
Chaos: Versatile and Efficient All-to-All Data Sharing and
In-Network Processing at Scale

Olaf Landsiedel
Department of Computer
Science and Engineering

Chalmers University of Technology
olafl@chalmers.se

Federico Ferrari
Computer Engineering and

Networks Laboratory
ETH Zurich

ferrari@tik.ee.ethz.ch

Marco Zimmerling
Computer Engineering and

Networks Laboratory
ETH Zurich

zimmerling@tik.ee.ethz.ch

ABSTRACT
An important building block for low-power wireless systems
is to efficiently share and process data among all devices in
a network. However, current approaches typically split such
all-to-all interactions into sequential collection, processing,
and dissemination phases, thus handling them inefficiently.

We introduce Chaos, the first primitive that natively sup-
ports all-to-all data sharing in low-power wireless networks.
Different from current approaches, Chaos embeds program-
mable in-network processing into a communication support
based on synchronous transmissions. We show that this de-
sign enables a variety of common all-to-all interactions, in-
cluding network-wide agreement and data aggregation. Re-
sults from three testbeds and simulations demonstrate that
Chaos scales efficiently to networks consisting of hundreds
of nodes, achieving severalfold improvements over LWB and
CTP/Drip in radio duty cycle and latency with almost 100 %
reliability across all scenarios we tested. For example, Chaos
computes simple aggregates, such as the maximum, in a 100-
node multi-hop network within less than 90 milliseconds.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication

Keywords
All-to-all communication, in-network processing, capture ef-
fect, synchronous transmissions, wireless sensor networks

1. INTRODUCTION
A wide range of low-power wireless applications and pro-

tocols needs to share and process data among all devices in
a network. For example, emerging control systems compute
the control law in a fully distributed manner inside the net-
work based on all sensor readings [30]; in safety-critical ap-
plications, nodes periodically agree on a different radio chan-
nel to be resilient to jamming attacks and interference [29];

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys’13, November 11–15, 2013, Roma, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2027-6/13/11 ...$15.00
http://dx.doi.org/10.1145/2517351.2517358.

handing over the leader role in tracking applications requires
the exchange of each node’s current state and network-wide
consensus [1]; and the computation of aggregates involves
every node in propagating and processing the query [25].

However, a scheme expressly designed for all-to-all inter-
actions has not yet been proposed. As a workaround solu-
tion, all-to-all interactions are commonly split into three se-
quential phases: (i) all-to-one data collection, possibly com-
bined with application-specific data aggregation [32], (ii) cen-
tralized processing, and (iii) one-to-all dissemination of the
result. For instance, CTP [15] and Drip [38] can be used for
(i) and (iii), while LWB [13] offers both in a single protocol
logic. This sequential approach, however, handles all-to-all
interactions inefficiently, yet control decisions often must be
made in real-time at low energy costs [1, 30].

This paper introduces Chaos, the first primitive that na-
tively supports all-to-all data sharing in low-power wireless
networks. Unlike current approaches, Chaos essentially par-
allelizes collection, processing, and dissemination inside the
network by building on two main mechanisms:

1. Synchronous transmissions. In Chaos, nodes synchro-
nously send the data they want to share. Nodes over-
hearing these transmissions receive packets with high
probability due to the capture effect [22]. Upon recep-
tion, nodes merge their own with the received data and
transmit the resulting packets again synchronously. An
appointed node triggers this process, which continues
in a fully distributed manner until all nodes in the net-
work share the same data. Synchronous transmissions
are key to the efficiency of Chaos.

2. User-defined merge operators. Nodes merge their own
data with the received data according to a user-defined
merge operator. Chaos allows users to freely program
various merge operators, from simple aggregates to
complex computations taking tens of thousands of clock
cycles to execute. Merge operators both enable and de-
fine the meaning of an all-to-all interaction; they are
key to the functioning and the versatility of Chaos.

We build Chaos upon Glossy [14] to leverage synchronous
transmissions, which have been shown to boost the perfor-
mance of low-power wireless communications [11, 14]. Syn-
chronous transmissions in IEEE 802.15.4 work due to two
physical-layer phenomena. Power capture enables a receiver
to correctly decode a packet when the received signal from
one node is about 3 dB stronger than the sum of the received
signals from all other nodes [2, 11]. In addition, the strongest
signal must arrive no later than 160µs after the first weaker
signal, corresponding to the air time of the IEEE 802.15.4

synchronization header, so the radio locks onto the strongest
signal and correctly decodes the packet. While capture oc-
curs irrespective of the content of the colliding packets, con-
structive baseband interference occurs only when the packets
are identical and overlap within 0.5µs [11, 14]. Glossy ex-
ploits both phenomena for efficient network flooding.

Transforming Glossy from one-to-all flooding of identical
packets into Chaos, a primitive for all-to-all data sharing of
different packets, is challenging for at least two reasons:

• While Glossy minimizes processing during a flood to
make the transmissions precisely overlap, Chaos relies
on processing when applying the merge operator. This
can take as long as a few milliseconds, so the effects of
clock drift become noticeable. The required processing
may also vary among nodes and change over time, for
example, due to different payload sizes and conditional
statements in the merge operator. We therefore need
to ensure that nodes send synchronously despite signif-
icantly longer and possibly varying processing times.
• Since nodes in Chaos transmit different packets, they

cannot exploit constructive interference for successful
reception and rely only on the capture effect. Although
this relaxes the timing requirement for synchronous
transmissions compared with Glossy, communication
becomes more fragile—the probability of receiving a
packet decreases as more nodes send together [24]. To
illustrate this aspect, we show in Fig. 1 the results of an
experiment on the Indriya testbed [7], where we looked
at the packet reception rate (PRR) as the number of
synchronous transmitters increases, averaged over four
receivers and 16126 packets. The PRR decreases grad-
ually from 0.65 with two transmitters to 0.15 with 15
transmitters. We therefore need to balance the number
of synchronous transmitters especially in dense areas
to achieve high reliability, while making the informa-
tion spread quickly in the network for high efficiency.

Our design ensures synchronous transmissions by letting
every node execute the same number of clock cycles regard-
less of the implementation and actual processing time of a
merge operator. This gives Chaos users substantial freedom
in the implementation of merge operators and allows for so-
phisticated in-network processing. We demonstrate through
testbed experiments on the TelosB platform that Chaos sup-
ports merge operators taking tens of thousands of microcon-
troller unit (MCU) clock cycles to execute, without sacrific-
ing on reliability. This leaves enough time to compute, for
example, a fixed-point fast Fourier transform (FFT) over
thirty-two 16-bit samples, which takes about 9 milliseconds
on a TelosB [31]. We illustrate various applications of Chaos
in Sec. 2, including data aggregation, three-phase commit,
reliable dissemination, and network-wide consensus.

Our solution to balance the number of synchronous trans-
mitters leverages the fact that, in contrast with Glossy, nodes
in Chaos know the approximate degree of completion of an
all-to-all interaction, based on the packets they receive from
their neighbors. As described in Sec. 3, we exploit this feed-
back to let a node decide whether to transmit or not, and to
keep the packet propagation alive against premature termi-
nation. Using our Chaos implementation on TelosB devices,
described in Sec. 4, we explore in Sec. 5 how our mechanisms
blend together and perform in practice.

0 2 4 6 8 10 12 14 16
Number of synchronous transmitters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
a
ck

e
t

re
ce

p
ti

o
n
 r

a
te

Figure 1: Packet reception rate (PRR) against num-
ber of synchronous transmitters, averaged over four
receivers and 16126 packets. The probability of receiving
a packet due to capture drops as more nodes send together.

We evaluate Chaos through both testbed experiments and
simulations. We deploy our Chaos implementation on three
testbeds to evaluate its performance across a wide range of
real-world scenarios in Sec. 7, and to compare Chaos against
LWB [13] and CTP/Drip [15, 38] on top of Box-MAC [27] in
Sec. 8. We use simulations to study the scalability of Chaos
in networks of arbitrary size and node density in Sec. 9. Our
results reveal the following main findings:

• Chaos operates efficiently across a variety of network
and application scenarios at a reliability that is consis-
tently very close to 100 %. This includes full-size pack-
ets, merge operators taking tens of thousands of MCU
clock cycles to execute, as well as dense networks where
Chaos effectively overcomes the instability of capture.
• Chaos outperforms LWB and CTP/Drip in radio duty

cycle and latency. Depending on the network diameter
and node density, Chaos improves latency by 20–23×
and 3–20× and reduces radio duty cycle by 3–5× and
17–22× over LWB and CTP/Drip, respectively.
• Due to a limitation on the maximum packet size, Chaos

needs some form of data compression in order to sup-
port more than 1000 nodes in IEEE 802.15.4 networks.
Nevertheless, Chaos scales efficiently in simulations to
larger networks consisting of several thousands of nodes.
This shows the scalability of our mechanisms when ap-
plied to other wireless technologies that support larger
packets. We particularly believe that Chaos is compat-
ible with Wi-Fi by leveraging its physical-layer capture
and Message in Message (MIM) capabilities [21, 26].

Contributions. In summary, we make the following three
contributions in this paper:

• We present Chaos, the first primitive providing native
support for versatile and efficient all-to-all data sharing
in multi-hop low-power wireless networks.
• We demonstrate a working implementation of Chaos

that achieves severalfold improvements over the state
of the art in the efficiency of all-to-all interactions.
• We show through simulations the scalability of Chaos

to multi-hop networks with several thousands of nodes
and various node densities.

C	

B	

A	

(a) Nodes A,
B, and C are
in communi-
cation range
of each other.

−	 −	 X	 25	
A	 B	 C	

−	 X	 −	 22	

X	 −	 −	 20	 A	

B	

C	

Flags	 Payload	
(b) All nodes pre-
pare a packet with
the proposed num-
ber and their own
bit set in the flags.

Tx	

Rx	
X	 −	 −	 20	

X	 −	 −	 20	

X	 −	 −	 20	

Slot	 1	

X	 X	 −	 22	

X	 −	 X	 25	

X	 X	 −	 22	

Slot	 2	

X	 X	 −	 22	

X	 X	 −	 22	

X	 X	 −	 22	

Slot	 3	

X	 X	 X	 25	

X	 X	 X	 25	

X	 X	 X	 25	

Slot	 4	

A	

B	

C	

(c) Node A initiates Chaos by sending its prepared packet in slot 1. B and C merge
their own with A’s data by taking the larger number and setting the bit of A. Both
transmit synchronously in slot 2. A receives from B due to capture, merges data and
manipulates the flags, and sends in slot 3. B does not send in slot 4 since it has nothing
new to tell. Chaos completes in slot 4 when all nodes are aware of the maximum.

Figure 2: Basic operation of Chaos as three nodes try to find a consensus on the maximum number proposed.
A packet in Chaos consists of the flags, one bit for every node bound to participate in an all-to-all interaction, and the payload.
During operation, the flags indicate which nodes already participated and the payload holds an intermediate (or the final) result.

2. OVERVIEW
We introduce Chaos, the first primitive that natively sup-

ports all-to-all data sharing in low-power wireless networks.
Chaos integrates in-network processing into a communica-
tion support based on synchronous transmissions to incre-
mentally merge and share data among all nodes.

2.1 Basic Operation and Terminology
We begin with a simple example that illustrates the basic

operation and benefits of Chaos, and provides some intu-
ition on how applications and protocols may harvest these
opportunities. To this end, we consider three nodes that are
in communication range of each other, as shown in Fig. 2(a).
Every node proposes a number and the goal is to find a con-
sensus among the nodes on the maximum number proposed.

Using Chaos, each node prepares a packet consisting of
two parts: flags and payload. As shown in Fig. 2(b), the
flags are three bits, one for every node in the sample network.
Initially, a node sets only the bit corresponding to itself and
inserts its proposed number as the payload into the packet.

The operation of Chaos commences by letting an appointed
node, called initiator, send its prepared packet. In our ex-
ample, node A is the initiator and transmits its packet in
slot 1 of Fig. 2(c). Because nodes B and C are in A’s com-
munication range they both receive the packet. Then, they
combine their own data (their proposed numbers) with A’s
data by applying a merge operator. In this case, the merge
operator is the max(x,y) function, which returns the larger
of the two numbers x and y. Nodes B and C insert the return
value of max(x,y) as the new payload into their packets and
process the flags by setting the bit corresponding to node A.

In slot 2 of Fig. 2(c), B and C transmit synchronously. The
two packets are different since they carry different flags and
payloads. Nevertheless, node A correctly receives B’s packet
due to capture effects. Using the merge operator, A learns
that 22 is the new (intermediate) maximum and sets the bit
corresponding to node B. A is the only node transmitting in
slot 3, because B and C transmitted in the previous slot.

In slot 4, B suppresses its transmission, since its flags are
identical to those in the packet it received from A in slot 3.
Thus, B has nothing new to tell in slot 4 and stays quiet. As
detailed in Sec. 3, Chaos uses such mechanisms to keep the
number of synchronous transmitters low, thereby increasing
chances at other nodes to receive packets due to capture.

Finally, the round completes at the end of slot 4. At this
point, all three nodes are aware of the maximum number
proposed, because they know from the flags that every node
contributed to the consensus. At the end of a round, Chaos
notifies the application about the result of the all-to-all in-
teraction, 25 in our example.

The above illustrates that the merge operator both en-
ables and defines the meaning of an all-to-all interaction.
Throughout such interaction, the flags indicate which nodes
already participated and the payload contains an interme-
diate result, both of which may differ among nodes before
completion. Over time more and more nodes participate, ul-
timately covering the whole network. Thus, by utilizing flags
and payload in the specification of a merge operator, Chaos
creates various opportunities for all-to-all data sharing and
in-network processing across several hundreds of nodes.1

Chaos users are responsible for providing the merge oper-
ator, including the mapping of individual nodes to the flags.
This is essential because Chaos can only complete if all nodes
expected to participate in an all-to-all interaction are indeed
part of the network. Chaos takes care of executing the inter-
action and delivering the result to the user. As described in
Sec. 3, Chaos also provides accurate time synchronization,
allowing users to schedule Chaos rounds according to their
needs. Time-triggered protocols like LWB [13] readily sup-
port the scheduling of Chaos, and integrating a synchronous
protocol like Glossy or Chaos into an asynchronous stack has
been shown to be feasible and highly effective [41].

2.2 Example Applications
The following are examples of real-world applications for

which Chaos would provide a solid framework.

Aggregate functions. Aggregation is considered the most
common operation in sensor networks [25]. Computing the
maximum (or minimum) using Chaos is trivial: nodes merge
the flags by taking the bitwise OR and the payload by taking
the larger (or smaller) number. Developing merge operators
for duplicate-sensitive aggregates (e.g., sum, average, me-
dian) is more challenging. This is because a node is likely

1IEEE 802.15.4 defines a maximum packet size of 128 bytes,
of which 125 bytes can be used for actual data. Our Chaos
implementation has an 8-byte header. That is, if the payload
is, say, 10 bytes, it supports up to 856 nodes since at most
d856/8e = 107 bytes are available for flags, one bit per node.
The use of data compression may overcome this limitation.

to receive a partial aggregate multiple times during a Chaos
round, yet every number should contribute only once to the
final aggregate. This well-known overcounting problem has
been extensively studied in the database and sensor network
literature. Particularly, the work of Nath et al. [28] on order-
and duplicate-insensitive synopsis diffusion can be applied to
compute various aggregates using Chaos.

Unlike most prior aggregation schemes that fuse data to-
ward a collection sink [32], Chaos delivers the final aggregate
to all participating nodes. Moreover, experiments in Sec. 7
demonstrate that Chaos can aggregate significantly faster
and more energy-efficiently than previous approaches.

Network-wide agreement. Low-power wireless nodes of-
ten need to agree on important pieces of information, for
instance, when electing a new leader [1], switching to a dif-
ferent radio channel [29], or establishing common keys for
encryption [9]. To accomplish the latter with Chaos, the
initiator could send the IDs of its pre-distributed keys [9] as
the payload, and nodes incrementally remove IDs they do
not have. In the end, every node knows which keys it shares
with all others. Recent work [3] shows how to achieve agree-
ment among one-hop neighbors, whereas Chaos provides the
infrastructure to achieve agreement at the network scale.

Three-phase commit and atomic broadcast. As a con-
crete incarnation of network-wide agreement, Chaos can pro-
vide 3-phase commit (3PC) [35]. A round would consist of
three sub-rounds, and the flags would have two bits for every
node. In the first sub-round, nodes confirm their availability
by setting their flag to 1. Nodes authorize the commit in the
second sub-round by setting the flag to 2. Finally, they con-
firm the commit in the third sub-round. If a node fails, its
flag does not advance. Using 3PC, Chaos can provide dis-
tributed atomic operations, such as atomic broadcast [16].

Reliable data dissemination. In long-term deployments
it is often necessary to update code and system parameters
as requirements and network conditions change. A reliable
dissemination service is needed to propagate those updates
to every node, because inconsistencies in code or parameter
settings can be detrimental to the system operation [8, 41].
Reliable dissemination with Chaos works by using the data
to be distributed as the payload, and the flags as an im-
plicit confirmation whether all nodes received it. Based on
the final flags nodes also understand which nodes missed an
update and can thus initiate loss recovery without awaiting
an explicit request, as required in Deluge [18] or Splash [8].

Multiple communication patterns. Chaos supports mul-
tiple communication patterns including all-to-one and all-to-
all traffic, where nodes would merge by inserting their data
into reserved parts of the payload field. Due to the limited
packet size in IEEE 802.15.4, multiple Chaos rounds might
be necessary to share data among all nodes, depending on
the amount of data and number of nodes in the network.
As a concrete example, if nodes want to share one byte of
data using our implementation of Chaos, two rounds would
be needed on the 139-node Indriya testbed [7], whereas one
round would be sufficient on the 90-node Twist testbed [17].
Nevertheless, our experiments in Sec. 8 show that splitting
across multiple Chaos rounds in an N -node network is more
efficient thanN sequential Glossy floods needed in LWB [13].

Flags	 and	 payload	
processing	

Tx	 	
decision	

Wait	 	
loop	 Rx	

Interrupt	
delay	 Tx	

Ensure	 constant	 processing	 8me	

Variable	 Variable	

Figure 3: Achieving synchronous transmissions in
the face of substantial in-network processing. Using
a wait loop, Chaos accounts for variable interrupt delays and
processing times by deferring the transmission for a constant
number of MCU clock cycles after the interrupt has occurred.

3. DESIGN
This section presents the design of Chaos. We begin with

the basic communication and in-network processing support,
followed by mechanisms required to achieve an efficient and
reliable operation in real-world settings.

3.1 Communication and Processing Support
The design of Chaos relies on synchronous transmissions

for efficient communication and on merge operators for en-
abling various all-to-all interactions. As a foundation for the
former, we build Chaos upon Glossy [14]. Glossy exploits
synchronous transmissions for efficient network flooding; it
uses a careful software design to minimize processing during
a flood, in order to make transmissions overlap within 0.5µs
of each other and thus benefit from constructive interference.

Problem. By contrast, Chaos relies on processing. When a
node receives a packet, it needs to process its flags and pay-
load according to the merge operator. The required process-
ing time is thus significantly longer than in Glossy and may
also vary among nodes and change over time, for example,
when the payload size increases throughout a Chaos round
or when the branches of a conditional statement (e.g., if-
then-else) result in different execution times. This poses a
significant challenge: Chaos must ensure that nodes trans-
mit synchronously (within 160µs) despite longer and vary-
ing processing times, so receivers can benefit from capture
to correctly decode packets with high probability.

Solution. We solve this challenge in Chaos by letting nodes
always send a fixed interval after the reception of a packet.
As shown in Fig. 3, we need to account for (i) variable delays
from when a start of frame delimiter (SFD) interrupt occurs
at the end of a reception until the MCU begins to serve the
interrupt, and (ii) variable processing times when applying
the merge operator.

To account for both (i) and (ii), we use the timer capture
functionality of the MCU to measure the time from when
the SFD interrupt occurs until when the MCU finishes exe-
cuting the merge operator. Using a wait loop (see Fig. 3), we
compensate for this variable time by deferring the upcoming
transmission for a constant number of MCU clock cycles af-
ter the SFD interrupt. Chaos users have to set the number
of clock cycles based on the expected execution time of the
merge operator. If the execution takes longer, Chaos sup-
presses the transmission to avoid spreading erroneous data.
Setting the number of clock cycles conservatively can rem-
edy this issue, but may cause a loss in efficiency.2

2An optimization we do not explore in this paper is to turn
off the radio while processing. This would allow users to set
the number of clock cycles conservatively without sacrificing
energy, but latency would be affected nevertheless.

0	 5	 10	 15	 Time	 [ms]	

A	

B	

D	

F	

G	

Ini3al	 flags	

Tx	 Rx	

H	

C	

E	

Slot	 1	 Slot	 2	 Slot	 3	 Slot	 4	 Slot	 5	 Slot	 6	 Slot	 7	 Slot	 8	 Slot	 9	 Slot	 10	 Slot	 11	

Recep3on	 failure	

Figure 4: A real trace of a Chaos round, collected from eight nodes forming a multi-hop network on FlockLab.
Nodes compute the maximum as described in Sec. 2.1; node A is the initiator. For each slot, the flags that are
currently set by a node are shown, corresponding to its degree of completion. Dark flags denote transmitters,
grey flags receivers; no flags indicate nodes that neither receive nor transmit. In this run, Chaos completes
within 11 slots, which corresponds to about 15 ms. According to the propagation policy, a node transmits only if the
information it received differs from its own. For example, nodes B and G suppress their transmissions in slots 4 and 5, because
they received nothing new or outdated in slots 3 and 4, respectively. Slots with many transmitters are followed by slots with
few transmitters, since a node never transmits in two consecutive slots and may also fail to receive. For instance, H receives
from F in slot 2, but fails to do so in slot 4. This may leave only one transmitter per slot (e.g., A in slot 5 and G in slot 7),
justifying the timeout mechanism by which a node re-initiates the communication as it likely came to a premature halt.

Our solution ensures synchronous transmissions except
for variations due to drift of the digitally controlled oscil-
lators (DCOs) that source the nodes’ MCUs. Nevertheless,
our experiments in Sec. 7 show that drift does not affect the
performance of Chaos, even if the execution of the merge
operator takes tens of thousands of MCU clock cycles.

Time synchronization. As a result of the above mecha-
nisms, each slot in Chaos has the same duration. Similar to
Glossy [14], we leverage this property for time synchroniza-
tion. Each packet header contains a one-byte slot counter,
which is set to 1 by the initiator and incremented whenever a
node relays a packet. Based on the received slot counter and
an estimation of the slot duration, a node can precisely com-
pute the beginning of a round, which serves as the reference
time for synchronization. Network-wide time synchroniza-
tion is important, allowing users to schedule Chaos rounds
and other application tasks in between, and to save energy
by keeping the radio off for as long as possible between con-
secutive Chaos rounds.

Summary. With synchronous transmissions, merging, and
time synchronization in place, Chaos has all absolutely nec-
essary ingredients. In principle, we could thus stop at this
point—upon reception, nodes would apply the merge opera-
tor and always transmit together. This transmission policy,
however, is too aggressive and performs poorly in practice,
because the probability of receiving a packet due to capture
ranges below 30 % when there are ten or more nodes trying
to send at the same time to a common receiver (see Fig. 1).

3.2 Making it Work
The key idea to address the instability of capture in dense

networks is to make each participating node in the network
aware of the degree of completion of a round. By examining
the flags of received packets, a node indeed knows how many
nodes still need to contribute and can thus infer the current
degree of completion at its neighbors. We utilize this feed-
back to let a node decide (i) whether to transmit or not,

(ii) when to re-initiate communication as it likely came to
a premature halt, and (iii) when it is time to aggressively
share the final result with all others to reduce energy costs.
Below we describe each of these aspects in turn.

3.2.1 To Transmit or Not to Transmit
Our propagation policy has two interdependent objectives:

(i) make data spread quickly in the network to achieve fast
completion and (ii) keep the number of synchronous trans-
mitters low to increase the reliability of capture in areas
where nodes are densely deployed. The intuition underlying
our propagation policy, which accomplishes both goals, is to
let the unknown spread further while suppressing the known.

Inspired by work on epidemic communications [6, 20], this
materializes in the following: a node sends only if the infor-
mation contained in a received packet differs from its own
information. As a result, a node transmits if it learned some-
thing new, sharing the previously unknown with its neigh-
bors, or if it knows already more, allowing its neighbors to
catch up. Otherwise, a node stays quiet because chances are
that it cannot contribute to the knowledge of its neighbors.
By suppressing seemingly redundant transmissions, Chaos
effectively reduces the number of synchronous transmitters,
which helps receiving packets due to capture in dense areas.

Fig. 4 shows our propagation policy in action, using a real
trace of a complete Chaos round involving eight nodes in
the FlockLab testbed [23]. For each slot and node, the fig-
ure shows the flags that are already set, corresponding to
each node’s current information, and whether a node sends,
receives, or stays quiet. We see that, for example, in slot 3,
node B receives the same information it already has, so it
does not transmit in the following slot. The same happens
to node G in slot 4, which leaves only one (instead of two)
transmitters in slot 5.

In addition to the described policy, there is another mech-
anism at play that affects the number of transmitters and
receivers in successive slots but is not in direct control of
Chaos. Since the probability of capture is low when many

Slot	 1	 Slot	 2	 Slot	 3	 Slot	 4	

A	

B	

C	

Slot	 5	

50%	 RX	 TX	

25%	 TX	

75%	 RX	 TX	

50%	 RX	 TX	 75%	 RX	 TX	

75%	 RX	 TX	

D	

Slot	 6	 Slot	 7	 Slot	 8	 Slot	 9	

Degree	 of	
comple?on	

50%	

Benefit	 from	 capture	
successful	 /	 failed	 Rx	

Radio	 turned	 on	

Benefit	 from	 construc?ve	
baseband	 interference	

100%	 RX	 TX	 100%	 RX	 TX	

100%	 RX	 TX	 100%	 RX	 TX	

100%	 RX	 TX	 100%	 RX	 TX	

100%	 RX	 TX	 100%	 RX	 TX	

Repeated	 transmissions	
upon	 comple?on	

Figure 5: Chaos running on a four-node line topology as nodes gradually switch from the propagation policy
to the completion policy. Upon completion, nodes aggressively share the result by transmitting it up to a certain number
of times regardless of what they receive from other nodes. In the example, nodes transmit exactly twice. D is the first node to
complete in slot 4; it transmits immediately afterward and in slot 6 as a result of receiving from C in the previous slot. Before
slot 4, nodes use the propagation policy and rely only on capture effects for successful reception. From slot 4 onward, nodes
start to exploit constructive baseband interference as the transmitted packets are now identical. In this way, nodes complete
quickly and reliably, and save energy by turning off the radio after aggressively sharing the result.

nodes send together, a slot with many transmitters is likely
to have only a few receivers. This, in turn, results in only
a few transmitters but many receivers in the following slot.
While the oscillating behavior in Fig. 4 with eight nodes is
mainly due to the fact that a node never transmits in two
consecutive slots, capture effects contributes much more to
the oscillation in our testbed experiments on large and dense
networks, as discussed in Sec. 5.

3.2.2 Fighting Premature Termination
Looking at Fig. 4, we noticed already that there is only

node A transmitting in slot 5. Similarly, in slot 7 only node
G is transmitting. If these nodes failed to receive in slots 4
and 6, respectively, communication would come to a com-
plete halt—Chaos would terminate prematurely.

To prevent this, we use a timeout mechanism that allows a
node to re-initiate the communication if it received nothing
for a given number of consecutive slots. In this case, a node
transmits a packet on its own containing its current infor-
mation. We investigate the impact of timeouts and choice
of the threshold in Sec. 7.1.1. Our results reveal that while
timeouts occur rarely, they are key to achieving a high reli-
ability, particularly in sparse networks.

3.2.3 Aggressively Sharing upon Completion
Early experiments with the described propagation policy

and timeout mechanism showed that nodes complete quickly
with very high probability. The open problem, however, is
to decide when a node should turn off its radio to save energy
without sacrificing reliability. Using the propagation policy
this decision is difficult to make, because a node receives only
little feedback from its neighbors once the bulk of the nodes
has reached completion.3 On the other hand, blindly turning
off the radio a certain number of slots after completion may
leave some nodes behind, and the threshold for turning off
the radio is hard to predict as it strongly depends on network
topology and time-varying channel conditions.

Our solution circumvents these issues, while achieving fast
completion at all nodes with very high probability. Specifi-
cally, using our completion policy, a node aggressively shares
the final result upon completion by transmitting it up to a
certain number of times regardless of what it receives from

3This is because the probability to receive something new or
outdated is very small and thus only a few nodes are allowed
to transmit according to the propagation policy.

Table 1: Default settings of our Chaos implementa-
tion and the test application used in the evaluation

Parameter Value

Timeout window [slots] 3–7
Maximum transmissions after completion 5

Payload size [bytes] 10
Processing time [MCU clock cycles] 2000
Maximum length of a round [seconds] 1.5

other nodes. This triggers nearby nodes to also switch to the
completion policy, eventually covering the entire network.

This is illustrated in Fig. 5, where D is the first node to
complete in slot 4. At this point, D switches from the prop-
agation policy to the completion policy and transmits the
final result, in this example exactly twice: the first time in
slot 4 when it reaches completion and the second time in
slot 6 as a result of receiving from C in the previous slot.
Over time more and more nodes switch to the completion
policy and transmit the final result. Since the transmitted
packets are now identical, receivers benefit from construc-
tive baseband interference, which helps achieve completion
at all nodes with very high probability.

Afterward, a node terminates the round: it delivers the
result to the application and turns off the radio. In case a
node does not complete, it keeps the radio on until the end of
the round and then notifies the application. Experiments in
Sec. 7.1.2 show that transmitting the result up to five times
achieves very good performance across three testbeds with
vastly different numbers of nodes, network diameters, node
densities, transmit powers, and packet sizes.

4. IMPLEMENTATION DETAILS
We implemented Chaos in Contiki on the TelosB platform.

The upper half of Table 1 shows the default configuration.
The timeout for re-initiating the propagation expires when
a node receives nothing for a number of slots after its last
transmission. Nodes randomly draw this number between 3
and 7, independently of each other, after each transmission.
We implemented the propagation policy by letting a node
transmit if the bitwise XOR of its own flags and the received
flags is different from zero. After switching to the completion

0 10 20 30 40 50 60 70 80 90
Slot

0

10

20

30

40

50

60

70

80

90
N

o
d

e
 I
D

Tx

Rx
delta

Rx no
delta

Rx
none

Timeout

Off

(a) Activity of individual nodes.

0 10 20 30 40 50 60 70 80 90
Slot

0

10

20

30

40

50

60

70

80

90

C
o
u
n
t

Rx none

Rx no delta

Rx delta

Tx

Timeout

(b) Activity across all nodes.

Figure 6: Activity over time during a representative round of Chaos. Off means a node sent the final result
up to five times and turned off the radio. Timeout means a node transmitted a packet on its own to re-initiate
the propagation. Rx none means a node received no packet. Rx no delta means a node received but learned
nothing new. Rx delta means a node received and learned something new. Tx means a node sent a packet.
After a short initial phase, nodes typically acquire new information when they receive a packet. This triggers new transmissions
and helps spreading each others knowledge throughout the network. Starting from slot 65 they hardly learn anything new.

policy, a node transmits up to 5 times and then turns off the
radio. We motivate these default settings in Sec. 7.

Throughout the experiments we use a test application that
executes Chaos periodically. The application requires Chaos
to process a 10-byte payload within 2000 MCU clock cycles,
as listed in the bottom half of Table 1. This corresponds to
a processing time of 0.48 ms since the MCU clock frequency
is 4,194,304 Hz, which is sufficient to compute, for example,
the maximum across 139 nodes on the Indriya testbed [7].
We note that our implementation currently supports merge
operators that take up to 40000 MCU clock cycles; we eval-
uate the impact of processing time on the performance of
Chaos in Sec. 7.3.2. We set the maximum length of a Chaos
round to 1.5 s, and determine the mapping of nodes to flags
based on information about the networks we use.

5. CHAOS IN ACTION
This section takes a detailed look at a representative round

of Chaos to illustrate how the mechanisms described in Sec. 3
blend together in our implementation and perform in prac-
tice. To this end, we execute our test application on a 5-hop
network of 90 nodes, and record the activity and the degree
of completion of every node in each slot throughout a round.
In the representative round we discuss, nodes complete after
105 ms, well before the maximum round length of 1.5 s.

5.1 Activity over Time
Fig. 6(a) shows the activity of every node over time. In the

beginning, all nodes have the radio turned on. The initiator
(ID 80) sends its packet in the first slot and 24 neighboring
nodes receive, as shown in Fig. 6(a) by their “Rx delta” in
slot 1. Depending on the hop distance from the initiator and
how packets propagate in the network, all 90 nodes gradually
receive their first packet within the first 9 slots of the round.

Once all nodes are actively involved in the propagation,
they acquire new information in most of the slots in which
they receive a packet. According to the propagation policy,
this in turn triggers new transmissions and helps spreading

each others knowledge throughout the network. The likeli-
hood of receiving new information starts to decrease around
slot 18 when more “Rx no delta” slots occur. As a result,
nodes begin to transmit less frequently. This, however, leads
to situations where many nodes receive no packets, as visi-
ble in the “Rx none” areas before slots 29, 46, and 58. It is
exactly at these moments when the timeout expires at some
nodes, causing them to re-initiate the propagation.

Toward the end of the round, we see an increasing number
of nodes that transmit even when they received nothing new.
This happens because they reach completion and thus switch
to the completion policy, aggressively sharing the final result
with all other nodes. After transmitting the result 5 times,
nodes turn off the radio and stop participating.

Fig. 6(b) shows the number of nodes engaged in a certain
activity during each slot of the same round. We see that in
the very beginning the number of participating nodes that
either transmit or receive new information increases rapidly.
After this initial phase, the number of nodes that receive
new information starts to decrease slowly. During this in-
termediate phase, we can also appreciate the benefits of the
timeouts expiring in slots 29, 46, and 58, causing the spikes
in the number of nodes that receive new information in the
subsequent slots. Finally, the number of participating nodes
decreases as more nodes reach completion. In this specific
round, nodes turn off the radio between slots 67 and 88.

5.2 Completion over Time
Based on the same representative round of Chaos, we now

investigate the amount of information gathered by the nodes
as the round evolves. To this end, we depict in Fig. 7 the
completion of a node in each slot, corresponding to the per-
centage of bits that are set in the flags of a node. Initially,
nodes have only their own flag set. Fig. 7(a) shows that dur-
ing the first slots completion increases slowly, since only a
few nodes are involved in the propagation. By slot 10 nearly
all nodes have completion below 30 %, as shown in Fig. 7(b).

Completion grows more rapidly once this initial phase is
over and all nodes joined in the propagation. For example,

0 10 20 30 40 50 60 70 80 90
Slot

0

10

20

30

40

50

60

70

80

90
N

o
d

e
 I
D

0

10

20

30

40

50

60

70

80

90

100

C
o
m

p
le

ti
o
n

 [
%

]

(a) Completion of individual nodes.

0 10 20 30 40 50 60 70 80 90
Slot

0

20

40

60

80

100

C
o
m

p
le

ti
o
n
 [

%
]

(b) Completion across all nodes.

Figure 7: Completion over time during a representative round of Chaos, which is the percentage of bits that
are set in the flags of a node. Completion grows slowly in the beginning, then rapidly, and finally flattens out. This behavior
resembles how the infection rate grows over time in epidemic spreading. All 90 nodes complete by slot 70 (i.e., after 105 ms).

the average completion increases from 15 % in slot 10 up to
80 % in slot 40. It is exactly during this phase when Chaos
fully exploits spatial diversity. Different nodes have different
flags set, and the degree of completion differs by up to 20 %
among disjoint clusters of nodes. The jumps in completion
visible in Fig. 7(b) indicate precisely when nodes from these
clusters exchange packets and merge their different flags.

We see in Fig. 7(b) that the completion flattens out be-
yond slot 40. This behavior, together with the slow start
and the rapid increase afterward, resembles how the frac-
tion of infected nodes grows over time in epidemic spread-
ing [6]. Different from epidemics, around slot 60 more and
more nodes switch from the propagation to the completion
policy, which causes the remaining nodes to suddenly jump
to 100 % completion. In this specific round, all 90 nodes
share the final result between slots 47 and 70, that is, 71 to
105 ms after the beginning of the round.

6. EVALUATION METHODOLOGY
Using the implementation and test application described

in Sec. 4, we evaluate the performance of Chaos through ex-
tensive testbed experiments. Sec. 7 investigates the impact
of low-level mechanisms, network characteristics, and appli-
cation parameters, and Sec. 8 compares Chaos with the state
of the art. Sec. 9 complements our evaluation with simula-
tions in which we analyze the scalability of Chaos in net-
works of arbitrary size and node density. Before discussing
our results, we describe the metrics and testbeds we use.

Metrics. We consider four key performance metrics: (i) ra-
dio on-time is the time a node has the radio turned on during
a Chaos round; (ii) latency is the time from when a round
starts until when a node reaches completion; (iii) reliability
is the percentage of rounds in which all nodes reach comple-
tion; and (iv) radio duty cycle is the fraction of time a node
has the radio turned on when Chaos executes periodically.
We compute latency and reliability based on information
output by the nodes, and measure radio on-time and radio
duty cycle in software using Contiki’s power profiler [10].

Testbeds. We use the following three testbeds: Twist [17],
Indriya [7], and FlockLab [23]. All testbeds feature TelosB
nodes deployed in university buildings with realistic inter-

Table 2: Evaluation testbeds and settings

Testbed Nodes Initiators Tx power Diam.
[node ID] [dBm] [hops]

Indriya 139 1, 60, 121 0 to -11 5 to 9
Twist 90 12, 192, 230 0 to -25 3 to 7
FlockLab 30 4, 6, 19 0 to -15 4 to 10

ference from the presence of people and co-located Wi-Fi.
As shown in Table 2, the size of the testbeds ranges from
30 to 139 nodes, and their diameter varies between 3 and 10
hops depending on physical extent and transmit power.

7. EVALUATING CHAOS ON TESTBEDS
This section evaluates the impact of low-level mechanisms

as well as network and application characteristics on the per-
formance of Chaos. Our test application runs for 30 minutes
and executes Chaos periodically every 2 seconds. For each
experimental setting and testbed, we perform three indepen-
dent runs with different initiators (see Table 2), and report
per-node averages and standard deviations, plotted as lines
and error bars in the figures. Unless otherwise stated, Chaos
retains the default values from Table 1.

We note that this section reports latency in terms of num-
ber of slots required for a node to reach completion, because
we are primarily interested in understanding the connection
between the internal workings of Chaos and its performance.
We report latency in terms of time to reach completion when
comparing Chaos against the state of the art in Sec. 8.

7.1 Benefits of Low-Level Mechanisms
We start by evaluating the benefits provided by the time-

out mechanism and the completion policy.

7.1.1 Timeouts: Keep Going!
The timeout mechanism allows a node to transmit a packet

on its own if it received nothing for a given number of con-
secutive slots. Our results confirm that:

Finding 1. Timeouts are key in fighting premature ter-
mination, thus significantly boosting the reliability of Chaos.

0

100

200

300

400

500

600
R

a
d
io

 o
n
-t

im
e
 [

m
s]

0

20

40

60

80

100

La
te

n
cy

 [
sl

o
ts

]

None 0 2 4 6 8
Timeout window [slots]

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Indriya

Twist

FlockLab

Figure 8: Impact of timeouts. None means no time-
out. Numbers denote the timeout window W , where
W = 0 means nodes always send after 3 slots with-
out a reception and W > 0 means they transmit af-
ter a random number of slots between 3 and 3 +W .
Using randomized timeouts, Chaos completes quickly with an
average reliability above 99.85 % across all three testbeds.

Scenario. We first run a few experiments without the time-
out. Then we enable the timeout and let it expire between 3
and 3 +W slots after the last transmission of a node, where
W is the timeout window. Nodes, independently of each
other, draw a random number from this interval after each
transmission. We found in initial experiments that timeouts
expiring after less than 3 slots cause high contention and ul-
timately a loss in performance. We test values of W between
0 and 8 in steps of 2.

Results. Looking at Fig. 8, we see that timeouts are highly
beneficial to Chaos. When the timeout is disabled, the prop-
agation often comes to a premature halt and Chaos performs
poorly in terms of reliability and radio on-time. This is most
evident on FlockLab, where the average reliability ranges be-
low 81 % because nodes have only a few chances to receive
packets due to the low node density in the testbed. More-
over, nodes that fail to complete keep their radio on until
the end of a round, which explains the high radio on-time.

Fig. 8 shows that enabling the timeout improves the relia-
bility of Chaos. However, we also see that a timeout window
of W = 0 is not ideal—indeed it is counterproductive and
causes an increase in latency. On Indriya, for example, the
average latency rises from 62 slots without the timeout to
89 slots with a fixed timeout, while the average reliability re-
mains below 99 %. Since there is no randomness in the time-
out, nodes transmit exactly after 3 consecutive slots without
having received a packet. The resulting contention causes
several reception failures, further delaying completion.

0

500

1000

1500

R
a
d
io

 o
n
-t

im
e
 [

m
s]

0

20

40

60

80

100

La
te

n
cy

 [
sl

o
ts

]

P C1 C3 C5 C7 C9

Transmission policy upon completion

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Indriya

Twist

FlockLab

Figure 9: Impact of the completion policy. P means
nodes keep transmitting according to the propaga-
tion policy upon completion; Ck means nodes switch
to the completion policy and transmit the result up
to k times before turning off the radio. Transmitting
multiple times upon completion allows Chaos to greatly save
on energy without sacrificing reliability.

A wider timeout windowW > 0 reduces contention, which
improves both latency and reliability. Our Chaos implemen-
tation uses W = 4 slots as the default timeout window, be-
cause with this setting Chaos achieves an average reliability
above 99.85 % on all three testbeds. Larger timeout windows
do not yield significant performance improvements.

7.1.2 Completion Policy: Get It All Done!
Based on the completion policy, a node aggressively shares

the result upon completion by transmitting it up to a certain
number of times and then turns off the radio. We find that:

Finding 2. The completion policy significantly reduces
energy costs without sacrificing the reliability of Chaos.

Scenario. We first perform a few runs in which nodes keep
transmitting according to the propagation policy after com-
pletion. We then allow the nodes to switch to the completion
policy and transmit the result up to k times. We test values
of k between 1 and 9 in steps of 2 in different runs.

Results. When keeping to the propagation policy, a node
sends after completion only if it receives a packet with at
least one flag not set. In this way, Chaos approaches a reli-
ability of 100 %, as shown in Fig. 9, but there is no way for
a node to decide when it is safe to turn off the radio. Thus,
nodes keep the radio on for the entire duration of a round.

Fig. 9 shows that the completion policy significantly re-
duces radio on-time. A single transmission after completion,
however, is insufficient: many nodes turn off the radio before

0

100

200

300

400

500
R

a
d
io

 o
n
-t

im
e
 [

m
s]

0

20

40

60

80

100

La
te

n
cy

 [
sl

o
ts

]

−25 −20 −15 −10 −5 0
Tx power [dBm]

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Indriya

Twist

FlockLab

Figure 10: Impact of network properties. Radio on-
time and latency depend on node density and network diam-
eter, whereas reliability is always very close to 100 %.

others could receive the final result, causing the reliability
drop visible in Fig. 9. More transmissions reduce the prob-
lem. Our results show that nodes can be aggressive upon
completion, because they benefit from constructive interfer-
ence when transmitting the same final result. Our current
implementation lets nodes transmit five times after comple-
tion. With this setting, Chaos achieves an average reliability
above 99.91 % across all testbeds, while reducing the average
radio on-time to 191 ms on Indriya—8× smaller compared
with the runs in which nodes keep to the completion policy.

7.2 Impact of Network Properties
Next, we investigate the performance of Chaos depending

on network properties, including number of nodes, network
diameter, and node density. Our results reveal that:

Finding 3. Chaos operates efficiently under a wide range
of scenarios, including networks with high node density.

Scenario. To evaluate Chaos on the broadest range of net-
work properties, we vary the transmit power between the
maximum output power of a TelosB node (0 dBm) and the
minimum that keeps the network on a specific testbed fully
connected. Table 2 shows for each testbed the range of trans-
mit powers and the corresponding network diameters. Over-
all, we evaluate Chaos on networks that range from 30 to
139 nodes in size and span between 3 and 10 hops.

Results. Fig. 10 shows that reliability is almost 100 % across
all scenarios we tested. In particular, we measure an aver-
age reliability of 99.90 % at 0 dBm on Twist, a setting where
90 nodes are densely deployed within 3 hops. This shows
that Chaos successfully copes with the instability of capture
in dense networks, thanks to our mechanisms from Sec. 3.

Further, we see that for each testbed there is an optimal
transmit power in terms of latency and radio on-time. These

Table 3: Average radio duty cycles when Chaos ex-
ecutes periodically on the different testbeds

Period of Chaos

Testbed 2 s 10 s 30 s 1 min 5 min

Indriya 9.95 % 1.99 % 0.66 % 0.33 % 0.07 %
Twist 7.55 % 1.58 % 0.50 % 0.25 % 0.05 %
FlockLab 4.95 % 0.99 % 0.33 % 0.17 % 0.03 %

Table 4: Packet size, packet airtime, and slot length
for different payload sizes on the Indriya testbed

Payload size [bytes]

Parameter 0 25 50 75 100

Packet size [bytes] 26 51 76 101 126
Packet airtime [ms] 0.83 1.63 2.43 3.23 4.03
Slot length [ms] 1.31 2.11 2.91 3.71 4.51

optimal settings (-3 dBm on Indriya, -10 dBm on Twist, and
0 dBm on FlockLab) are sufficiently high to keep the net-
work diameter short, yet low enough for Chaos to exploit
spatial diversity. Lower transmit powers than the optimal
ones entail a larger network diameter and less reliable links.
Thus, more slots are needed to reach completion, causing an
increase in latency and radio on-time as visible in Fig. 10.
Due to high contention, we also see a small increase in both
metrics at higher transmit powers on Twist.

By comparing the lowest latency for each testbed, we can
also appreciate that Chaos scales gracefully in large networks
where it can fully exploit spatial diversity. Chaos completes
on average within 30 slots on 30 nodes (FlockLab), but takes
only 56 slots on 90 nodes (Twist) and 59 slots on 139 nodes
(Indriya). Sec. 9 further evaluates the scalability of Chaos.

The shortest average radio on-times are 199 ms on Indriya,
151 ms on Twist, and 99 ms on FlockLab. To put these num-
bers into perspective, consider an application that executes
Chaos periodically, with periods between 2 s and 5 min. Ta-
ble 3 shows the corresponding average radio duty cycles. For
example, when Chaos runs every 10 s, the radio duty cycle is
below 2 % on all testbeds. In fact, results in Sec. 8 demon-
strate that Chaos is at least one order of magnitude more
energy-efficient than the state of the art.

7.3 Impact of Application Characteristics
We now evaluate how application parameters like payload

size and processing time affect the performance of Chaos.

7.3.1 Payload Size
In Chaos, the total size of a packet follows from the fixed

size IEEE 802.15.4 and Chaos headers, the size of the flags
as determined by the number of nodes bound to participate
in an all-to-all interaction, and the variable size payload field
as determined by the application. By examining the impact
of the latter on the performance of Chaos, we find that:

Finding 4. Chaos efficiently supports large packets, with
no noticeable impact on reliability.

Scenario. We vary the payload size from 0 to 100 bytes in
steps of 25. The IEEE 802.15.4 and Chaos headers together
are 8 bytes and the flags occupy dN/8e bytes in an N -node
network. So, for example, on Indriya this corresponds to a
total packet size between 26 and 126 bytes (see Table 4).

0

100

200

300

400

500
R

a
d
io

 o
n
-t

im
e
 [

m
s]

0

20

40

60

80

100

La
te

n
cy

 [
sl

o
ts

]

0 25 50 75 100
Payload [bytes]

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Indriya

Twist

FlockLab

Figure 11: Impact of payload size. Radio on-time in-
creases linearly with payload size, latency increases at most
by a few slots, and reliabilty is consistently above 99.78 %.

Results. We learn from Fig. 11 that the payload size has no
noticeable impact on reliability, averaging above 99.78 % on
all testbeds. Although larger packets are more susceptible to
channel dynamics and packet corruption than smaller pack-
ets [34], spatial diversity and timeouts mitigate these effects
in Chaos. In fact, we observe that with larger packets only
a few more slots are required to reach completion. When
increasing the payload size from 0 to 100 bytes, the average
latency increases from 64 to 68 slots on Indriya, from 61 to
69 slots on Twist, and from 26 to 27 slots on FlockLab.

Because the length of a Chaos slot increases linearly with
payload size (see Table 4), radio on-time increases linearly,
too. For instance, on Indriya radio on-time averages 226 ms
for a 25-byte payload and 432 ms for a 100-byte payload.
This 2× increase in radio on-time, however, corresponds to
a 4× increase in the amount of shared data, confirming that
Chaos is highly efficient also when propagating large packets.

7.3.2 Processing Time
Finally, we evaluate how the time required to process the

flags and the payload according to the merge operator affects
the performance of Chaos. We find that:

Finding 5. Chaos supports a wide range of processing
times, with no noticeable impact on reliability and efficiency.

Scenario. We evaluate merge operators that take between
2000 and 40000 MCU clock cycles to execute, correspond-
ing to processing times between 0.48 and 9.5 ms. This range
covers a broad spectrum of potential merge operators, from
simple aggregates like the maximum to more complex com-
putations such as a fixed-point FFT [31].

Results. Looking at Fig. 12, we find that processing time
has no noticeable impact on reliability, which averages above

0

200

400

600

800

1000

R
a
d
io

 o
n
-t

im
e
 [

m
s]

0

20

40

60

80

100

La
te

n
cy

 [
sl

o
ts

]

0 10000 20000 30000 40000
Processing [MCU clock cycles]

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Indriya

Twist

FlockLab

Figure 12: Impact of processing time. Radio on-time
increases linearly with processing time because each slot be-
comes longer. Latency and reliability are unaffected.

99.78 % across all settings we tested. Further, we see that
latency remains constant. This is because the effects of vary-
ing MCU clock drifts among nodes associated with longer
processing times are canceled out by the chaotic exchange
of packets and spatial diversity in Chaos. Radio on-time in-
creases linearly with processing time since each slot becomes
longer. It is possible to counteract this trend by turning off
the radio while processing. We leave this energy optimiza-
tion for future work.

8. COMPARING CHAOS ON TESTBEDS
We compare Chaos with two state-of-the-art solutions for

all-to-all data sharing in low-power wireless networks. Our
results demonstrate that:

Finding 6. Chaos is 3–23× more efficient than state-of-
the-art approaches at a reliability close to 100 %.

Protocols. There is no previous scheme that natively sup-
ports all-to-all data sharing in low-power wireless networks.
In line with the current practice, we therefore compare Chaos
with two state-of-the-art solutions for achieving all-to-all in-
teractions. The Low-Power Wireless Bus (LWB) is a Glossy-
based protocol that supports multiple communication pat-
terns and is more efficient than most existing solutions [13].
An all-to-all interaction in LWB works by letting each node
first flood its data and then locally compute the result. We
also consider the classical collect-process-disseminate solu-
tion by using the default data collection and dissemination
protocols in TinyOS: the Collection Tree Protocol (CTP) [15]
and Drip [38]. We run both protocols on top of BoX-MAC,
the default low-power listening link layer in TinyOS [27].4

4We obtained inconsistent results when trying to integrate
CTP and Drip over BoX-MAC. The main developers of CTP

-25 -15 -10 -6 -4.5
Tx power [dBm]

0

1

2

3

4

5

6

7

8
R

a
d
io

 d
u
ty

 c
y
cl

e
 [

%
]

-25 -15 -10 -6 -4.5
Tx power [dBm]

0

500

1000

1500

2000

La
te

n
cy

 [
m

s]

-25 -15 -10 -6 -4.5
Tx power [dBm]

70

80

90

100

R
e
lia

b
ili

ty
 [

%
]

Chaos

LWB

CTP

Figure 13: Performance of Chaos, LWB, and CTP on Twist for different transmit powers. Chaos outperforms
LWB and CTP in all metrics, achieving severalfold improvements in radio duty cycle and latency at a reliability near 100 %.

Table 5: Summary of comparison results

Radio duty cycle Latency Reliability

Average [%] Gain vs. Average [ms] Gain vs. Average [%] Gain vs.

Tx power Chaos LWB CTP LWB CTP Chaos LWB CTP LWB CTP Chaos LWB CTP LWB CTP

-25 dBm 0.24 1.20 4.73 5× 19× 89 2000 1752 22× 20× 100.00 99.96 93.37 1× 7×
-11 dBm 0.25 1.21 5.58 5× 22× 88 2000 558 23× 6× 99.96 99.98 93.56 1× 6×
-4.5 dBm 0.35 1.15 6.18 3× 17× 99 2000 291 20× 3× 99.98 100.00 96.07 1× 4×

Scenario. We consider again the test application from the
previous section with the default settings from Table 1. The
application runs for 30 minutes on Twist and executes Chaos
periodically every minute. In LWB, nodes generate a packet
every minute, and we use the LWB-low-latency scheduling
policy to reduce latency [13]. In CTP, nodes generate pack-
ets with a random period that averages 1 min. The wake-
up interval of BoX-MAC is 256 ms, which showed to be the
most energy-efficient setting in this scenario. All other LWB
and CTP parameters retain their default values. We use the
same node as the initiator in Chaos, the host in LWB, and
the sink in CTP. We test three different transmit powers
(-25 dBm, -11 dBm, -4.5 dBm), and perform for each trans-
mit power and protocol three independent runs.

Results. Fig. 13 shows the performance of Chaos, LWB,
and CTP against transmit power. We see that Chaos is sig-
nificantly faster and more energy-efficient than LWB, while
both achieve a reliability near 100 %. Although LWB utilizes
synchronous transmissions, it does not exploit spatial diver-
sity: nodes in anN -node network need to performN sequen-
tial Glossy floods before reaching completion. By contrast,
Chaos fully exploits spatial diversity to gain in efficiency.

Fig. 13 shows that Chaos also outperforms CTP in all met-
rics. Moreover, the latency of CTP significantly increases for
lower transmit powers, because the collection tree it uses to
route packets toward the sink becomes deeper. By contrast,
Chaos and LWB are only marginally affected by different
transmit powers. Finally, we see from the standard devi-
ations that, unlike CTP, nodes using Chaos or LWB have
similar performance due to the absence of routing.

confirmed that other people experienced the same issue. For
this reason, we show results from a configuration that sup-
ports only data collection with CTP on top of BoX-MAC.
Nevertheless, results in Fig. 13 and Table 5 demonstrate that
Chaos greatly outperforms CTP alone—adding dissemina-
tion with Drip would further widen this performance gap.

Summary. Table 5 summarizes our comparison results.
It shows the average performance of each protocol and the
improvements of Chaos over LWB and CTP. We see, for
example, that Chaos reduces radio duty cycle by 3–5× com-
pared with LWB and by 17–22× compared with CTP. More-
over, Chaos completes within 89–99 ms, up to 20–23× faster
than LWB and CTP. Despite these improvements in effi-
ciency, Chaos achieves a very high reliability above 99.96 %,
which is comparable to LWB and significantly better than
CTP. Overall, our results demonstrate that Chaos provides
extremely efficient and reliable all-to-all data sharing and
achieves severalfold improvements over the state of the art.

9. SCALABILITY IN SIMULATIONS
This section uses simulations to analyze how Chaos scales

with the number of nodes and the node density. Simulations
allow us to consider networks of arbitrary size and density.
Furthermore, we can scale beyond the limitation imposed
by the maximum IEEE 802.15.4 packet size—without some
form of data compression Chaos supports up to 1000 nodes
assuming packets contain no payload. Because we maintain
that Chaos is applicable to other wireless technologies sup-
porting larger packets, such as Wi-Fi, we want to explore its
scalability in even larger networks. We find that:

Finding 7. Chaos scales efficiently to large networks with
several thousands of nodes and various node densities.

Simulator. We implemented a Chaos simulator in Python.
The simulator accounts for the propagation policy, the time-
out mechanism, and the completion policy from Sec. 3. It
assumes perfect clocks and neglects interrupt delays. Nodes
are randomly placed according to a uniform distribution. To
simulate the propagation of packets, we use the log-normal
path loss model [33], which has been validated through real-
world experiments [5]. We augment the model by introduc-
ing randomized noise and channel dynamics calibrated from

101 102 103

Number of nodes

101

102

103
La

te
n
cy

 [
sl

o
ts

]

0:1 nodes=m2

0:05 nodes=m2

0:01 nodes=m2

Figure 14: Chaos in simulations. Latency scales linearly
with the square root of the number of nodes.

real traces [36, 37]. Additionally, the simulator accounts for
capture effects and constructive interference based on the
received strengths of multiple overlapping signals.

The simulator takes as inputs the total number of nodes,
the average node density, and a noise profile. It outputs the
number of slots required for a node to reach completion.

Settings. We simulate networks with 10 to 5000 nodes and
three average node densities: 0.01, 0.05, and 0.1 nodes per
square meter. For each setting, we perform 100 independent
runs of a Chaos round. In every run, we use a different ran-
dom seed to effectively generate a different network topology.
This yields a total of 2700 runs with different topologies.

Results. Fig. 14 shows that latency (i.e., the number of
slots required for a node to reach completion) scales linearly
with the number of nodes, the average slope being smaller
than 0.7 across all node densities. For example, doubling the
number of nodes yields a 1.4× average increase in latency.
Thus, latency practically scales linearly with the square root
of the number of nodes. These results confirm that, thanks
to spatial diversity, Chaos scales efficiently to large networks
with several thousands of nodes and various densities.

10. RELATED WORK
Related work falls in the following two domains:

Synchronous transmissions. Chaos exploits synchronous
transmissions for efficient communication. To this end, like
several others [4, 8, 13, 39], Chaos builds upon Glossy [14].
Glossy benefits from capture effects and constructive base-
band interference to provide efficient flooding in sensor net-
works. LWB uses Glossy as the foundation for a communi-
cation protocol that is similar to a shared bus and supports
multiple communication patters as well as mobile nodes im-
mersed in static infrastructures [13]. Splash integrates Glossy
with tree-based pipelining for rapid and reliable dissemina-
tion of large data objects [8]. In comparison with Glossy and
all prior research building upon it, Chaos transforms Glossy
from a one-to-all primitive into an all-to-all primitive for
versatile data sharing in low-power wireless networks, where
nodes send different instead of identical packets and utilize
processing opportunities instead of minimizing them.

Backcast demonstrated substantial gains due to construc-
tive interference [12]. Backcast leverages synchronous trans-

missions of hardware-generated packets for an acknowledged
anycast service, serving as the basis for A-MAC, a receiver-
initiated link layer for low-power wireless [11]. Glossy demon-
strates that, by employing a careful software design, con-
structive baseband interference can also be achieved through
synchronous transmissions triggered in software. Chaos ben-
efits from constructive interference when nodes switch to the
completion policy, thereby saving on energy costs.

Flash [24] instead relies only on capture effects for rapid
flooding in wireless sensor networks. Like Flash, Chaos relies
also only on capture until the first node reaches completion.
Unlike Flash, Chaos transmits different packets and merges
data on the fly according to a programmable operator.

To enable capture using IEEE 802.15.4 radios, Chaos must
ensure that synchronous transmissions overlap within 160µs,
because those radios typically cannot lock onto a stronger
signal that arrives later. Instead, in Wi-Fi networks a phys-
ical-layer capability called Message in Message (MIM) en-
ables a receiver to decode even if the stronger signal arrives
after the receiver has locked onto the interference [21]. Re-
cent work shows how to leverage the opportunities of MIM
in IEEE 802.11 a/g/n networks by scheduling links based on
their relative signal strengths [26]. We maintain that Chaos
is applicable beyond IEEE 802.15.4 and could also harvest
capture and MIM opportunities in Wi-Fi networks.

In-network processing. This domain has been a main re-
search thread since the early days of sensor networks. Con-
sequently, there exists is a large body of previous work that
uses in-network processing mainly in the context of data ag-
gregation [25, 32] and query processing [19, 40]. Many of
these schemes operate on top of a tree-based routing struc-
ture [25], whereas others use multi-path routing to be more
resilient to link fluctuations and node failures [28]. Their
main goal is to save energy by reducing the amount of data
to be transmitted to the collection sink. By contrast, Chaos
integrates in-network processing directly into the communi-
cation support to enable various all-to-all interactions; main-
tains no routing structure and instead exploits network-wide
synchronous transmissions, causing a chaotic propagation of
packets throughout the network; and delivers the final result
to all participating nodes rather than to a single sink.

11. CONCLUSIONS
Low-power wireless applications increasingly rely on var-

ious all-to-all interactions as they move toward control and
safety-critical scenarios. We have presented Chaos, the first
primitive with native support for versatile and efficient all-
to-all data sharing in low-power wireless networks. By em-
bedding programmable in-network processing in a communi-
cation support based on synchronous transmissions, Chaos
enables a wide range of all-to-all interactions, including the
computation of various aggregates, network-wide consensus,
and three-phase commit. Our Chaos implementation on the
TelosB platform achieves severalfold improvements over the
state of the art in the efficiency of all-to-all interactions with
almost 100% reliability across all scenarios we tested. Simu-
lations show that Chaos scales efficiently to large multi-hop
networks consisting of several thousands of nodes.

We have made the source code of Chaos publicly available
at https://github.com/olafland/chaos as a means to fos-
ter further research into leveraging all-to-all interactions and
applying Chaos to other wireless technologies such as Wi-Fi.

https://github.com/olafland/chaos

Acknowledgments. We thank Felix Sutton, our shepherd
Lin Zhong, and the anonymous reviewers for their valuable
comments. This work was supported by Nano-Tera, through
projects X-Sense and OpenSense, and partially by the EC,
through project FP7-STREP-288195 (KARYON).

12. REFERENCES
[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans,

J. George, S. George, L. Gu, T. He, S. Krishnamurthy, L. Luo,
S. Son, J. Stankovic, R. Stoleru, and A. Wood. EnviroTrack:
Towards an Environmental Computing Paradigm for
Distributed Sensor Networks. In ICDCS: Proc. of the IEEE
Int. Conf. on Distributed Computing Systems, 2004.

[2] J. Arnbak and W. van Blitterswijk. Capacity of slotted
ALOHA in Rayleigh-fading Channels. IEEE Journal on Sected
Areas in Communications, 5(2), 1987.

[3] C. A. Boano, M. A. Zuniga, K. Römer, and T.Voigt. JAG:
Reliable and Predictable Wireless Agreement under External
Radio Interference. In RTSS: Proc. of the IEEE Real-Time
Systems Symposium, 2012.

[4] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali.
Forwarder Selection in Multi-Transmitter Networks. In
DCOSS: Proc. of the IEEE Int. Conf. on Distributed
Computing in Sensor Systems, 2013.

[5] Y. Chen and A. Terzis. On the Implications of the Log-Normal
Path Loss Model: An Efficient Method to Deploy and Move
Sensor Motes. In SenSys: Proc. of the ACM Conf. on
Embedded Networked Sensor Systems, 2011.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In PODC:
Proc. of the ACM Symposium on Principles of Distributed
Computing, 1987.

[7] M. Doddavenkatappa, M. C. Chan, and A. Ananda. Indriya: A
Low-Cost, 3D Wireless Sensor Network Testbed. In
TridentCom: Proc. of the ICST Conf. on Testbeds and
Research Infrastructures for the Development of Networks
and Communities, 2011.

[8] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast
Data Dissemination with Constructive Interference in Wireless
Sensor Networks. In NSDI: Proc. of the USENIX Symposium
on Networked Systems Design and Implementation, 2013.

[9] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney. A
Key Management Scheme for Wireless Sensor Networks Using
Deployment Knowledge. In INFOCOM: Proc. of the IEEE
Int. Conf. on Computer Communications, 2004.

[10] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based
On-line Energy Estimation for Sensor Nodes. In EmNets: Proc.
of the Workshop on Embedded Networked Sensors, 2007.

[11] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and
A. Terzis. Design and Evaluation of a Versatile and Efficient
Receiver-Initiated Link Layer for Low-Power Wireless. In
SenSys: Proc. of the ACM Conf. on Embedded Networked
Sensor Systems, 2010.

[12] P. Dutta, R. Musaloiu-E., I. Stoica, and A. Terzis. Wireless
ACK Collisions Not Considered Harmful. In HotNets: Proc. of
the ACM Workshop on Hot Topics in Networking, 2008.

[13] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-Power Wireless Bus. In SenSys: Proc. of the ACM
Conf. on Embedded Networked Sensor Systems, 2012.

[14] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
Network Flooding and Time Synchronization with Glossy. In
IPSN: Proc. of the ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks, 2011.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection Tree Protocol. In SenSys: Proc. of the ACM
Conf. on Embedded Networked Sensor Systems, 2009.

[16] V. Hadzilacos and S. Toueg. Distributed Systems. Addison
Wesley, 1993.

[17] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST: a
Scalable and Reconfigurable Testbed for Wireless Indoor
Experiments with Sensor Networks. In RealMAN: Proc. of the
Int. Workshop on Multi-hop Ad Hoc Networks: from Theory
to Reality, 2006.

[18] J. W. Hui and D. Culler. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale. In
SenSys: Proc. of the ACM Conf. on Embedded Networked
Sensor Systems, 2004.

[19] A. Kamra, V. Misra, and D. Rubenstein. CountTorrent:
Ubiquitous Access to Query Aggregates in Dynamic and Mobile

Sensor Networks. In SenSys: Proc. of the ACM Conf. on
Embedded Networked Sensor Systems, 2007.

[20] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking.
Randomized Rumor Spreading. In FOCS: Proc. the of IEEE
Symposium on Foundations of Computer Science, 2000.

[21] J. Lee, W. Kim, S. J. Lee, D. Jo, J. Ryu, T. Kwon, and
Y. Choi. An Experimental Study on the Capture Effect in
802.11a Networks. In WinTECH: Proc. of the ACM Workshop
on Wireless Network Testbeds, Experimental Evaluation and
Characterization, 2007.

[22] K. Leentvaar and J. Flint. The Capture Effect in FM Receivers.
IEEE Trans. Commun., 24(5), 1976.

[23] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In IPSN:
Proc. of the ACM/IEEE Int. Conf. on Information
Processing in Sensor Networks, 2013.

[24] J. Lu and K. Whitehouse. Flash Flooding: Exploiting the
Capture Effect for Rapid Flooding in Wireless Sensor
Networks. In INFOCOM: Proc. of the IEEE Int. Conf. on
Computer Communications, 2009.

[25] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System for Sensor
Networks. ACM Trans. Database Systems, 30(1), 2005.

[26] J. Manweiler, N. Santhapuri, S. Sen, R. Choudhury,
S. Nelakuditi, and K. Munagala. Order Matters: Transmission
Reordering in Wireless Networks. IEEE/ACM Transactions on
Networking, 20(2), 2012.

[27] D. Moss and P. Levis. BoX-MACs: Exploiting Physical and
Link Layer Boundaries in Low-Power Networking. Technical
Report SING-08-00, Stanford, 2008.

[28] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson. Synopsis
Diffusion for Robust Aggregation in Sensor Networks. ACM
Transactions on Sensor Networks, 4(2), 2008.

[29] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein. Using
Channel Hopping to Increase 802.11 Resilience to Jamming
Attacks. In INFOCOM: Proc. of the IEEE Int. Conf. on
Computer Communications, 2007.

[30] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam. The
Wireless Control Network: A New Approach for Control Over
Networks. IEEE Trans. Autom. Control, 56(10), 2011.

[31] A. Pullin. An Energy Audit of Automotive Vibration Sources
for Energy Harvesting and Applied Computation in Wireless
Sensor Networks. Master’s thesis, UC Berkeley, 2010.

[32] R. Rajagopalan and P. K. Varshney. Data-Aggregation
Techniques in Sensor Networks: A Survey. IEEE
Communications Surveys & Tutorials, 8(4), 2006.

[33] T. Rappaport. Wireless Communications: Principles &
Practices. Prentice Hall, 1996.

[34] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. McLaughlin.
Energy Efficiency based Packet Size Optimization in Wireless
Sensor Networks. In SNPA: Proc. of the IEEE Int. Workshop
on Sensor Network Protocols and Applications, 2003.

[35] D. Skeen and M. Stonebraker. A Formal Model of Crash
Recovery in a Distributed System. IEEE Transactions on
Software Engineering, SE-9(3), 1983.

[36] K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim,
P. Levis, and B. Krishnamachari. The κ Factor: Inferring
Protocol Performance using Inter-Link Reception Correlation.
In MobiCom: Proc. of the ACM Int. Conf. on Mobile
Computing and Networking, 2010.

[37] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis.
The β Factor: Measuring Wireless Link Burstiness. In SenSys:
Proc. of the ACM Conf. on Embedded Networked Sensor
Systems, 2008.

[38] G. Tolle and D. Culler. Design of an Application-Cooperative
Management System for Wireless Sensor Networks. In EWSN:
Proc. of the European Workshop on Wireless Sensor
Networks, 2005.

[39] Y. Wang, Y. He, X. Mao, Y. Liu, Z. Huang, and X. Li.
Exploiting Constructive Interference for Scalable Flooding in
Wireless Networks. In INFOCOM: Proc. of the IEEE
Int. Conf. on Computer Communications, 2012.

[40] Y. Yao and J. Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks. ACM SIGMOD Record,
31(3), 2002.

[41] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele.
pTunes: Runtime Parameter Adaptation for Low-power MAC
Protocols. In IPSN: Proc. of the ACM/IEEE Int. Conf. on
Information Processing in Sensor Networks, 2012.

	Introduction
	Overview
	Basic Operation and Terminology
	Example Applications

	Design
	Communication and Processing Support
	Making it Work
	To Transmit or Not to Transmit
	Fighting Premature Termination
	Aggressively Sharing upon Completion

	Implementation Details
	CHAOS in Action
	Activity over Time
	Completion over Time

	Evaluation Methodology
	Evaluating CHAOS on Testbeds
	Benefits of Low-Level Mechanisms
	Timeouts: Keep Going!
	Completion Policy: Get It All Done!

	Impact of Network Properties
	Impact of Application Characteristics
	Payload Size
	Processing Time

	Comparing CHAOS on Testbeds
	Scalability in Simulations
	Related Work
	Conclusions
	References

