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Abstract. Due to their safety critical nature, Cyber-Physical Systems
such as collaborative cars or smart grids demand for thorough testing
and evaluation. However, debugging such systems during deployment is
challenging, due to the concurrent nature of distributed systems and the
limited insight that any deployed system offers.
In this paper we introduce MILD; providing Minimal Intrusive Logging
and Deterministic replay. MILD enables logging of events on deployed
Cyber-Physical Systems and the deterministic replay in controlled envi-
ronments such as system simulators. To illustrate the feasibility and low
overhead of our architecture, we evaluate a prototype implementation
based on Wireless Sensor Networks (WSN) in this paper.

1 Introduction

Cyber-Physical Systems connect the physical world with the cyber-space. Their
programmability and communication capabilities enable new applications and
use cases such as cooperative vehicles or smart power-networks. These safety
critical applications demand for deep testing and evaluation. Due to both their
interaction with the physical world, such applications are difficult to test in tra-
ditional setups such as unit-testing or simulation. Instead, we often employ large
scale testbeds for testing and real-world performance evaluation. For Wireless
Sensor Networks, these are often controlled deployments of hundreds nodes cov-
ering buildings, mobile robots, or outdoor environments. However, debugging
such systems during deployment is challenging, due to the concurrent nature of
distributed systems and the limited insight that any deployed system offers.

In this paper, we introduce MILD for Minimal Intrusive Logging and Deter-
ministic replay of deployed Cyber-Physical Systems. MILD enables (1) logging of
events with minimal intrusion of deployed systems, and (2) the deterministic re-
play of events in controlled environments such as system simulators. As a result,
MILD offers deep insights into real-world deployments and allows debugging and
testing in realistic settings.

⋆ This work was partially supported by the EC, through project FP7-STREP-288195,
KARYON (Kernel-based ARchitecture for safetY-critical cONtrol).
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Fig. 1: Global architecture of the system. The events from the WSN are collected,
processed and sent to the simulator to be replayed.

The remainder of this paper is structured as follows: We discuss related work
in Section 2. Section 3 introduces the design of MILD and Section 4 presents
initial evaluation results. Section 5 discusses future directions and concludes.

2 Related Work

Debugging distributed systems has received significant attention in the recent
years with the raise of large-scale cloud computing and peer-to-peer network-
ing. A common approach is to collect traces of events and to use their logical
relationship in the system to build globally consistent snapshots and to enable
replay [1–4]. However, these mainly target Internet based applications and their
resource requirements make them not suited for resource constrained, embedded
systems such as Wireless Sensor Networks. Nonetheless, their design motivated
our work and we carefully designed MILD to adapt them for the use in resource
constrained, embedded systems and to ensure minimal intrusion. Others [5, 6]
reflect the resource constraints of sensor networks but do not focus on trace-
driven replay. In this context, some approaches [5] log each functional call and
its parameters to provide the user with a complete view on the system. In this
paper, we argue that tracing all the function calls is costly and we show that it
is not necessary to trace the them entirely if the state of a node at a given time
can be restored and replayed deterministically.

3 The Initial Design of MILD

MILD consists of three building blocks: (1) A logging element on each node, (2)
a collection system that collects and combines the traces to a consistent, global
view and (3) the replay environment (see Figure 1).

3.1 Distributed Logging for Deterministic Replay

In our design all nodes are equipped with lightweight instrumentation to allow
them to record events. To limit the overhead, we only record the events that are
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of interest to a particular application. For example, when we are debugging a
routing protocol, we log in- and outputs such as messages and function calls cor-
responding to routing. This information is sufficient to deterministically replay
any code in a simulator for debugging. Thus, we can recreate the exact program
execution in a controlled environment which allows for easy analysis for the pro-
gram flow and detecting bugs: For example, we can step through the execution
of a distributed systems and evaluate the values of individual variables:
– Wrappers: Tracking In- and Output of Software Modules. For each

software module that shall be included in the logging and replay, we log all
in- and output events such as messages or function calls (see Figure 2). Each
event is coupled with a logical timestamp to ensure deterministic replay and
to track interactions between nodes.

– Central module: Minimal intrusive state collection. All events are
collected at in a central module. Acting as background task, it allows the
collection of event traces via debugging ports at minimal intrusion.

– Initial State Collection. To allow us to dynamically enable and disable
logging, we store the initial states of module, i.e., its variables, when enabling
logging. Loading the initial states in the simulator and then replaying all
input to one or more modules ensures deterministic replay.

(a) A generic application (b) The same application with the new wiring

Fig. 2: Wiring to add wrappers (using TinyOS as example). The original modules
are indicated in white, the light gray ones are the wrappers and the dark one is
an optional interface to the central module.

3.2 Global Event Sorting based on Logical Timestamps

Once all events are collected from the individual nodes via their debugging ports,
we utilize their logical timestamps to construct a globally-ordered view on the
system (see Figure 3). Since all the events carry a sequence number that is
locally unique, sorting the local events of a node is immediate. Events such as
radio events have (or can have) a received counterpart on the other nodes. These
events are used to obtain a global order of events.

To obtain a partial global ordering of events, every event is treated as a node
of a dependency graph. Events that are only local (e.g. timer events) depend on
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Fig. 3: Events ordering based on dependencies, including the observation that if
a node receives two messages, the second one must have been sent after the first
was received.

their predecessor in the event log of the node, while others can depend on events
on neighboring nodes. One event on a node can only be replayed if the events it
depends on have been replayed as well. To generate the dependencies, events are
scanned to find the matching events on other nodes. Lost sent messages don’t
have a corresponding receive event, so they are automatically considered as local
events instead. Additionally, we use the recorded output to determine deviations
from the replay which indicate subtle system bugs such as buffer overflows etc.

3.3 Deterministic Replay in System Simulation

The final element of MILD is the replay of logs in system simulators. In the
replay, we use the wrappers (see Section 3.1) in reverse operation: instead of
logging all in- and out-going events of a software module, the wrappers now act
as event sources. Thus, feeding from the global event log, the software module
now replays the events in the same order as on the deployed system. Utilising the
advanced debugging capabilities of modern system simulators (and emulators),
allows monitoring of individual variables and stepping through code fragments.
Such tasks commonly cause prohibitively high overhead and side effects when
performed on deployed systems directly.

4 Evaluation

In this section, we show initial results of our prototype implementation of MILD
for TinyOS [7], a widespread operating system for wireless sensor nodes.

4.1 Split-Phase Faults

Most long operations in TinyOS are implemented as split-phase, when, for ex-
ample, a command to initialise a device is sent from the application to the lower
layer, and then an event is sent back to signal that the initialisation is complete.
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The authors of [5] use LEACH as a case study to explain how their tracer helped
in finding an implementation error.

LEACH is a TDMA-based dynamic clustering protocol. In the example the
problem was caused on the cluster head by a timer event trying to send a debug
message while another component was sending the information about the cluster
to a node requesting access. The bug was caused by the fact that in the timer
event, the type of the message was set, although the send itself would fail, the
message itself was sent with a different type (because there is only one buffer
for the messages, and the original content had been modified by an interleaving
event) and acknowledged and ignored by the receiver, which had no function
associated with that type of message.

With our implementation the log on the non-head node would show no activ-
ity, since the wrapper is placed at high level and the message would be discarded
before reaching it, and the head node would show an interleaving of a timer be-
tween send and sendDone, and also carry enough information to show that the
buffer’s content was altered.

4.2 Performance and memory overhead

In this section we demonstrate that the extra cost added by our instrumentation
is acceptable and brings a fixed cost to use the central module, which needs the
serial stack, and a variable cost depending on the amount of wrappers used, that
mostly depends on the size of the memory area for the log.

About the speed, as shown in Figure 4a, with logging disabled the overhead is
almost zero (3 CPU cycles) and logging one event does not bring much overhead
comparing to the effort to generate the event itself. Concerning the memory,
Figure 4b shows how allocating large space for logs in the wrappers brings a
significant increase in memory usage, while the central module is not so heavy
in itself.

5 Conclusion

In this paper we introduced MILD, a lightweight architecture for minimal intru-
sive logging and deterministic replay of deployed Cyber-Physical Systems. MILD
enables (1) logging of events with minimal intrusion of deployed systems, and (2)
the deterministic replay of events in controlled environments such as system sim-
ulators. As a result, MILD offers deep insights into real-world deployments and
allows debugging and testing in realistic settings. We discuss the architecture
of and show initial results of our prototype implementation based on TinyOS,
a widespread operating system for sensor networks. Future directions include
optimization to further reduce logging overhead and the application of MILD in
ongoing deployments to gather real-world experience in utilizing MILD.
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Fig. 4: Performance and memory evaluation.
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