensional contrapart,
though it plays a vital role in the first two papers appended to this thesis. In order to
formulate this topological field theory, a convenient starting point is once more the five-
dimensional maximally supersymmetric Yang-Mills theory when viewed as a dimensional
reduction from the ten-dimensional one.

After this dimensional reduction (again in a Euclidean signature), we find, for a
general five-manifold, that both the Lorentz group and the R-symmetry group of the
theory are SO(5). Thus there exist a unique embedding of the Lorentz group in the
R-symmetry group and hence such a theory admits a unique topological twisting.

However, one may make things more interesting by restricting the appearance of the
five-manifold such that M5 = M4 × I, for M4 a four-manifold and I an interval. The
requirement of Euclidean signature is now however superfluous, and we find ourselves in
one of the rather rare occasions where a topological twisting may be carried out even if
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5.2. The Five-Dimensional Analog of the GL-Twist

SU(2)l × SU(2)r × U(1)× SU(2)R twist−−−→ SU(2)l × SU(2)′ × U(1)
Spinor (1,2,2)+1/2 ⊕ (1,2,2)−1/2 (1,1)±1/2 ⊕ (1,3)±1/2

rep. ⊕(2,1,2)+1/2 ⊕ (2,1,2)−1/2 ⊕(2,2)±1/2

Table 5.2: Table describing the decomposition of the spinor representation during the twist-
ing procedure of the five-dimensional GL-twist. Bold face numbers denotes representations
under the SU(2)’s and superscript the charges under the U(1).

the background is of Minkowski signature (as briefly discussed in section 4.2). A time-
like direction is now allowed as long as it is taken to lie along the interval. This all
results in a reduction of the Lorentz group of the theory to SO(4). There may be several
inequivalent ways of embedding SO(4) in SO(5), and thus the theory may now admit
several inequivalent topological twistings, one of which will be five-dimensional analog of
the four-dimensional GL-twist.

This twisting is illustrated in table 5.2, where the Lorentz group is written as SO(4) '
SU(2)l × SU(2)r and the R-symmetry group as SO(5) ⊃ U(1)× SU(2)R. This twisting
then amounts to identifying the two factors SU(2)r and SU(2)R, and replacing them
by the diagonal subgroup SU(2)′. The notations in the table follows those of table 5.1.
Equivalently, this twist may be described by the homomorphism from the Lorentz group
Spin(4) to the R-symmetry group Spin(5) being chosen such that the spinor represen-
tation, 4 of Spin(5) decomposes as a direct sum of two chiral spinor representations of
Spin(4), 2⊗ 2.

As may be seen in table 5.2, this twisting will, just as in the four-dimensional case,
result in two scalar spinor representations, and the topological field theory obtained will
thus have two scalar supersymmetries. The remaining field content may again be obtained
by studying the decomposition of the corresponding representations under the twist (for
details on this, see paper II).

Even further restrictions on the five-manifold, in terms of restricting the appearance
of M4, are sometimes made. This is necessary when one wishes to make contact with
applications in knot theory, and is done in the latter part of paper I where the five-
dimensional analogs of the four-dimensional localisation equations of the GL-twisted
N = 4 Yang-Mills are considered. In cases like these, the theory is considered on a
five-manifold of the form M5 = M3 × I × R instead of the more general M5 = M4 × I.
The relation of the theory on such a manifold to knot theory will be briefly outlined in
section 5.3, but a more detailed explanation may be found in [23]. It should here be noted
that the five-dimensional topological field theory on this more restricted background may
be obtained straight from its four-dimensional analog through a process of first applying
S-duality then followed by T -duality [23].

In paper II, the focus lies solely on this five-dimensional theory and the curvature
corrections required when the theory is formulated on a general background. The com-
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plete and explicit expression for the action for a general M5 = M4 × I is presented and
shown to be supersymmetric.

5.3 Relation to Knots

As mentioned on several occasions, one of the twists of the four-dimensional N = 4
Yang-Mills theory described above has been shown to have applications to the geometric
Langlands program [19]. However, if the theory is considered on a four-manifold with a
product structure like the one in paper I, namely M4 = M3 × I for I an interval with
some appropriate boundary conditions [23, 25] at its endpoints, the theory will instead
have interesting applications in the field of knot theory [23, 26].

A knot, in the mathematical sense of the word, is an embedding of a circle in R3,
and to each knot, a series of knot invariants may be assigned. One such invariant is the
so-called Jones polynomial, [13], which were one of the subjects studied at the very birth
of topological field theories in 1989. Until a gauge theory description of it was given [15],
it lacked any intrinsic three-dimensional formulation, which is desired since it arises from
objects embedded just in three-dimensional space. In the gauge theory description [15],
the Jones polynomial is computed as expectation values of certain loop operators, known
as Wilson loops, in three-dimensional Chern-Simons theory.

It is from its two-dimensional definition of the mathematics literature long known
that the Jones polynomial is a Laurent polynomial with integer coefficients, but this is
not obvious from the gauge theory definition. Nor is there a clear reason from this point
of view why the coefficients must be integers. However, both of the above questions find
their answer in the subject of Khovanov homology [24]. Khovanov homology associates
to each knot, instead of a polynomial, a finite-dimensional vector space. For our intents
and purposes, the details of the relations between Khovanov homology and the Jones
polynomial are not of vital importance, but it suffices to notice that one may recover
the Jones polynomial from Khovanov homology (the curious reader may find a detailed
explanation in [23]). This provides the original motivation for finding a gauge theory
description of Khovanov homology as done with the Jones polynomial in the late eighties.

From a quantum field theory perspective, it is quite straight forward to assign a
number to a knot via the path integral formalism (i.e. the value of the path integral
in the presence of the Wilson loop encoding the knot). However, it is slightly harder to
associate a vector space to an object in this formalism. This was accomplished in [23] (and
further studied in [26]) by using a four-dimensional topological quantum field theory and
surface operators instead of three-dimensional Chern-Simons with line operators, which
was used when considering the Jones polynomial. This lift from three to four dimensions
can be done by adding what may be viewed as a “time direction” to the three manifold,
so that the theory instead is considered on R×M3.

However, this is more complicated than it may appear at first glance. In order to do
this in a consistent matter, one must first use the fact that the Chern-Simons path integral
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onM3 may be expressed as the path integral of a four-dimensional topological field theory
onM3×I, where I is an interval (often taken to be R+), with suitable boundary conditions
at its endpoints [23, 25]. This four-dimensional topological field theory is precisely the
GL-twist of N = 4 Yang-Mills theory [27]. When placed on a four-manifold with the
described product structure and Wilson operators in the boundary, this four-dimensional
theory will thus be able to reproduce the Jones polynomial of a knot corresponding to
this Wilson operator in the same manner as the Chern-Simons theory did in [15]. The
Khovanov homology will then obtain a gauge theory interpretation by aid of the five-
dimensional analog of the GL-twisted N = 4 Yang-Mills on a five-manifold of the form
M5 = M4 × R = M3 × I × R.

Thus both the four-dimensional GL-twist and its five-dimensional analog are theories
of great physical interest since they provide a gauge theory description of these knot
invariants, descriptions which in some ways seem more natural than the descriptions
previously known.

5.4 Paper I − Localisation Equations and Their Solutions

In paper I, the localisation equations of the GL-twist of N = 4 Yang-Mills, as well as its
five-dimensional analog on manifolds with the structure relevant for the applications to
knots are studied more closely, and spherically symmetric solutions to these are found.

Since solving the localisation equations of a topological field theory amounts to finding
field configurations such that the supersymmetry variation of the fermionic fields vanishes,
and since the fermionic field content differ between the four- and five-dimensional theories,
so will the localisation equations and their solutions. However, they are not completely
unrelated to one another, since the fifth dimension also may be considered as an additional
“time direction” which is added to the four-dimensional theory. In such a way, the five-
dimensional solutions may be seen as tunnelling solutions between a set of two four-
dimensional solutions. Details, as well as the implications of this, may be found in the
appended paper I.

5.5 Paper II − The Complete Action of the Five-Dimensional
Theory

In paper II, the focus is shifted to the five-dimensional theory instead. More specifically,
since the topological twisting only, in a straight forward manner, gives us a topological
field theory on a flat background, the case when the background has non-vanishing cur-
vature still remained an interesting problem. In the paper, an explicit expression of the
action is computed for the theory on a general five-manifold of the form M4 × I. It is
shown that some curvature terms are needed additions to the action in order to maintain
supersymmetry invariance, but that no corrections to either the supersymmetry transfor-
mation laws or the equations of motions are possible. By providing an explicit expression
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of the action which fulfils all symmetry properties required, the theory is fully specified
even on a general background.

The choice of product structure of the manifold, which is slightly more general than
the one required to make contact with Khovanov homology, has been used herein since
the relation to knot theory is not the main focus of the paper but rather the topological
field theory on its own.
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Chapter 6:

Twisting (2,0) Theory and Lower-Dimensional
Correspondencs

The last paper presented in this thesis deals with something slightly different, namely
a topological field theory originating from another maximally supersymmetric theory:
the mysterious (2,0) theory which was briefly introduced in section 3.2. This theory is
highly interesting for many reasons, one simply being how little is known about it in
comparison to other theories. Another being that it is believed to give rise to lower-
dimenisonal correspondences through different compactifications of topological twistings
of it. One such topological twisting of the theory which is believed to be related to the so-
called AGT-correspondance is the subject of paper III, and this chapter will attempt to
give a brief introduction to this as well as some other lower-dimensional correspondences
which may have their origin in (2,0) theory. Such correspondences provide the motivation
for pursuing topological twists of this mysterious six-dimensional theory. After the small
review of these, we arrive at the particular twist of (2,0) theory which is studied in paper
III.

6.1 The hitchhikers guide to the AGT correspondence and the
conjectured relation to (2,0) theory

In recent years, many correspondences between gauge theories in different dimensions
have been shown or conjectured. The most famous one of these is probably the AdS/CFT
conjecture [28], which relates supergravity theories in the bulk of an Anti de Sitter space-
time to conformal field theories living on the boundary of this. This conjecture was
presented by Maldacena in 1997, and may be considered one of the greatest advances in
fundamental physics of the 1990’s. This is for several reasons; one being that it allows
for calculations to be carried out in some strongly coupled gauge theories by using the
correspondence to move the problem to its weakly-coupled supergravity analog, another
one being that it provides a non-perturbative formulation of some string theories with
suitable boundary conditions via the boundary theory.∗ It is thus not surprising that the
discovery of a correspondence with so many benefits led to the question whether or not
there are more similar ones?
∗For a more adequate introduction to AdS/CFT, see for example [29].
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The AGT correspondence, which was first presented by Alday, Gaiotto and Tachikawa
in 2009 [30] is one of these correspondences which have since been conjectured. This
correspondence relates objects in four-dimensional super-Yang-Mills theory to objects in
a two-dimensional gauge theory. More specifically, it relates the correlation functions in
two-dimensional Liouville theory to the Nekrasov partition function [31, 32] of certain
N = 2 superconformal gauge theories in four dimensions. This class of four-dimensional
theories are sometimes referred to as class S theories [11, 33], and may be obtained by
compactification of the (2,0) theory on a two-dimensional Riemann surface with possible
defects [34]. The idea behind the correspondence is as follows:

The four-dimensional theories on one side of the correspondence can be considered to
be labelled by the properties of the Riemann surface used in the compactification (more
rigoruosly by the genus g and number of punctures n). There are in general, however,
several ways to “create” such a Riemann surface through a process known by the re-
markably descriptive name of “sewing together pairs of pants”. From the point of view of
the four-dimensional field theory, two different ways of sewing the same Riemann surface
will result in different Lagrangian descriptions of the theory, and the operations relat-
ing two different sewings correspond to S-duality transformations relating the different
Lagrangians. In some way, these class S theories must thus encode information on the
possible ways of sewing the Riemann surface which was used in the compactification of
(2,0) theory.

There are however also objects in two-dimensional field theory which may be defined in
terms of ways of sewing Riemann surfaces from pairs of pants, one such being the Liouville
correlation function in two-dimensional conformal field theory on the Riemann surface in
question. (The precise way in which this is done is however beyond the scope of this thesis,
but I refer interested readers to [30].) This motivates the search for a correspondence
between objects on the four-dimensional- and two-dimensional side, which both may be
defined in terms of the different ways of sewing the Riemann surface. This will result
in a conjecture between precisely the Nekrasov partition function of the class S theories
on the four-dimensional side and the correlation functions in two-dimensional Liouville
theory as stated above.

This conjecture has however not been proven for Riemann surfaces of general genera
and number of punctures, even though extensive tests have been carried out. One possi-
ble way to prove the conjecture may lie in the observation that the theories on one end of
it may be obtained from the mysterious (2,0) theory. Thus, this six-dimensional theory
may be the origin of the correspondence. Since 2009 and the suggestion of the orig-
inal AGT-correspondence, several other conjectured correspondences have been stated
between theories in dimensions d and (6 − d), all with a conjectured origin in the (2,0)
theory compactified on a d-dimensional Riemann manifold. This was for example done
with great success for d = 3 in [35].
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6.2 Paper III - The Trouble with Twisting (2,0) Theory

The third and final paper of this thesis revolves around the concepts presented above,
more specifically, it aims at a detailed investigation on how the four-dimensional theory
which lies on one side of the AGT-correspondence may arise from (2,0) theory. Once
again, the lack of any Lagrangian formulation of the six-dimensional theory presents us
with a challenge, and forces us to consider the abelian, non-interacting version of the
full theory, which as previously mentioned has a well-defined definition on the level of
equations of motion. It is hence on this level we must carry out our calculations.

The belief was that the four-dimensional side of the correspondence would be the
result of a compactification of the (2,0) theory on a two-manifold C. However, for a
general metric, all supersymmetry would in such a case be broken, and thus there would
be no possibility that the resulting theory would be superconformal, and hence in no
way be related to the correspondence. To preserve some amount of supersymmetry, a
topological twisting of the six-dimensional theory must first be performed, after one may
compactify on C to obtain a four-dimensional, supersymmetric theory.

The next obstacle which presents itself is that the classical formulation which exists
for the free tensor multiplet of (2,0) theory is valid only in Minkowski space, whereas
topological twisting in principle only works in Euclidean signature (as outlined in section
4.2). This is a problem discussed in detail in paper III, but which is overcome in the
same manner as in paper II: by singling out the time-like direction and carrying out
the twisting along the other directions. In the last paper appended to this thesis, this
is achieved by placing the time-like direction along the two-manifold C. Thus this setup
leaves us with a four-manifold of Euclidean signature on which a topological twisting may
be carried out.

In previous work, this twist has been claimed to be analogous to the Donaldson-Witten
twist of N = 2 Yang-Mills theory in four dimensions. However, in paper III we find that
there are some slight differences between the twist relevant for the AGT-correspondence
and its well-known cousin. These differences, though small, turn out to have far-reaching
consequences for the topological nature of the theory. That they are there is however
clear and may schematically be viewed as follows: Since our aim is to shed some light on
the origins of the AGT-correspondence, we would like to be able to carry out the twisting
on C as well to obtain a topological field theory on both sides of the correspondence.
Since this is not possible because of signature issues, the second best thing is done and
the theory is considered under the supercharge which would become scalar on the two-
manifold as well under such a hypothetical twist. This particular supersymmetry charge
will be some linear combination of the charges which are found to be scalars on M4 after
the first part of the twisting, but it is not the same linear combination of these two as in
the Donaldson-Witten case.

Regardless of the above complications, it is shown that a compactification on C is
needed to obtain a theory which may still be topological on the four-manifold.

23



Chapter 6. Twisting (2,0) Theory and Lower-Dimensional Correspondencs

All of the reasoning above is spelled out in detail in paper III, and the topological
nature of the theory along the four-manifoldM4 is investigated by considering the stress-
tensor of the theory along this. A stress-tensor, T µν , with all desired properties required
for the theory to be topological (i.e. it being both covariantly conserved and Q-exact) is
explicitly computed as {Q, λµν} and an explicit expression for λµν is presented. However,
things take a turn for the worse when the four-manifold becomes curved. We argue that
there is no way to add curvature corrections to λµν , and only two possible additions to
the equations of motion. There is however no way that this would result in a stress-
tensor which has vanishing divergence on a general M4. Hence, the theory on a curved
background does not seem to be topological in nature. This feature; that a topological
field theory exists on a flat manifold but not on the generalisation to a curved one, is
to the authors knowledge something which has not been seen before, and which I find
deeply perplexing.
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Chapter 7:

Conclusion

Herein, the three first papers of my scientific carrier are presented and an attempt is
made to put them into context.

As is clearly seen, the red line connecting them all is topological field theories. One
may actually be more specific in saying that the theories considered in the three papers of
this thesis are all topologically twisted versions of maximally supersymmetric gauge the-
ories. The subject of topological field theories is a very diverse one, and to my knowledge,
any classification of all topological field theories similar to the classification of supersym-
metric Yang-Mills theories has not been discovered yet. The latest one of the topological
twists of N = 4 super Yang-Mills was discovered almost 15 years after the introduction
of the concept, and new applications of these theories are continuously discovered.

In this area, there are several problems which may be addressed in future work,
the most acute for my peace of mind being the issue of a topological field theory on a
flat manifold which does not generalise to a curved background. An attempt at finding a
general proof of why, at least in the presence of an action for the topological theory in the
flat case, it should be possible to generalise it to generic appearances of the background
is something I feel requires some thought. If it is not possible to construct such a proof,
then the point where it breaks down may shed some light on some of the more subtle
properties of topological field theories and the concept of topological twisting. As for
the case studied in paper III, the situation is further complicated by the lack of any
Lagrangian formulation of the (2,0) theory, but the simpler setting of theories where such
a formulation exists should non the less be a good starting point for future work.

Something else which fascinates me at the moment is the possibility of there being
a higher-dimensional analog of the interpretation of knot invariants in terms of gauge
theory. There might be something similar for higher-dimensional knot-like objects, where
the invariants instead may be related to surfaces embedded in four-dimensional space and
then these invariants may find a gauge-theory description in terms of a five-dimensional
topological field theory. This five-dimensional theory will then, I believe, most likely be
closely related, if not the one, which was the subject of the second paper of this thesis.
This is a question I believe deserves some effort as well.

Over all, I must admit to there being too many other exciting possible areas for future
work than I have had the opportunity to reflect on, nor less mention within in the scope
of this thesis, and I can only hope that some of them will be subjects included in my
future doctoral thesis.
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