
Safe System-level Concurrency on Resource-Constrained
Nodes

Francisco Sant’Anna
fsantanna@inf.puc-rio.br

Noemi Rodriguez
noemi@inf.puc-rio.br

Roberto Ierusalimschy
roberto@inf.puc-rio.br

Departamento de Informática – PUC-Rio, Brazil

Olaf Landsiedel
olafl@chalmers.se

Philippas Tsigas
tsigas@chalmers.se

Computer Science and Engineering – Chalmers University of Technology, Sweden

ABSTRACT
Despite the continuous research to facilitate WSNs devel-
opment, most safety analysis and mitigation efforts in con-
currency are still left to developers, who must manage syn-
chronization and shared memory explicitly. In this paper,
we present a system language that ensures safe concurrency
by handling threats at compile time, rather than at run-
time. Based on the synchronous programming model, our
design allows for a simple reasoning about concurrency that
enables compile-time analysis resulting in deterministic and
memory-safe programs. As a trade-off, our design imposes
limitations on the language expressiveness, such as doing
computationally-intensive operations and meeting hard real-
time responsiveness. To show that the achieved expressive-
ness and responsiveness is sufficient for a wide range of WSN
applications, we implement widespread network protocols
and the CC2420 radio driver. The implementations show a
reduction in source code size, with a penalty of memory in-
crease below 10% in comparison to nesC. Overall, we ensure
safety properties for programs relying on high-level control
abstractions that also lead to concise and readable code.

1. INTRODUCTION
System-level development for Wireless Sensor Networks

(WSNs) commonly follows one of three major programming
models: event-driven, multi-threaded, or synchronous. In
event-driven programming [19, 11], each external event can
be associated with a short-lived function callback to handle
a reaction to the environment. This model is efficient, but
is known to be difficult to program [1, 12]. Multi-threaded
systems emerged as an alternative in WSNs, providing tra-
ditional structured programming in multiple lines of execu-
tion [12, 7]. However, the development process still requires
manual synchronization and bookkeeping of threads [24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’13, November 11-15, 2013, Rome, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2027-6/13/11 $15.00.
http://dx.doi.org/10.1145/2517351.2517360.

Synchronous languages [2] have also been adapted to WSNs
and offer higher-level compositions of activities with a step-
by-step execution, considerably reducing programming ef-
forts [21, 22].

Despite the increase in development productivity, WSN
system languages still fail to ensure static safety properties
for concurrent programs. However, given the difficulty in de-
bugging WSN applications, it is paramount to push as many
safety guarantees to compile time as possible [25]. Shared-
memory concurrency is an example of a widely adopted
mechanism that typically relies on runtime safety primitives
only. For instance, current WSN languages ensure atomic
memory access either through runtime barriers, such as mu-
texes and locks [7, 27], or by adopting cooperative scheduling
which also requires explicit yield points in the code [21, 12].
In either case, there are no additional static guarantees or
warnings about unsafe memory accesses.

We believe that programming WSNs can benefit from
a new language that takes concurrency safety as a primary
goal, while preserving typical multi-threading features that
programmers are familiarized with, such as shared memory
concurrency. In this work, we present the design of Céu1, a
synchronous system-level programming language that pro-
vides a reliable yet powerful set of abstractions for the de-
velopment of WSN applications. Céu is based on a small
set of control primitives similar to Esterel’s [8], leading to
implementations that more closely reflect program specifica-
tions. As a main contribution, we propose a static analysis
that permeates all language mechanisms and detects safety
threats at compile time. This allows Céu to support safe
shared-memory concurrency as well as system-level C calls.
In addition, we introduce the following new safety mecha-
nisms: first-class timers to ensure precise synchronization
among timers in parallel (not depending on internal reac-
tion timings); finalization blocks for local pointers going out
of scope; and stack-based communication that avoids cyclic
dependencies. In contrast with existing synchronous lan-
guages, Céu introduces a stack-based execution for internal
events which enables a limited but safer form of subrou-
tines. Our work focuses on concurrency safety, rather than
type safety [9].2

1Céu is the Portuguese word for sky.
2We consider both safety aspects to be complimentary and

/* nesC */
event void Boot.booted () {
call T1.start(0)
call T2.start(60000)

}
event void T1.fired () {
static int on = 0;
if (on) {

call Leds.led0Off();
call T1.start(1000);

} else {
call Leds.led0On();
call T1.start(2000);

}
on = !on;

}
event void T2.fired() {
call T1.cancel();
call Leds.led0Off();
<...> // CONTINUE

}

/* Protothreads */
int main () {
PT_INIT(&blink);
timer_set(&timeout, 60000);
while (

PT_SCHEDULE(blink()) &&
!timer_expired(timeout)

);
leds_off(LEDS_RED);
<...> // CONTINUE

}
PT_THREAD blink () {
while (1) {

leds_on(LEDS_RED);
timer_set(&timer, 2000);
PT_WAIT(expired(&timer));
leds_off(LEDS_RED);
timer_set(&timer, 1000);
PT_WAIT(expired(&timer));

}
}

/* Céu */
par/or do

loop do
_Leds_led0On();
await 2s;
_Leds_led0Off();
await 1s;

end
with

await 1min;
end
_Leds_led0Off();
<...> // CONTINUE

Figure 1: “Blinking LED” in nesC, Protothreads, and Céu.

In order to enable static analysis, programs in Céu must
suffer some limitations. Computations that run in unbounded
time (e.g., compression, image processing) cannot be ele-
gantly implemented [29], and dynamic loading is forbidden.
However, we show that Céu is sufficiently expressive for the
context of WSN applications. We successfully implemented
the CC2420 radio driver, and the DRIP, SRP, and CTP
network protocols [32] in Céu. In comparison to nesC [17],
the implementations reduced the number of source code to-
kens by 25%, with an increase in ROM and RAM below
10%.

The rest of the paper is organized as follows: Section 2
gives an overview on how different programming models used
in WSNs can express typical control patterns. Section 3 de-
tails the design of Céu, motivating and discussing the safety
aspects of each relevant language feature. Section 4 evalu-
ates the implementation of the network protocols in Céu and
compares some of its aspects with nesC (e.g. memory usage
and tokens count). We also evaluate the responsiveness of
the radio driver written in Céu, showing extreme high-load
conditions in which the disciplined synchronous execution of
our model may not be suitable. Section 5 discusses related
work to Céu. Section 6 concludes the paper and makes final
remarks.

2. OVERVIEW OF PROGRAMMING MOD-
ELS

WSN applications must handle a multitude of concurrent
events, such as timers and packet transmissions. Although
they may seem random and unrelated for an external ob-
server, a program must logically keep track of them accord-
ing to its control specification. From a control perspective,
programs are composed of two main patterns: sequential,
i.e., an activity with two or more sub-activities in sequence;
and parallel, i.e., unrelated activities that eventually need to
synchronize. As an example, an application that alternates

orthogonal, i.e., type-safety techniques could also be applied
to Céu.

between sampling a sensor and broadcasting its readings has
a sequential pattern (with an enclosing loop); while includ-
ing an 1-minute timeout to interrupt an activity denotes a
parallel pattern.

Figure 1 presents the three different programming mod-
els commonly used in WSNs. It shows the implementations
in nesC [17], Protothreads[12], and Céu for an application
that continuously turns on a LED for 2 seconds and off for
1 second. After 1 minute of activity, the application turns
off the LED and proceeds to another activity (marked in
the code as <...>). The diagram on the right of Figure 1
describes the overall control behavior for the application.
The sequential programming pattern is represented by the
LED alternating between the two states, while the parallel
pattern is represented by the 1-minute timeout.

The first implementation, in nesC, which represents the
event-driven model, spawns two timers “in parallel” at boot
time (Boot.booted): one to make the LED blink and another
to wait for 1 minute. The callback T1.fired continuously
toggles the LED and resets the timer according to the state
variable on. The callback T2.fired executes only once, can-
celing the blinking timer, and proceeds to <...>. Overall,
we argue that this implementation has little structure: the
blinking loop is not explicit, but instead relies on a static
state variable and multiple invocations of the same callback.
Furthermore, the timeout handler (T2.fired) requires spe-
cific knowledge about how to stop the blinking activity, and
the programmer must manually terminate it (T1.cancel()).

The second implementation, in Protothreads, which rep-
resents the multi-threaded model, uses a dedicated thread
to make the LED blink in a loop. This brings more struc-
ture to the solution. The main thread also helps a reader
to identify the overall sequence of the program, which is not
easily identifiable in the event-driven implementation with-
out tracking the dependencies among callbacks. However, it
still requires much bookkeeping for initializing, scheduling
and rejoining the blinking thread after the timeout (inside
the while condition).

The third implementation, in Céu, which represents the

// DECLARATIONS
input <type> <id>; // external event
event <type> <id>; // internal event
var <type> <id>; // variable

// EVENT HANDLING
await <id>; // awaits event
emit <id>; // emits event

// COMPOUND STATEMENTS
<...> ; <...> ; // sequence
if <...> then <...> // conditional

else <...> end
loop do <...> end // repetition

break // (escape loop)
finalize <...> // finalization

with <...> end

// PARALLEL COMPOSITIONS
par/and do <...> // rejoins on both sides

with <...> end
par/or do <...> // rejoins on any side

with <...> end
par do <...> // never rejoins

with <...> end

// C INTEGRATION
f(); // C call (prefix ‘’)
native do <...> end // block of native code
pure <id>; // "pure" annotation
safe <id> with <id>; // "safe" annotation

Figure 2: Syntax of Céu.

synchronous model, uses a par/or construct to run the two
activities in parallel: an endless loop to blink the LED, and
a single statement that waits for 1 minute before terminat-
ing. The par/or stands for parallel-or and rejoins automat-
ically when any of its lines of execution terminates. (Céu
also supports par/and compositions, which rejoin when all
spawned lines of execution terminate.) We argue that the
hierarchical structure of Céu more closely reflects the con-
trol diagram and ties the two activities together, implying
that (a) they can only exist together; (b) they always start
together; (c) they always terminate together. Besides the
arguably cleaner syntax, the additional control-flow infor-
mation that can be inferred from the program is the base
for all features and safety guarantees introduced by Céu.

3. THE DESIGN OF CÉU
Céu is a concurrent language in which multiple lines

of execution—known as trails—continuously react to input
events from the environment. Waiting for an event halts
the running trail until that event occurs. The environment
broadcasts an occurring event to all active trails, which
share a single global time reference (the event itself). The
fundamental distinction between Céu and prevailing multi-
threaded designs is the way threads are combined in pro-
grams. Céu provides Esterel-like syntactic hierarchical com-
positions, while most multi-threaded systems typically only
support top-level definitions for threads. Figure 2 shows a
compact reference of Céu, which helps to follow the exam-
ples in this chapter.

As an introductory example, the code in Figure 3 is

1 input void CC2420_START, CC2420_STOP;
2 loop do
3 await CC2420_START;
4 par/or do
5 await CC2420_STOP;
6 with
7 // loop with other nested trails
8 // to receive radio packets
9 <...>

10 end
11 end

Figure 3: Start/stop behavior for the radio driver.
The occurrence of CC2420_STOP (line 5) seamlessly aborts

the receiving loop (collapsed in line 9) and resets the

driver to wait for the next CC2420_START (line 3).

extracted from our implementation of the CC2420 radio
driver [32] and uses a par/or to control the start/stop be-
havior of the radio. The input events CC2420_START and
CC2420_STOP (line 1) represent the external interface of the
driver with a client application (e.g. a protocol). The driver
enters the top-level loop and awaits the starting event (line
3); upon request, the driver spawns two other trails: one
to await the stopping event (line 5), and another to actu-
ally receive radio messages in a loop (collapsed in line 9).
As compositions can be nested, the receiving loop can be as
complex as needed and contain other loops and parallel con-
structs. However, once the client requests to stop the driver,
the trail in line 5 awakes and terminates, also terminating
the par/or which aborts the receiving loop and proceeds to
the statement in sequence. In this case, the top-level loop
restarts, waiting for the next request to start (line 3, again).

The par/or construct is regarded as an orthogonal pre-
emption primitive [5] because the two sides in the composi-
tion need not to be tweaked with synchronization primitives
or state variables in order to affect each other. In contrast,
it is known that traditional (asynchronous) multi-threaded
languages cannot express thread abortion safely [5, 28].

3.1 Deterministic and Bounded Execution
Céu is grounded on a precise definition of time as a

discrete sequence of external input events: a sequence be-
cause only a single input event is handled at a time; dis-
crete because reactions to events are guaranteed to execute
in bounded time (to be discussed further). The execution
model for a program in Céu is as follows:

1. The program initiates the “boot reaction” in a single
trail.

2. Active trails execute until they await or terminate.
This step is named a reaction chain, and always runs
in bounded time.

3. The program goes idle and the environment takes con-
trol.

4. On the occurrence of a new external input event, the
environment awakes all trails awaiting that event. It
then goes to step 2.

The synchronous execution model of Céu is based on
the hypothesis that internal reactions run infinitely faster in
comparison to the rate of external events [29]. Conceptually,
a program takes no time on step 2 and is always idle on step
3. In practice, if a new external input event occurs while a

reaction chain is running (step 2), it is enqueued to run in
the next reaction. When multiple trails are active at a time
(i.e. awaking on the same event), Céu schedules them in the
order they appear in the program source code. This policy is
somewhat arbitrary, but provides a priority scheme for trails,
and also ensures deterministic and reproducible execution
for programs, which is important for simulation purposes.
A reaction chain may also contain emissions and reactions
to internal events, which are presented in Section 3.6.

The blinking LED of Figure 1 in Céu illustrates how
the synchronous model leads to a simpler reasoning about
concurrency aspects in comparison to the other implemen-
tations. As reaction times are assumed to be instantaneous,
the blinking loop takes exactly 2 + 1 seconds. Hence, after
20 iterations, the accumulated time becomes 1 minute and
the loop terminates concurrently with the 1-minute timeout
in parallel. Given that the loop appears first, it will restart
and turn on the LED for the last time. Then, the 1-minute
timeout is scheduled, aborts the whole par/or, and turns off
the LED. This reasoning is actually reproducible in practice,
and the LED will light on exactly 21 times for every single
execution of this program. First-class timers are discussed
in more depth in Section 3.5. Note that this static control
inference cannot be easily extracted from the other imple-
mentations of Figure 1, specially considering the presence of
two different timers.

The behavior for the LED timeout just described denotes
a weak abortion, because the blinking trail had the chance
to execute for one last time. By inverting the two trails,
the par/or would terminate immediately, and the blinking
trail would not execute, denoting a strong abortion [5]. Céu
not only provides means to choose between weak and strong
abortion, but also detects the two conflicting possibilities
and issues a warning at compile time (to be discussed in
Section 3.2).

Reaction chains should run in bounded time to guaran-
tee that programs are responsive and can handle upcoming
input events from the environment. Similarly to Esterel [8],
Céu requires that each possible path in a loop body con-
tains at least one await or break statement, thus ensuring
that loops never run in unbounded time. Consider the ex-
amples that follow:

loop do
if <cond> then

await A;
end

end

loop do
if <cond> then

await A;
else

break;
end

end

The first example is refused at compile time, because
the if true branch may never execute, resulting in a tight
loop (i.e., an infinite loop that does not await). The second
variation is accepted, because for every iteration, the loop
either breaks or awaits.

Enforcing bounded execution makes Céu inappropriate
for algorithmic-intensive applications that require unrestrict-
ed loops (e.g., cryptography, image processing). However,
Céu is designed for control-intensive applications and we
believe this is a reasonable price to pay in order to achieve
higher reliability.

3.2 Shared-memory Concurrency
WSN applications make extensive use of shared memory,

such as for handling memory pools, message queues, routing
tables, etc. Hence, an important goal of Céu is to ensure a
reliable execution for concurrent programs that share mem-
ory. Concurrency in Céu is characterized when two or more
trail segments in parallel execute during the same reaction
chain. A trail segment is a sequence of statements followed
by an await (or termination).

In the first example that follows, the two assignments to
x run concurrently, because both trail segments are spawned
during the same reaction chain. However, in the second ex-
ample, the assignments to y are never concurrent, because
A and B are different external events and the respective seg-
ments can never execute during the same reaction chain:

var int x=1;
par/and do

x = x + 1;
with

x = x ∗ 2;
end

input void A, B;
var int y=0;
par/and do

await A;
y = y + 1;

with
await B;
y = y ∗ 2;

end

Note that although the variable x is accessed concur-
rently in the first example, the assignments are both atomic
and deterministic3: the final value of x is always 4 (i.e.
(1 + 1) ∗ 2)). However, programs with concurrent accesses
to shared memory are suspicious, because an apparently in-
nocuous reordering of trails modifies the semantics of the
program; for instance, the previous example would yield 3
with the trails reordered, i.e., (1 ∗ 2 + 1).

We developed a compile-time temporal analysis for Céu
in order to detect concurrent accesses to shared variables, as
follows: if a variable is written in a trail segment, then a con-
current trail segment cannot read or write to that variable,
nor dereference a pointer of that variable type. An analo-
gous policy is applied for pointers vs variables and pointers
vs pointers. The algorithm for the analysis holds the set
of all events in preceding await statements for each variable
access. Then, the sets for all accesses in parallel trails are
compared to assert that no events are shared among them.
Otherwise the compiler warns about the suspicious accesses.

Consider the three examples in Figure 4. The first code
is detected as suspicious, because the assignments to x and p

(lines 11 and 14) may be concurrent in a reaction to A (lines 6
and 13); In the second code, although two of the assignments
to y occur in reactions to A (lines 4-5 and 10-11), they are
not in parallel trails and, hence, are safe. The third code
illustrates a false positive in our algorithm: the assignments
to z in parallel can only occur in different reactions to A (lines
5 and 9), as the second assignment awaits two occurrences
of A, while the first trail assigns and terminates in the first
occurrence.

Conflicting weak and strong abortions, as introduced in
Section 3.1, are also detected with the proposed algorithm.
Besides accesses to variables, the algorithm also keeps track
of trail terminations inside a par/or, issuing a warning when
they can occur concurrently. This way, the programmer can

3Remember from Section 3.1 that trails are scheduled in the
order they appear and run to completion (i.e., until they
await or terminate).

1 input void A;
2 var int x;
3 var int∗ p;
4 par/or do
5 loop do
6 await A;
7 if <cnd> then
8 break;
9 end

10 end
11 x = 1;
12 with
13 await A;
14 ∗p = 2;
15 end

input void A,B;
var int y;
par/or do
await A;
y = 1;

with
await B;
y = 2;

end
await A;
y = 3;

input void A;
var int z;
par/and do
await A;
z = 1;

with
await A;
await A;
z = 2;

end

Figure 4: Automatic detection for concurrent ac-
cesses to shared memory.
The first example is suspicious because x and p can be

accessed concurrently (lines 11 and 14). The second ex-

ample is safe because accesses to y can only occur in

sequence. The third example illustrates a false positive

in our algorithm.

be aware about the conflict existence and choose between
weak or strong abortion.

The proposed static analysis is only possible due to the
uniqueness of external events within reactions and support
for syntactic compositions, which provide precise informa-
tion about the flow of trails (i.e., which run in parallel and
which are guaranteed to be in sequence). Such precious
information cannot be inferred when the program relies on
state variables to handle control, as typically occurs in event-
driven systems.

We also implemented an alternative algorithm that con-
verts a Céu program into a deterministic finite automata.
The resulting DFA represents all possible points a program
can reach during runtime and, hence, eliminates all false pos-
itives in the static analysis. However, the algorithm is ex-
ponential and may be impractical in some situations. That
being said, the simpler static analysis does not detect false
positives in any of the implementations to be presented in
Section 4 and executes in negligible time, suggesting that
the algorithm is practical.

3.3 Integration with C
Most existing operating systems and libraries for WSNs

are based on C, given its omnipresence and level of portabil-
ity across embedded platforms. Therefore, it is fundamental
that programs in Céu have access to all functionality the
underlying platform already provides.

In Céu, any identifier prefixed with an underscore is
repassed as is to the C compiler that generates the final
binary. Therefore, access to C is seamless and, more impor-
tantly, easily trackable. Céu also supports native blocks to
define new symbols in C, as Figure 5 illustrates. Code in-
side “native do ... end” is also repassed to the C compiler
for the final generation phase. As Céu mimics the type sys-
tem of C, values can be easily passed back and forth between
the languages.

C calls are fully integrated with the static analysis pre-
sented in Section 3.2 and cannot appear in concurrent trails
segments, because Céu has no knowledge about their side

1 native do
2 #include <assert.h>
3 int I = 0;
4 int inc (int i) {
5 return I+i;
6 }
7 end
8 native _assert(), _inc(), _I;
9 _assert(_inc(_I));

Figure 5: A Céu program with embedded C defini-
tions. The globals I and inc are defined in the native

block (lines 3 and 4-6), and are imported by Céu in line

8. C symbols must be prefixed with an underline to be

used in Céu (line 9).

1 pure _abs(); // side−effect free
2 safe _Leds_led0Toggle with
3 _Leds_led1Toggle; // led0 vs led1 is safe
4 var int∗ buf1, buf2; // point to dif. bufs
5 safe buf1 with buf2; // buf1 vs buf2 is safe

Figure 6: Annotations for C functions.
Function abs is side-effect free and can be concurrent

with any other function. The functions _Leds_led0Toggle

and _Leds_led1Toggle can execute concurrently. The vari-

ables buf1 and buf2 can be accessed concurrently (anno-

tations are also applied to variables).

effects. Also, passing variables as parameters counts as read
accesses to them, while passing pointers counts as write ac-
cesses to those types (because functions may dereference and
assign to them). This policy increases considerably the num-
ber of false positives in the analysis, given that many func-
tions can actually be safely called concurrently. Therefore,
Céu supports explicit syntactic annotations to relax the pol-
icy. They are illustrated in Figure 6, and are described as
follows:

• The pure modifier declares a C function that does not
cause side effects, allowing it to be called concurrently
with any other function in the program.

• The safe modifier declares a pair of variables or func-
tions that do not affect each other, allowing them to
be used concurrently.

Céu does not extend the bounded execution analysis to
C function calls. On the one hand, C calls must be care-
fully analyzed in order to keep programs responsive. On the
other hand, they also provide means to circumvent the rigor
of Céu in a well-marked way (the special underscore syn-
tax). Evidently, programs should only resort to C for simple
operations that can be assumed to be instantaneous, such as
non-blocking I/O and struct accessors, but never for control
purposes.

3.4 Local Scopes and Finalization
Local declarations for variables bring definitions closer

to their use in programs, increasing the readability and con-
tainment of code. Another benefit, specially in the context
of WSNs, is that blocks in sequence can share the same mem-
ory space, as they can never be active at the same time. The
syntactic compositions of trails allows the Céu compiler to

1 <...>
2 par/or do
3 <...> // stops the protocol or radio
4 with
5 <...> // neighbor request
6 with
7 loop do
8 par/or do
9 <...> // resends request

10 with
11 await (dt) ms; // beacon timer expired
12 var _message_t msg;
13 payload = _AMSend_getPayload(&msg,...);
14 <prepare the message>
15 _AMSend_send(..., &msg, ...);
16 await CTP_ROUTE_RADIO_SENDDONE;
17 end
18 end
19 end

Figure 7: Unsafe use of local references.
The period in which the radio driver manipulates the ref-

erence to msg passed by _AMSend_send (line 15) may outlive

the lifetime of the variable scope, leading to an undefined

behavior in the program.

statically allocate and optimize memory usage: memory for
trails in parallel must coexist; trails that follow rejoin points
reuse all memory.

However, the unrestricted use of locals may introduce
subtle bugs when dealing with pointers and C functions in-
terfacing with device drivers. Given that hardware compo-
nents outlive the scope of any local variable, a pointer passed
as parameter to a system call may be held by a device driver
for longer than the scope of the referred variable, leading to
a dangling pointer.

The code snippet in Figure 7 was extracted from our im-
plementation of the CTP collection protocol [32]. The pro-
tocol contains a complex control hierarchy in which the trail
that sends beacon frames (lines 11-16) may be aborted from
multiple par/or trails (all collapsed in lines 3, 5, and 9). Now,
consider the following behavior: The sending trail awakes
from a beacon timer (line 11). Then, the local message
buffer (line 12) is prepared and passed to the radio driver
(line 13-15). While waiting for an acknowledgment from the
driver (line 16), the protocol receives a request to stop (line
3) that aborts the sending trail and makes the local buffer go
out of scope. As the radio driver runs asynchronously and
still holds the reference to the message (passed in line 15),
it may manipulate the dangling pointer. A possible solution
is to cancel the message send in all trails that can abort
the sending trail (through a call to AMSend_cancel). How-
ever, this would require expanding the scope of the message
buffer, adding a state variable to keep track of the sending
status, and duplicating the code, increasing considerably the
complexity of the application.

Céu provides a safer and simpler solution with the fol-
lowing rule: C calls that receive pointers require a finaliza-
tion block to safely handle referred variables going out of
scope. This rule prevents the previous example to compile,
forcing the relevant parts to be rewritten as shown in Fig-
ure 8.

First, the nohold annotation informs the compiler that

1 native nohold _AMSend_getPayload();
2 <...>
3 var _message_t msg;
4 <...>
5 finalize
6 _AMSend_send(..., &msg, ...);
7 with
8 _AMSend_cancel(&msg);
9 end

10 <...>

Figure 8: Safe use of local references.
The call to _AMSend_send is finalized with the call to _AM-

Send_cancel. The call to _AMSend_getPayload does not re-

quire finalization because it does not hold pointers.

the referred C function does not require finalization code
because it does not hold references (line 1). Second, the fi-

nalize construct (lines 5-9) automatically executes the with

clause (line 8) when the variable passed as parameter in the
finalize clause (line 6) goes out of scope. Therefore, re-
gardless of how the sending trail is aborted, the finalization
code politely requests the OS to cancel the ongoing send
operation (line 8), releasing the reference held by the radio
driver.

All network protocols that we implemented in Céu use
this finalization mechanism when sending messages. We
looked through the TinyOS codebase and realized that among
the 349 calls to the AMSend.send interface, only 49 have cor-
responding AMSend.cancel calls. We verified that many of
these sends should indeed have matching cancels because the
component provides a stop interface for clients. In nesC, be-
cause message buffers are usually globals, a send that is not
properly canceled typically results in an extra packet trans-
mission that wastes battery. However, in the presence of
dynamic message pools, a misbehaving program can change
the contents of a (not freed) message that is actually about
to be transmitted, leading to a subtle bug that is hard to
track.

The finalization mechanism is fundamental to preserve
the orthogonality of the par/or construct, i.e., an aborted
trail does not require clean up code outside it.

3.5 First-class Timers
Activities that involve reactions to wall-clock time4 ap-

pear in typical patterns of WSNs, such as timeouts and sen-
sor sampling. However, support for wall-clock time is some-
what low-level in existing languages, usually through timer
callbacks or blocking calls with “sleep”. In any concrete sys-
tem implementation, however, a requested timeout does not
expire precisely with zero-delay, a fact that is usually ig-
nored in the development process. We define the difference
between the requested timeout and the actual expiring time
as the residual delta time (delta). Without explicit manipu-
lation, the recurrent use of timed activities in sequence (or
in a loop) may accumulate a considerable amount of deltas
that can lead to incorrect behavior in programs.

The await statement of Céu supports wall-clock time
and handles deltas automatically, resulting in more robust

4By wall-clock time we mean the passage of time from the
real world, measured in hours, minutes, etc.

applications. As an example, consider the following pro-
gram:

var int v;
await 10ms;
v = 1;
await 1ms;
v = 2;

Suppose that after the first await request, the underly-
ing system gets busy and takes 15ms to check for expiring
awaits. The Céu scheduler will notice that the await 10ms

has not only already expired, but delayed with delta=5ms.
Then, the awaiting trail awakes, sets v=1, and invokes await

1ms. As the current delta is higher than the requested time-
out (i.e. 5ms > 1ms), the trail is rescheduled for execution,
now with delta=4ms.

Céu also takes into account the fact that time is a physi-
cal quantity that can be added and compared. For instance,
for the program that follows, although the scheduler cannot
guarantee that the first trail terminates exactly in 11ms, it
can at least ensure that the program always terminates with
v=1:

par/or do
await 10ms;
<...> // any non−awaiting sequence
await 1ms;
v = 1;

with
await 12ms;
v = 2;

end

Remember that any non-awaiting sequence is considered
to take no time in the synchronous model. Hence, the first
trail is guaranteed to terminate before the second trail, be-
cause 10 + 1 < 12. A similar program in a language without
first-class support for timers, would depend on the execution
timings for the code marked as <...>, making the reasoning
about the execution behavior more difficult. The impor-
tance of synchronized timers becomes more evident in the
presence of loops, like in the introductory example of Fig-
ure 1 in which the first trail is guaranteed to execute exactly
21 times before being aborted by the timer in the second
trail.

Note that in extreme scenarios, small timers in sequence
(or in a loop) may never “catch up” with the external clock,
resulting in a delta that increases indefinitely. To deal with
such cases, the current delta is always returned from an await

and can be used in programs:

loop do
var int late = await 1ms;
if late < 1000 then

<...> // normal behavior
else

<...> // abnormal behavior
end

end

3.6 Internal Events
Céu provides internal events as a signaling mechanism

among parallel trails: a trail that invokes await e can be
awoken in the future by a trail that invokes emit e.

In contrast with external events, which are handled in a
queue, internal events follow a stack-based policy. In prac-
tical terms, this means that a trail that emits an internal

1 event int send;
2 par do
3 <...>
4 await DRIP_KEY;
5 emit send => 0; // broadcast data
6 with
7 <...>
8 await DRIP_TRICKLE;
9 emit send => 1; // broadcast meta

10 with
11 <...>
12 var _message_t∗ msg = await DRIP_DATA_RECV;
13 <...>
14 emit send => 0; // broadcasts data
15 with
16 loop do
17 var int isMeta = await send;
18 <...> // sends data or metadata
19 end // (contains awaits)
20 end

Figure 9: A loop that awaits an internal event can
emulate a subroutine.
The send “subroutine” (lines 16-19) is invoked from three

different parts of the program (lines 5, 9, and 14).

event pauses until all trails awaiting that event completely
react to it, continuing to execute afterwards. Another dif-
ference to external events is that internal events occur in
the same reaction chain they are emitted, i.e., an emit in-
stantaneously matches and awakes all corresponding await

statements that were invoked in previous reaction chains5.
The stacked execution for internal events introduces sup-

port for a restricted form of subroutines that cannot express
recursive definitions (either directly or indirectly), resulting
in bounded memory and execution time. Figure 9 shows
how the dissemination trail from our implementation of the
DRIP protocol simulates a subroutine (lines 16-19) and can
be invoked from different parts of the program. The await

send (line 17) represents the function entry point, which is
surrounded by a loop so that it can be invoked repeatedly.
The DRIP protocol distinguishes data and metadata packets
and disseminates one or the other based on a request param-
eter. For instance, when the trickle timer expires (line 8),
the program invokes emit send=>1 (line 9), which awakes the
dissemination trail (line 17) and starts sending a metadata
packet (collapsed in line 18). Note that if the trail is already
sending a packet, then the emit will not match the await and
will have no effect (the nesC implementation uses an explicit
state variable to attain this same behavior).

Internal events also provide means for describing more
elaborate control structures, such as exceptions. The code
in Figure 10 handles incoming packets for the CC2420 radio
driver in a loop. After awaking from a new packet notifica-
tion (line 4), the program enters in a sequence to read the
bytes from the hardware buffer (lines 8-16). If any anomaly
is found on the received data, the program invokes emit next

to discard the current packet (lines 10 and 14). Given the
execution semantics of internal events, the emit continuation
is stacked and awakes the trail in line 6, which terminates
and aborts the whole par/or in which the emitting trail is

5In order to ensure bounded reactions, an await statement
cannot awake in the same reaction chain it is invoked.

1 <...>
2 event void next;
3 loop do
4 await CC_RECV_FIFOP;
5 par/or do
6 await next;
7 with
8 <...> // (contains awaits)
9 if rxFrameLength > _MAC_PACKET_SIZE then

10 emit next; // packet is too large
11 end
12 <...> // (contains awaits)
13 if rxFrameLength == 0 then
14 emit next; // packet is empty
15 end
16 <...> // (contains awaits)
17 end
18 end

Figure 10: Exception handling in Céu.
The emit’s in lines 10 and 14 raise an exception to be

caught by the await in line 6. The emit continuations are

discarded given that the surrounding par/or is aborted.

paused. Therefore, the continuation for the emit never re-
sumes, and the loop restarts to await a next packet.

3.7 Differences to Esterel
Esterel first introduced the imperative synchronous pro-

gramming model and influenced other synchronous WSNs
languages [21, 22]. Based on the discussion about our design
in the previous sections, we next summarize the main dif-
ferences between Céu and Esterel (and derived languages).

A primary goal of Céu is to support reliable shared-
memory and C concurrency on top of a deterministic sched-
uler and effective safety analysis (Sections 3.1, 3.2 and 3.3).
Esterel, however, does not support shared-memory concur-
rency because“if a variable is written by some thread, then it
can neither be read nor be written by concurrent threads” [6].
Furthermore, Esterel is deterministic only with respect to
reactive control, i.e., “the same sequence of inputs always
produces the same sequence of outputs” [6]. However, the
order of execution for side-effect operations within a reac-
tion is non-deterministic: “if there is no control dependency
and no signal dependency, as in ”call f1() || call f2()”,
the order is unspecified and it would be an error to rely on
it” [6].

In Esterel, an external reaction can carry simultaneous
signals, while in Céu, a single event defines a reaction. The
notion of time in Esterel is similar to that of digital circuits,
in which multiple wires (signals) can be queried for their
status (present or absent) on each clock tick. Céu more
closely reflects event-driven programming, in which occur-
ring events are sequentially and uninterruptedly handled by
the program. This design decision is fundamental for the
temporal analysis of Section 3.2.

Esterel makes no semantic distinctions between internal
and external signals, both having only the notion of presence
or absence during the entire reaction [5]. In Céu, however,
internal and external events behave differently:

• External events can be emitted only by the environ-
ment, while internal events, only by the program.

• A single external event can be active at a time, while
multiple internal events can coexist within a reaction.

• External events are handled in a queue, while internal
events follow a stacked execution policy.

In particular, the stack-based execution for internal events
in Céu enables a limited but safe form of subroutines and an
exception-handling mechanism, as discussed in Section 3.6.

Apart from these fundamental differences to Esterel, Céu
introduces first-class timers with a convenient syntax and
predictable behavior (Section 3.5), and also finalization blocks
to safely handle memory going out of scope (Section 3.4).

4. EVALUATION
In this section we present a quantitative evaluation of

Céu. Our assumption is that when considering Céu for
system-level development, programmers would face a trade-
off between code simplicity and efficient resource usage. For
this reason, we evaluate source code size, memory usage,
and event-handling responsiveness for a number of stan-
dardized protocols in TinyOS [32]. We use code size as a
metric for code simplicity, complemented with a qualitative
discussion regarding the eradication of explicit state vari-
ables for control purposes. By responsiveness, we mean how
quickly programs react to incoming events (to avoid missing
them). Memory and responsiveness are important resource-
efficiency measures to evaluate the negative impact with the
adoption of a higher-level language. In particular, respon-
siveness (instead of total CPU cycles) is a critical aspect in
reactive systems, specially those with a synchronous execu-
tion semantics where preemption is forbidden. We also dis-
cuss battery consumption when evaluating responsiveness.

Our criteria to choose which language and applications
to compare with Céu are based on the following guidelines:

• Compare to a resource-efficient programming language
in terms of memory and speed.

• Compare to the best available codebase, with proved
stability and quality.

• Compare relevant protocols in the context of WSNs.
• Compare the control-based aspects of applications, as

Céu is designed for this purpose.
• Compare the radio behavior, the most critical and

battery-drainer component in WSNs.
Based on these criteria, we chose nesC as the language to
compare, given its resource efficiency and high-quality code-
base6. In addition, nesC is used as benchmark in many sys-
tems related to Céu [12, 21, 4, 3]. In particular, the work on
Protothreads [12] is a strong reference in the WSN commu-
nity, and we adhere to similar choices in our evaluation. All
chosen applications are reference implementations of open
standards in the TinyOS community [32]: the receiving com-
ponent of the CC2420 radio driver; the Trickle timer; the
SRP routing protocol; the DRIP dissemination protocol;
and the routing component of the CTP collection protocol.
They are representative of the realm of system-level develop-
ment for WSNs, which mostly consists of network protocols
and low-level system utilities: a radio driver is mandatory in
the context of WSNs; the trickle timer is used as a service by
other important protocols [26, 18]; routing, dissemination,
and collection are the most common classes of protocols in
WSNs.

6TinyOS repository: http://github.com/tinyos/
tinyos-release/

Code size Céu features Memory usage

Component Application Language tokens
Céu
vs

nesC

globals local
data

variables

internal
events

first-
class
timers

parallel
comp.

max.
number
or trails

ROM
Céu
vs

nesC
RAM

Céu
vs

nesCstate data

CTP TestNetwork
nesC 383

-23%
4 5

2;5;6 2 3 5 8
18896

9%
1295

2%
Céu 295 - 2 20542 1319

SRP TestSrp
nesC 418

-30%
2 8

2;2;2;- 1 - 1 3
12266

5%
1252

-3%
Céu 291 - 4 12836 1215

DRIP TestDissemination
nesC 342

-25%
2 1

4 1 - 1 5
12708

8%
393

4%
Céu 258 - - 13726 407

CC2420 RadioCountToLeds
nesC 519

-27%
1 2

3;3 1 - 2 4
10546

2%
283

3%
Céu 380 - - 10782 291

Trickle TestTrickle
nesC 477

-69%
2 2

2;5 - 2 3 6
3504

22%
72

22%
Céu 149 - - 4284 88

Figure 11: Comparison between Céu and nesC for the implemented applications.
The column group Code size compares the number of language tokens and global variables used in the sources; the

group Céu features shows the number of times each functionality is used in each application; the group Memory usage

compares ROM and RAM consumption.

We took advantage of the component-based model of
TinyOS and all of our implementations use the same in-
terface provided by the nesC counterpart. This approach
has two advantages: first, we could reuse existing applica-
tions in the TinyOS repository to test the protocols (e.g.
RadioCountToLeds or TestNetwork); second, sticking to the
same interface forced us to retain the original architecture
and functionality, which also strengths our evaluation.

Figure 11 shows the comparison for Code size and Mem-
ory usage between the implementations in nesC and Céu.
For memory usage, detailed in Section 4.2, we compare the
binary code size and required RAM. For code size, detailed
in Section 4.1, we compare the number of tokens used in the
source code. For responsiveness, detailed in Section 4.3, we
evaluate the capacity to promptly acknowledge radio packet
arrivals in the CC2420 driver.

4.1 Code size
We use two metrics to compare code complexity between

the implementations in Céu and nesC : the number of lan-
guage tokens and global variables used in the source code.
Similarly to comparisons in related work [4, 12], we did not
consider code shared between the nesC and Céu implemen-
tations, as they do not represent control functionality and
pose no challenges regarding concurrency aspects (i.e. they
are basically predicates, struct accessors, etc.).

Note that the languages share the core syntax for expres-
sions, calls, and field accessors (based on C), and we removed
all verbose annotations from the nesC implementations for
a fair comparison (e.g. signal, call, command, etc.). The col-
umn Code size in Figure 11 shows a considerable decrease
in the number of tokens for all implementations (around at
least 25%).

Regarding the metrics for number of globals, we catego-
rized them in state and data variables.

State variables are used as a mechanism to control the

application flow (on the lack of a better primitive). Keeping
track of them is often regarded as a difficult task, hence,
reduction of state variables has already been proposed as
a metric of code complexity in a related work [12]. The
implementations in Céu, not only reduced, but completely
eliminated state variables, given that all control patterns
could be expressed with hierarchical compositions of activi-
ties assisted by internal-event communication.

Data variables in WSN programs usually hold message
buffers and protocol parameters (e.g. sequence numbers,
timer intervals, etc.). In event-driven systems, given that
stacks are not retained across reactions to the environment,
all data variables must be global7. Although the use of local
variables does not imply in reduction of lines of code (or to-
kens), the smallest the scope of a variable, the more readable
and less susceptible to bugs the program becomes. In the
Céu implementations, most variables could be nested to a
deeper scope. The column local data variables in Figure 11
shows the depth of each new local variable in Céu that was
originally a global in nesC (e.g. “2;5;6” represents globals
that became locals inside blocks in the 2nd, 5th, and 6th
depth level).

The columns under Céu features in Figure 11 point out
how many times each functionality has been used in the
implementations in Céu, helping to identify where the re-
duction in source code size comes from. As an example,
Trickle uses 2 timers and 3 parallel compositions, resulting
in at most 6 trails active at the same time. The use of six
coexisting trails for such a small application is justified by
its highly control-intensive nature, and the almost 70% code
reduction illustrates the huge gains with Céu in this context.

7In the case of nesC, we refer to globals as all variables de-
fined in the top-level of a component implementation block,
which are visible to all functions inside it.

4.2 Memory Usage
Memory is a scarce resource in motes and it is important

that Céu does not pose significant overheads in comparison
to nesC. We evaluate ROM and RAM consumption by using
available testing applications for the protocols in the TinyOS
repository. Then, we compiled each application twice: first
with the original component in nesC, and then with the new
component in Céu. Column Memory usage in Figure 11
shows the consumption of ROM and RAM for the generated
applications. With the exception of the Trickle timer, the
results in Céu are below 10% in ROM and 5% in RAM, in
comparison with the implementations in nesC. Our method
and results are similar to those for Protothreads [12], which
is an actively supported programming system for the Contiki
OS [11].

Note that the results for Trickle illustrate the footprint
of the runtime of Céu. The RAM overhead of 22% actu-
ally corresponds to only 16 bytes: 1 byte for each of the
maximum 6 concurrent trails, and 10 bytes to handle syn-
chronization among timers. As the complexity of the appli-
cation grows, this basic overhead tends to become irrelevant.
The SRP implementation shows a decrease in RAM, which
comes from the internal communication mechanism of Céu
that could eliminate a queue. Note that both TinyOS and
Céu define functions to manipulate queues for timers and
tasks (or trails). Hence, as our implementations use compo-
nents in the two systems, we pay an extra overhead in ROM
for all applications.

We focused most of the language implementation efforts
on RAM optimization, as it has been historically considered
more scarce than ROM [25]. Although we have achieved
competitive results, we expected more gains with memory
reuse for blocks with locals in sequence, because it is some-
thing that cannot be done automatically by the nesC com-
piler. However, we analyzed each application and it turned
out that we had no gains at all from blocks in sequence.
Our conclusion is that sequential patterns in WSN applica-
tions come either from split-phase operations, which always
require memory to be preserved; or from loops, which do
reuse all memory, but in the same way that event-driven
systems do.

4.3 Responsiveness
A known limitation of languages with synchronous and

cooperative execution is that they cannot guarantee hard
real-time deadlines [10, 23]. For instance, the rigorous syn-
chronous semantics of Céu forbids non-deterministic pre-
emption to serve high priority trails. Even though Céu en-
sures bounded execution for reactions, this guarantee is not
extended to C function calls, which are usually preferred
for executing long computations (due to performance and
existing codebase). The implementation of a radio driver
purely in Céu raises questions regarding its responsiveness,
therefore, we conduct two experiments in this section. The
experiments use the COOJA simulator [13] running images
compiled to TelosB motes.

In the first experiment, we “stress-test” the radio driver
to compare its performance in the Céu and nesC imple-
mentations. We use 10 motes that broadcast 100 consec-
utive packets of 20 bytes to a mote that runs a periodic
time-consuming activity. The receiving handler simply adds
the value of each received byte to a global counter. The
sending rate of each mote is 200ms (leading to a receiving

Figure 12: Percentage of received packets depending
on the duration of the lengthy operation.
Note the logarithmic scale on the x -axis. The packet

arrival frequency is 20ms. The operation frequency is

140ms. In the (left) green area, Céu performs similarly

to nesC. The (middle) gray area represents the region in

which nesC is still responsive. In the (right) red area,

both implementations become unresponsive (i.e. over

5% packet losses).

Operation Duration

Block cipher [20, 16] 1ms
MD5 hash [16] 3ms
Wavelet decomposition [34] 6ms

SHA-1 hash [16] 8ms
RLE compression [31] 70ms
BWT compression [31] 300ms
Image processing [30] 50–1000ms

Table 1: Durations for lengthy operations is WSNs.
Céu can perform the operations in the green rows in

real-time and under high loads.

average of 50 packets per second considering the 10 motes),
and the time-consuming activity in the receiving mote runs
every 140ms. Note that these numbers are much above typ-
ical WSN applications: 10 neighbors characterizes a dense
topology; 20 bytes plus header data is close to the default
limit for a TinyOS packet; and 5 messages per second is a
high frequency on networks that are supposedly idle most of
the time. We run the experiment varying the duration of the
lengthy activity from 1 to 128 milliseconds, covering a wide
set of applications (summarized in Table 1). We assume
that the lengthy operation is implemented directly in C and
cannot be easily split in smaller operations (e.g., recursive
algorithms [10, 23]). So, we simulated them with simple
busy waits that would keep the driver in Céu unresponsive
during that period.

Figure 12 shows the percentage of handled packets in
Céu and nesC for each duration. Starting from the duration
of 6ms, the responsiveness of Céu degrades in comparison to
nesC (5% of packet loss). The nesC driver starts to become
unresponsive with operations that take 32ms, which is a sim-
ilar conclusion taken from TOSThreads experiments with
the same hardware [23]. Table 1 shows the duration of some
lengthy operations specifically designed for WSNs found in
the literature. The operations in the group with timings up
to 6ms could be used with real-time responsiveness in Céu
(considering the proposed high-load parameters).

Although we did not perform specific tests to evaluate

Figure 13: Percentage of received packets depending
on the sending frequency.
Each received packet is tied to a 8-ms operation. Céu is

100% responsive up to a frequency of 30ms per packet.

CPU usage and battery consumption, the experiment sug-
gests that the overhead of Céu over nesC is very low. When
the radio driver is the only running activity (column 1ms,
which is the same result for an addition test we did for 0ms),
both implementations loose packets with a difference under
3 percentage points. This difference remains the same up to
4-ms activities, hence, the observed degradation for longer
operations is only due to the lack of preemption, not execu-
tion speed. Note that for lengthy operations implemented
in C, there is no runtime or battery consumption overhead
at all, as the generated code is the same for Céu and nesC.

In the second experiment, instead of running a long ac-
tivity in parallel, we use a 8-ms operation tied in sequence
with every packet arrival to simulate an activity such as en-
cryption. We now run the experiment varying the rate in
the 10 sending motes from 600ms to 100ms (i.e., 60ms to
10ms receiving rate if we consider the 10 motes). Figure 13
shows the percentage of handled packets in Céu and nesC
for each rate of message arrival. The results show that Céu
is 100% responsive up to frequency of 33 packets per second,
while nesC up to 50 packets.

The overall conclusion from the experiments is that the
radio driver in Céu performs as well as the original driver in
nesC under high loads for programs with lengthy operations
of up to 4ms, which is a reasonable time for control execution
and simple processing. The range between 6ms and 16ms of-
fers opportunities for performing more complex operations,
but also requires careful analysis and testing. For instance,
the last experiment shows that the Céu driver can process
in real time messages arriving every 33ms in sequence with
a 8-ms operation.

Note that our experiments represent a “stress-test” sce-
nario that is atypical to WSNs. Protocols commonly use
longer intervals between message transmissions together with
mechanisms to avoid contention, such as randomized timers
[26, 18]. Furthermore, WSNs are not subject to strict dead-
lines, being not classified as hard real-time systems [25].

4.4 Discussion
Céu targets control-intensive applications and provides

abstractions that can express program flow specifications
concisely. Our evaluation shows a considerable decrease
in code size that comes from logical compositions of trails
through the par/or and par/and constructs. They handle
start-up and termination for trails seamlessly without extra
programming efforts. We believe that the small overhead in
memory qualifies Céu as a realistic option for constrained

devices. Furthermore, our broad safety analysis, encompass-
ing all proposed concurrency mechanisms, ensures that the
high degree of concurrency in WSNs does not pose safety
threats to applications. As a summary, the following safety
properties hold for all programs that successfully compile in
Céu:

• Time-bounded reactions to the environment (Sections
3.1 and 3.6).

• Reliable weak and strong abortion among activities
(Sections 3.1 and 3.2).

• No concurrency in accesses to shared variables (Sec-
tion 3.2).

• No concurrency in system calls sharing a resource (Sec-
tion 3.3).

• Finalization for blocks going out of scope (Section 3.4).
• Auto-adjustment for timers in sequence (Section 3.5).
• Synchronization for timers in parallel (Section 3.5).
These properties are desirable in any application and

are guaranteed as preconditions in Céu by design. Ensur-
ing or even extracting these properties from less restricted
languages requires significant manual analysis.

Even though the achieved expressiveness and overhead
of Céu meet the requirements of WSNs, its design imposes
two inherent limitations: the lack of dynamic loading which
would forbid the static analysis, and the lack of hard real-
time guarantees.

Regarding the first limitation, dynamic features are al-
ready discouraged due to resource constraints. For instance,
even object-oriented languages targeting WSNs forbid dy-
namic allocation [3, 33]. Given that we focus on system-level
development which does not require rich dynamic function-
ality, we leave for a future work an in-depth discussion about
this issue. Note that queues, stacks, and other simple dy-
namic data structures for handling message packets can be
made available to Céu through its safe integration with C.

To deal with the second limitation, which can be crit-
ical in the presence of lengthy computations, we can con-
sider the following approaches: (1) manually placing pause

statements in unbounded loops; (2) integrating Céu with
a preemptive system. The first option requires the lengthy
operations to be rewritten in Céu using pause statements so
that other trails can be interleaved with them. This option
is the one recommended in many related work that provide
a similar cooperative primitive (e.g. pause [6], PT_YIELD [12],
yield [21], post [17]). Considering the second option, Céu
and preemptive threads are not mutually exclusive. For in-
stance, TOSThreads [23] proposes a message-based integra-
tion with nesC that is safe and matches the semantics of
Céu external events.

5. RELATED WORK
Céu is strongly influenced by Esterel [8] in its support for

compositions and reactivity to events. However, Esterel is
focused only on control and delegates to programmers most
efforts to deal with data and low-level access to the under-
lying platform. For instance, read/write to shared memory
among threads is forbidden, and avoiding conflicts between
concurrent C calls is left to programmers [6]. Céu deals with
shared memory and C integration at its very core, with ad-
ditional support for finalization, conflict annotations, and a
static analysis that permeates all languages aspects. This
way, Céu could not be designed easily as pure extensions to
Esterel.

Language Complexity Safety

name year 1: sequential
execution

2: local
variables

3: parallel
compositions

4: internal
events

5: deterministic
execution

6: bounded
execution

7: safe shared
memory

8: finalization
blocks

Preemptive many ✔ ✔ ✔ rt

nesC [17] 2003 ✔ async ✔

OSM [22] 2005 ✔ ✔ ✔

Protothreads [12] 2006 ✔ ✔

TinyThreads [27] 2006 ✔ ✔ ✔

Sol [21] 2007 ✔ ✔ ✔ ✔ ✔

FlowTalk [3] 2011 ✔ ✔

Ocram [4] 2013 ✔ ✔ ✔

Céu ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Figure 14: Table of features found work related to Céu.
The languages are sorted by the date they first appeared in a publication. A gray background indicates where the

feature first appeared (or a contribution if it appears in a Céu cell).

Figure 14 presents an overview of work related to Céu,
pointing out supported features which are grouped by those
that reduce complexity and those that increase safety. The
line Preemptive represents languages with preemptive schedul-
ing [7, 23], which are summarized further. The remaining
lines enumerate languages with goals similar to those of Céu
that follow a synchronous or cooperative execution seman-
tics.

Many related approaches allow events to be handled in
sequence through a blocking primitive, overcoming the main
limitation of event-driven systems (column 1 [12, 4, 27, 3,
21]). As a natural extension, most of them also keep the
state of local variables between reactions to the environment
(column 2). In addition, Céu introduces a reliable mech-
anism to interface local pointers with the system through
finalization blocks (column 8). Given that these approaches
use cooperative scheduling, they can provide deterministic
and reproducible execution (column 5). However, as far as
we know, Céu is the first system to extend this guarantee
for timers in parallel.

Synchronous languages first appeared in the context of
WSNs through OSM [22] and Sol [21], which provide par-
allel compositions (column 3) and distinguish themselves
from multi-threaded languages by handling thread destruc-
tion seamlessly [28, 5]. Compositions are fundamental for
the simpler reasoning about control that made possible the
safety analysis of Céu. Sol detects infinite loops at com-
pile time to ensure that programs are responsive (column 6).
Céu adopts the same policy, which first appeared in Esterel.
Internal events (column 4) can be used as a reactive alterna-
tive to shared-memory communication in synchronous lan-
guages, as supported in OSM. Céu introduces a stack-based
execution that also provides a restricted but safer form of
subroutines.

nesC provides a data-race detector for interrupt han-
dlers (column 7), ensuring that “if a variable x is accessed by
asynchronous code, then any access of x outside of an atomic
statement is a compile-time error” [17]. The analysis of Céu
is, instead, targeted at synchronous code and points more
precisely when accesses can be concurrent, which is only pos-
sible because of its restricted semantics. Furthermore, Céu
extends the analysis for system calls (commands in nesC), as
well as conflicts in trail termination. Although nesC does
not enforce bounded reactions, it promotes a cooperative
style among tasks, and provides asynchronous events that
can preempt tasks (column 6), something that cannot be
done in Céu.

On the opposite side of concurrency models, languages
with preemptive scheduling assume time independence among
processes and are more appropriate for applications involv-
ing algorithmic-intensive problems. Preemptive scheduling
is also employed in real-time operating systems to provide
response predictability, typically through prioritized sched-
ulers [7, 14, 15, 23]. The choice between the two models
should take into account the nature of the application and
consider the trade-off between safe synchronization and pre-
dictable responsiveness.

6. CONCLUSION
We presented Céu, a system-level programming language

targeting control-intensive WSN applications. Céu is based
on a synchronous core that combines parallel compositions
with standard imperative primitives, such as sequences, loops
and assignments. Our work has three main contributions:

• A resource-efficient synchronous language that can ex-
press control specifications concisely.

• The stack-based execution policy for internal events as
a powerful broadcast communication mechanism.

• A wide set of compile-time safety guarantees for con-
current programs that are still allowed to share mem-
ory and access the underlying platform in “raw C”.

We argue that the dictated safety mindset of our design
does not lead to a tedious and bureaucratic programming
experience. In fact, the proposed safety analysis actually
depends on control information that can only be inferred
based on high-level control-flow mechanisms (which results
in more compact implementations). Furthermore, Céu em-
braces practical aspects for the context of WSNs, provid-
ing seamless integration with C and a convenient syntax for
timers.

As far as we know, Céu is the first language with stack-
based internal events, which allows to build rich control
mechanisms on top of it, such as a limited form of sub-
routines and exception handling. In particular, Céu’s sub-
routines compose well with the other control primitives and
are safe, with guaranteed bounded execution and memory
consumption.

Our evaluation compares several implementations of widely
adopted WSN protocols in Céu to nesC, showing a consider-
able reduction in code size with a small increase in resource
usage. On the way to a more in-depth qualitative approach,
we have been teaching Céu as an alternative to nesC in
hands-on WSN courses in a high school for the past two
years (and also in two universities in short courses). Our
experience shows that students are capable of implement-
ing a simple multi-hop communication protocol in Céu in a
couple of weeks.

The resource-efficient implementation of Céu is suitable
for constrained sensor nodes and imposes a small memory
overhead in comparison to handcrafted event-driven code.

7. ACKNOWLEDGMENTS
This work was partially supported by grants from CNPq

(Brazil), SAAB (Sweden), and the European Union Seventh
Framework Programme (FP7/2007-2013) under agreement
No. 257007.

8. REFERENCES
[1] A. Adya et al. Cooperative task management without

manual stack management. In ATEC’02, pages
289–302. USENIX Association, 2002.

[2] A. Benveniste et al. The synchronous languages twelve
years later. In Proceedings of the IEEE, volume 91,
pages 64–83, Jan 2003.

[3] Bergel et al. Flowtalk: language support for
long-latency operations in embedded devices. IEEE
Transactions on Software Engineering, 37(4):526–543,
2011.

[4] A. Bernauer and K. Römer. A comprehensive
compiler-assisted thread abstraction for
resource-constrained systems. In Proceedings of
IPSN’13, Philadelphia, USA, Apr. 2013.

[5] G. Berry. Preemption in concurrent systems. In
FSTTCS, volume 761 of Lecture Notes in Computer
Science, pages 72–93. Springer, 1993.

[6] G. Berry. The Esterel-V5 Language Primer. CMA and
Inria, Sophia-Antipolis, France, June 2000. Version
5.10, Release 2.0.

[7] S. Bhatti et al. MANTIS OS: an embedded
multithreaded operating system for wireless micro

sensor platforms. Mob. Netw. Appl., 10:563–579,
August 2005.

[8] F. Boussinot and R. de Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293–1304, Sep 1991.

[9] N. Cooprider, W. Archer, E. Eide, D. Gay, and
J. Regehr. Efficient memory safety for TinyOS. In
Proceedings of SenSys’07, pages 205–218. ACM, 2007.

[10] C. Duffy et al. A comprehensive experimental
comparison of event driven and multi-threaded sensor
node operating systems. JNW, 3(3):57–70, 2008.

[11] Dunkels et al. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In
Proceedings of LCN’04, pages 455–462, Washington,
DC, USA, 2004. IEEE Computer Society.

[12] Dunkels et al. Protothreads: simplifying event-driven
programming of memory-constrained embedded
systems. In Proceedings of SenSys’06, pages 29–42.
ACM, 2006.

[13] J. Eriksson et al. COOJA/MSPSim: interoperability
testing for wireless sensor networks. In Proceedings of
SIMUTools’09, page 27. ICST, 2009.

[14] M. Farooq and T. Kunz. Operating systems for
wireless sensor networks: A survey. Sensors,
11(6):5900–5930, 2011.

[15] FreeRTOS. FreeRTOS homepage.
http://www.freertos.org.

[16] P. Ganesan et al. Analyzing and modeling encryption
overhead for sensor network nodes. In Proceedings of
WSNA’03, pages 151–159. ACM, 2003.

[17] D. Gay et al. The nesC language: A holistic approach
to networked embedded systems. In PLDI’03, pages
1–11, 2003.

[18] O. Gnawali et al. Collection tree protocol. In
Proceedings of SenSys’09, pages 1–14. ACM, 2009.

[19] Hill et al. System architecture directions for networked
sensors. SIGPLAN Notices, 35:93–104, November
2000.

[20] C. Karlof et al. TinySec: a link layer security
architecture for wireless sensor networks. In
Proceedings of SenSys’04, pages 162–175. ACM, 2004.

[21] M. Karpinski and V. Cahill. High-level application
development is realistic for wireless sensor networks.
In Proceedings of SECON’07, pages 610–619, 2007.

[22] O. Kasten and K. Römer. Beyond event handlers:
Programming wireless sensors with attributed state
machines. In Proceedings of IPSN ’05, pages 45–52,
April 2005.

[23] K. Klues et al. TOSThreads: thread-safe and
non-invasive preemption in TinyOS. In Proceedings of
SenSys’09, pages 127–140, New York, NY, USA, 2009.
ACM.

[24] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[25] P. Levis. Experiences from a decade of TinyOS
development. In Proceedings of OSDI’12, pages
207–220, Berkeley, CA, USA, 2012. USENIX
Association.

[26] P. Levis et al. Trickle: A self-regulating mechanism for
code propagation and maintenance in wireless
networks. In Proceedings of NSDI’04, volume 4,
page 2, 2004.

[27] W. P. McCartney and N. Sridhar. Abstractions for
safe concurrent programming in networked embedded

systems. In Proceedings of SenSys’06, pages 167–180,
New York, NY, USA, 2006. ACM.

[28] ORACLE. Java thread primitive deprecation.
http://docs.oracle.com/javase/6/docs/

technotes/guides/concurrency/

threadPrimitiveDeprecation.html, 2011.
[29] D. Potop-Butucaru et al. The synchronous hypothesis

and synchronous languages. In R. Zurawski, editor,
Embedded Systems Handbook. 2005.

[30] M. Rahimi et al. Cyclops: in situ image sensing and
interpretation in wireless sensor networks. In
Proceedings of SenSys’05, pages 192–204. ACM, 2005.

[31] C. M. Sadler and M. Martonosi. Data compression

algorithms for energy-constrained devices in delay
tolerant networks. In Proceedings of SenSys’06, pages
265–278. ACM, 2006.

[32] TinyOS TEPs.
http://docs.tinyos.net/tinywiki/index.php/TEPs,
2013.

[33] B. L. Titzer. Virgil: Objects on the head of a pin. In
ACM SIGPLAN Notices, volume 41, pages 191–208.
ACM, 2006.

[34] N. Xu et al. A wireless sensor network for structural
monitoring. In Proceedings of SenSys’04, pages 13–24.
ACM, 2004.

