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COMMON ABSTRACT
This paper offers an alternative to most traditional methods
to predict or simulate the fully dynamical behavior of
planetary gear trains of any configuration. This novel app-
roach is mainly utilizing two concepts that have so far been
untraditional at the characterization and analysis of planetary
gear train systems:
• a systems approach combined with constraint or gear mesh
oriented description of the system, and
• geometrical interpretation of load proportional losses in
gear meshes.

The proposed method of analysis is
• fairly general, straightforward and intuitive in the sense of
multibody system analysis,
• easily implemented into other computerized analyses, and
• has a subset of procedures for very efficient analysis of
planetary gear trains that operate at steady state conditions.

Any basic or compound planetary system is defined in terms
of rotating elements (sun wheels, planet wheels and planet
carriers) with one rotational degree of freedom each. The
rotational motion of those elements is constrained by some
number of permanent gear meshes. Each gear mesh is
basically characterized by two radii from the theoretical gear
mesh to the axes of (relative) rotation of the two specified
rotating components. At non-parallel shafts is further infor-
mation needed on shaft orientation. The positive sense of
rotationand applied torque is essential. The conceptof virtual
shaft extension offers a self-contained method for definition
of positive sense.

For consideration of internal inertial effects, the mass mo-
ments of inertia about the axis of rotation must be specified.

Two kinds of torque losses are considered (which is reaso-
nable at toothed constraints without speed losses):
• torque loss at each gear mesh (in a novel geometrical
interpretation), and
• idling or drag torque between any combination of rotating
elements as well as the stationary frame.

Part A describes the general background of dynamics of
planetary systems and advises a general procedure for
compiling the equation of motion for each rotating member.
The set of equations obtained contains both ordinary diffe-
rential equations (for torqueequilibrium)and linear algebraic
equations (for motion compatibility at constraints). Such a
set is common in multibody dynamics and is calledDAE
(Differential AlgebraicEquations). State-of-the-art proce-
dures have recently been developed elsewhere for solving
DAE.All together,PartA outlines the theoreticalbackground
for development of dedicated stand-alone programs for fully
dynamic analysis of planetary gear trains.

Part B demonstrates the use of theDymola simulation
software to facilitate both the compilation and the numerical
solution of dedicated equations of motion of planetary gear
trains. A generic module as system component is developed
foranexternal gear meshor apair of externallygeared wheels
on parallel shafts, where both the involved wheels may rotate
relative to a rotating frame, i. e., the planet carrier. Mesh
losses are considered geometrically in terms of a force pole
offset. Any compound planetary gear train (containing so far
external wheelson parallel shafts,only) may then bemodeled
interactivelybydragging,droppingand interconnecting shaft
ends of that module, assigning each one module two radii
and one force pole offset. Inertia effects are modeled by
another generic module, and drag losses may be modeled



similarly. Dymola compiles the equations of motion and
evaluates the system response to any prescribed external
torque or rotation.

Part C demonstrates the application of the Dymola-based
methodology to a special planetary train, used as a steering
gear of tracked vehicles, where the external and internal
dynamic effects are supposed to be significant at transient
steering commands. Even if the prime mover (engine) and
the vehicle as a whole (on pneumatic wheels) are modeled
in a crude way, the different modes of planetary gear train
action are clearly demonstrated in agreement with common
sense and experimental observations.

The quantitative influence of internal inertia as well as gear
mesh losses is evaluated numerically relative to a case
without both losses and inertia in the planetary gear train
studied.

NOTATION

main symbol quantity, explanation unit

ω, rotational velocity rad/s

torque Nm
drag or idling torque Nm

translational velocity m/s

constrained velocity m/s

(peripheral) force N
radius m

force pole offset m

power W

mass moment(s) of inertia kgm2

constraint Jacobian matrix [m]

, der( ) time derivative (any variable)   any/s

column vector

matrix

subscripts

identifier of shaft

  identifier of constraint

special identifier of planet carrier

superscripts

inertial action

external action
constraint action

drag action

relative (to planet carrier)

modified (due to losses)

Part A:

1. INTRODUCTION
Characterization and analysis of planetary or epicyclic gear
trains has over decades been considered to be a fairly
demanding task. Many articles and even books have been
devoted to that task. Such trains have a unique capability:
they can split torque in definite, prescribed proportions,
independent of rotational velocity, which is widely used in
various automotive applications, e. g., differentials and
automatic transmissions.

There are a number of traditional or established ways to
describe the character and to analyze the performance of
planetary gear trains, which are briefly reviewed, e. g., by
Mägi [1, 2]. The analysisof performance couldbe subdivided
into more or less complicated cases: stationary or transient
operating conditions and neglecting or regarding internal
power losses. Methods exist to handle all combinations of
those cases.

Traditional methods to describe and analyze planetary gear
trainshavebeencomponent oriented,where shafts withzero,
one or several gear wheels constitute classical components:
planet carriers, sun wheels and planet wheels, which are
characterized by basic ratios, i. e., compound transmission
ratios for a complete planetary system, when the planet
carrier is locked. There exists, however, an alternative and
versatile approach, which is influenced of the approach used
in the analysis ofMulti-Body Systems,MBS, which is
constraint oriented. This approach provides a fairly
straightforward and general procedure for characterization
and analysis of all kinds of planetary gear trains, especially
when losses have to be considered, and it is very computer
friendly.

Suchaconstraintorientedapproachhasso farbeendescribed,
when applied to stationary operating conditions without and
with losses, only, by Mägi [2, 3], where the basic approach
is introduced to some detail. In the present contribution,
which is a third part of that trilogy, the approach is extended
to cover fully dynamic or transient operating conditions. It
also describes numerical tools to integrate the arising diffe-
rential equations of motion.

2. SYSTEM DEFINITION
The planetary gear train as a system is described by the
following properties:

• rotating members (sun and planet wheels, planet carriers)

• constraints (gears in mesh)

• load proportional gear mesh losses (e. g., force pole offsets)

• load independent shaft losses (idling or drag torques)
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At any of totally unique rotating members, which define
the independent variables of the system, there exists rota-
tional velocities, , and externally acting torques, ,
identified by integer subscripts or , forming the
column vectors and . All members are assigned a
positive sense, preferably the same for the whole system. If
the system contains non-parallel shafts, the concept of virtual
shaft extensions still allows the definition of one common
positive sense for the whole system, cf. Mägi [2].

Any of totally unique gear meshes or constraints is
identified by the integer subscript , defined to act
between two specific rotating members, . At each con-

straint there acts a peripheral constraint force, , forming

the column vector . To each gear mesh are
related two meshing radii about the physical axes of rotation
involved, , denoted and , respectively.

To each gear mesh there is related a quantity that defines load
proportional losses due to friction, in terms of modified
geometry, used at equilibrium considerations, e. g., as the
forcepoleoffset, (at coplanarshafts),orhelixangleoffset,

(at skew shafts).

Also, between pairs of shafts (the external non-rotating frame
of reference included, subscript 0) there might exist idling or
drag torques, , from bearings, seals, etc.

3. CONSTRAINT ACTION

Constraint forces, , give rise to torque action upon two

involved shafts, which is easily found by using the Lagrange
multiplier approach. This might be explained by the fact that
a given generalized velocity vector of a system, in terms of
independent variables, , defines the velocities at any
other specified point of interest as linear combinations of the
independent velocities:

where at each time instant is a matrix (in case of
constraints, the Jacobian of the constraint equations).

Then the generalized force action at specified points, ,
contributes to the force action along the generalized coor-
dinates as

In the present case, = is equal to the virtual
difference in peripheral velocities at each gear mesh (seen
from the planet carrier), if no teeth as constraints were acting.
Then for each of gear meshes or constraints with teeth, the
following equation must hold:

where subscript defines the planet carrier involved (if any;
if none, ). The upper sign is for an external gear mesh

(or equivalent, as described by Mägi [2]), and the lower sign
is for an internal gear mesh.

Eq. 3 applied to each gear mesh will all together implicitly
define the(Jacobian) constraintor transformationmatrix :

where the elements of the matrix are basically all radii

and . Then the torque action, upon each shaft, due to

constraint forces, consistent with virtual speed differences,
is easily obtained as

wheresuperscript denotes transpose of the Jacobianmatrix.

The Lagrange multiplier approach, as expressed in Eqs 4
and 5, eliminates the need of detailed derivation of torque
equilibrium equations, which is a considerable simplifi-
cation of the analysis of planetary gear trains.

4. EQUATIONS OF LOSS FREE MOTION
The equations of motion for a loss free system are constituted
by torque equilibrium relationships for each unique rotating
member. In the present case each member has just one degree
of motion freedom: rotation about a symmetry axis. Three
kinds of torque have to be considered:

• external action: ,
• constraint action: , and
• inertial action: .

The external torque action may be described by any functions
of time, .

The constraint action is a linear combination of initially
unknown constraint forces, as given by Eq. 5. It should be
noted that , being an internal force, could be defined
positive in either sense, which motivates a± sign in Eq. 5.

The inertial action may be described in terms of d´Alembert
forces as a vector of fictitious torques

where is a diagonal matrix, containing the mass moments
of inertia about their physical axes of rotation for each
member (forplanetcarriers the effectsof non-rotating masses
of planet wheels must be added).

The torque equilibrium then reads

which is rearranged after substitution of Eqs 5 and 6:

n pc
ωpc = 0

Textω
i j ≤ n 1× n

{T} ext{ω}

[C]
{∆v} = [C]{ω} = {0} , (4)

rk, i

rk, jm
k ≤ m < n

i , j
{T} constr = [C]T{F} constr, (5)Fk

constr
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∆rk
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∆Tij

{T} ext

{T} constr

{T} inert

Fk
constr

{T} ext = {T(t)} ext

{ q̇} gen

{F} constr

{ q̇} spec= [C]{ q̇} gen, (1)
[C]

{T} inert = −[J]{ ω̇} , (6){Q} spec

[J]

{Q} gen = [C]T{Q} spec. (2)

{ q̇} spec {∆v}

{T} ext + {T} constr + {T} inert = {0} , (7)

m
[J]{ ω̇} + [C]T{F} constr = {T(t)} ext. (8)

∆v = (ωi − ωpc)ri +− (ωj − ωpc)r j = 0, (3)



Eq. 8 is not enough for solving for both and . To
overcome that, Eq. 4 might be differentiated once and added,
which yields the final set of equations of motion:

Eq. 9 contains both differential and algebraic equations and
belongs thus to a special category of equations:Differential
AlgebraicEquations,DAE, for which special methods of
solution have been developed, which are described in the
literature onMBS. The vector has here a clear
physical interpretation. In more general contexts it is often
referred to as the Lagrange multiplier.

The complete solution of Eq. 9 requires additionally initial
values of and yields then the time history of vectors
and .

5. CONSIDERATION OF LOSSES
The consideration of internal torque losses at steady-state
operating conditions has been reported in some detail by
Mägi [3]. The same methodology will be used here at fully
dynamic applications.

Drag or idling torque losses could be incorporated in a
straightforward and systematic way by adding a drag torque
vector, , to the right hand side of Eq. 9. Individual
specified drag torques, , contribute to thei-th and j-th

rows of by

It should be noted thatDAE solvers accept influence of
on the right hand side of Eq. 9.

Consideration of gear mesh losses is facilitated by a special
approach introduced by Mägi [3]. Gear mesh losses may be
given a geometrical interpretation at consideration of torque
equilibrium of each shaft. At coplanar shafts tooth friction
virtually moves the point of action of the peripheral com-
ponent of the contact force from the theoretical pitch point
towards the shaft of output of relative power, which is
observed from a planet carrier that might be involved. This
displacement might be called the force pole offset, denoted

, which at external gears increases the magnitude of one

and reduces of the other of the radii and , respectively.

E. g., at cylindrical external gears the modification is

where the flow of power relative to the planet carrier is

and, further,subscript denotes theplanetcarrier thatmight

be involved and where finally the positive sense of in

Eq. 8 is defined in such a way that it applies torque in the
negative sense to the shaft in question.

For intersecting and skew gears a similar modification of
radii or helix angles will take place, as shown briefly by Mägi
[3]. All those modifications will modify the transpose of the
Jacobian matrix: , which reflects the changes
in the equilibrium conditions in Eq. 9.

The complete equations of motion for planetary gear trains
containing internal torque losses are then

The geometrical interpretation of gear mesh losses enables
the use of the Lagrange multiplier approach for treatment
of constraints, which normally must be loss free.

As a remark, speed losses in traction drive type planetary
drives could be treated similarly. In addition to force pole
offsets due to internal friction, there will also be speed pole
offsets,cf. Mägi [1],which willmodify theoriginalconstraint
Jacobian of the system, as it appears in the lower left corner
of the composite matrix in Eq. 9.

6. NUMERICAL INTEGRATION
Nowadays, solvers forDAE start to become available in
about the same way as solvers forOrdinary Differential
Equations,ODE. Until versatileDAE solvers will become
readily available, the equations of motion of planetary gear
trains, Eq. 13, could easily and practically be transformed to
ODE form and then be solved by well established numerical
methods, available as procedures for most programming
languages, including the high level languageMATLAB .

Eq. 13 could be rewritten as

The composite system matrix to be inverted for Eq. 14 is in
most cases positive definite and almost symmetrical. As far
as the relative power flow doesn´t change direction, it is also
constant over several time steps of numerical integration.
Thus, it can be inverted relatively easily and mostly also
seldom, only when relative power flow changes direction.

The following notation is used to describe the process of
decomposition and solution of Eq. 14:

where is an submatrix.
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A set of ordinary first order differential equations in standard
form is then obtained:

where it is pointed out the possibility to let the externally
acting torques be functions of not only time, but also
rotationalvelocities. Tosolve thissetofdifferential equations
by ODE solvers, initial values of have to be specified.

Of course, the time history of peripheral constraint forces
could also be evaluated in parallel, by evaluating the forces
at each time step as

There is, however, a numerical problem with such a proce-
dure. Accumulating numerical integration errors will sooner
or later cause the velocity vector not to fulfil the constraint
conditions according to Eq. 4. This could be corrected
numerically by adjusting now and then the obtained solution
to meet the constraint conditions.

7. SPECIAL CONCLUSIONS
The described procedures for characterization and analysis
of planetary gear trains are rather systematic and straight-
forward. The numerical integration of arising equations of
motion could be performed efficiently by using just standard
ODE solvers.

Most steps of the compilation of Eq. 13 could be automated.
The only steps that are specific to the layout of a planetary
gear train are the composition of the constraint matrix
and the external torque vector . As an illustration, those
items are also easily obtained for the forthcoming example
in Figs 3 and 4 of Sect. 10.

Size of system:
= 10, = 8 (or 9, when a brake locks).

x/ when left brake is engaged and until it locks; later zero.

with an additional 9th row in when, e. g., the left brake
has locked and becomes a constraint with associated torque:

NB All radii in might be replaced by corresponding
numbers of teeth.

{ω̇} = [D11] ({T(ω, t)}ext + {T(ω)}drag), (16)

{ω}

{F}constr = [D21] ({T(ω, t)}ext + {T(ω)}drag). (17)
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[C]

[C9] = [0 0 0 0 1 0 0 0 0 0].
[C]



Part B:

8. INTRODUCTION OF GENERIC MODULE

Modern modeling techniques and software, e.g., Dymola,
described in Section 12 and by Elmqvist [5], strongly
support hiearchically composed models, where generic
modules can be used many times in a superordinate model,
when they once are defined. In this work, a generic module
for an external cylindrical gear mesh is defined, using
Dymola syntax. An alternative approach is described by
Otter [4], where the gear wheel is used as the main generic
module. However, if the load proportional losses should be
included in a general way, it is better to use the gear mesh
between two wheels as the generic module, which also is the
approach in this work. Further on, it has to include a carrier,
in order to enable composition of planetary gear trains. In
conclusion, this reasoning leads to the generic module
defined in Fig. 1.

Fig. 1.   Generic module for a gear mesh on a carrier
with definitions of its interface quantities. T and
ω are defined so that T*ω is positive in direction
left to right.

Without losses, the equations for the gear mesh in Fig. 1
would read as follows using the notation speed=ω=w: 

(win-wc)/(wout-wc)=-Rout/Rin
Tin/Rin=-Tout/Rout
Tin = Tout+Tc

These three equations can be referred to as compatibility
equation, mesh equilibrium and global torque equilibrium,
respectively.

9. LOSSES

When load proportional (dry Coulomb friction) losses in the
gear mesh are to be considered, in accordance with Section
5, the three equations from Section 8 are still valid with one
exception, which is that the mesh equilibrium should read:

Tin/(Rin+f)=-Tout/(Rout-f)

where f  is the force pole offset. This offset reflects the
coefficient of friction and the gear mesh geometry, cf. Mägi
[1]. The magnitude of f  is, for real gear meshes, almost
constant =∆R. However, f changes sign, dependent on the
direction of the relative power flow, PRel :

PRel=(TIn/(RIn+f))*RIn*(wIn-wOut2)

ωin

Tin

ωout

Tout

ωc

Tc



Since f then should be switched between +∆R and -∆R, it
can be treated as a discrete state variable. The rules for
switching f  are:

• f  switches from +∆R to -∆R when PRel  tends to become
negative

and

• f  switches from -∆R to +∆R when PRel  tends to become
positive.

The switching introduces some problems in the case of no
relative power. In practice, this situation arises when the two
output shafts run with the same speed. In this work, f=0 is
then used. Also, a small hysteresis, expressed in relative
power, is needed. Hereby, the results from such a situation
are physically debatable, but numerically almost true for
small losses.

The implementation of the switching is made by means of a
“Petri net”, see Fig. 2. A Petri net is a kind of finite state
machine, with “places” (circles) and transitions (vertical
bars), also used by Otter [4]. There is a place called Pos,
corresponding to positive relative power, and another one
called Neg, corresponding to negative ditto. The additional
places, Start and Zero, are introduced in order to handle the
simulation initialization and the case of no relative power,
respectively.

Fig. 2.   Petri net used to keep track of direction of
relative power flow for the single gear mesh.

In Dymola syntax, the equations for switching f  read, in
principle as:

P2Z.condition=PRel < 0
Z2N.condition=PRel < 0
Z2P.condition=PRel > 0
N2Z.condition=PRel > 0
when P2Z.condition or N2Z.condition then

new(f)=if P2Z.condition then -deltaR
else +deltaR

endwhen

The technique for modeling speed, torque and losses for the
generic module is the same as used in Part A. A minor
difference is that Part A has a global approach with no need
for modularization.

10. EXAMPLE ON A GEAR TRAIN

Fig. 3 shows an example of a gear train. In Fig. 4 it is
modeled by instances of the generic module. It is a steering
gear used in tracked vehicles, cf. Jakobsson [6] and
Thuvesen [7]. The vehicle is steered by engaging the left or
right brake. The gear train is used in a larger system, Part C.

Fig. 3.   Sketch of the steering gear, used as gear train
example. Letters A...H denote gear wheels.
Subscripts L and R denote left and right side,
respectively.

Using the graphical model editor of Dymola, the
corresponding model of the system will look like shown in
Fig. 5.

Fig. 4.   Model of the gear train in Fig. 3, approximately
as visible on computer screen. Also, cf. Fig. 5.

11. GENERIC EXAMPLE ON A SYSTEM

Fig. 6 shows a very simple example on a system using the
gear mesh module and Fig. 7 shows corresponding
simulation results. The initial conditions are zero speeds for
the flywheels and an upwound spring. The flywheels follow
the law of motion, J*der(w)= ΣT. The spring is linear, i.e.,
der(T)=k* ∆w. The model includes no energy dissipation
except for the load proportional losses in the gear mesh. In
the simulation result one can see that the motion is damped
in this way (upper diagram) and that power loss reaches zero
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Fig. 5.   The steering gear model as visible in graphical model editor on computer screen. Differences compared to
Fig. 3 are: Inertias (flywheels) on each shaft are added. Neither gear meshes “G-H”, “A-B” nor brake
“brake_right” are included.

every time the relative power reaches zero (lower diagram).
Further, the force pole offset toggles between ∆R=+3 and
∆R=-3 governed by the direction of relative power flow.

Fig. 6.   Simple system as visible in graphical model
editor on computer screen. 

In the present example there is one constraint between the
speeds of the three inertias FW1, FW2 and FW3. This
occurs since they are directly interconnected via the gear
mesh, which only has two motion degree of freedom.
Therefore, Dymola has to differentiate the speed equations
and then eliminate the constrained motion degrees of
freedom. Which of the three speeds that should be
eliminated is optional, but Dymola suggests speed of FW1.
Then there are only four state variables left: the speeds of
FW2, FW3 and FW4 and the torque of the spring. Dymola
generates code for calculating the time derivatives of these

four variables as functions of themselves. Then, well
established and efficient ODE integration methods can be
used. Also, symbolic manipulations are used so that no
iteration is needed. For larger systems, the generated
simulation code most often will become more efficient if
Dymola is asked to generate iterative code. The system in
Part C is that large that both ways are about equally efficient.

Fig. 7.   Simulation results of system in Fig. 6.
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A completely different way to use Dymola is to make use of
its DAE integration methods. That would reduce the need
for differentiation and elimination of constrained degrees of
freedom. Probably, there is some diffuse limit in system
complexity, where the DAE way is better. However, even in
the system investigated in Part C, using the relatively
complex gear train from Fig. 5, the ODE way is successful.

12. SHORT ABOUT DYMOLA

This section has the character of an Appendix. It describes
the Software Dymola, see also Elmqvist [5]. Dymola is a
software for modeling and simulation of dynamic systems.
One can define own “model classes” and use them in a
model, see Fig. 8. Dymola has some important features:

• Object orientation, which, e. g., means that the two
springs in Fig. 8 are “instances” of the same model class.
Hereby, the spring equation is only defined in one place,
referenced to twice in the model. Parameters, such as
spring stiffness k , can have different numerical values in
different instances.

• Physical connection, which means that a connection
between two submodels differs between “across” and
“flow” variables. “Across” and “flow” variables are varia-
bles that should be equal and summed to zero in a connec-
tion, respectively. E. g., in Fig. 8, the connections are the
lines between the submodels. The connections generate
the following equations:
F.w=S1.w
F.w=S2.w
-F.T+S1.w+S2.w=0
where the dot notation A.x  means the variable x  in sub-
model A.

• Equation orientation (or symbolic modeling), which
means that the equations are automatically transformed to
assignment form through symbolic manipulations. E.g.,
the flywheel equation in Fig. 8 could as well have been
written J*der(w)-T=0 , instead. The assignment form
of a model tells how the time derivatives of the state varia-
bles are calculated knowing the state variables. In Fig. 8,
the assignment form will be:
der(F.w)=-T
der(S1.T)=S1.k*F.w
der(S2.T)=S2.k*F.w
where F.w , S1.T  and S2.T  are state variables.

13. SPECIAL CONCLUSIONS

A generic module has been defined, by which general
planetary gear trains can be modeled. The load proportional
losses are considered. The loss model uses the force pole
offset, which is automatically switched between a positive
and a negative value when relative power changes sign. The
situation when the relative power is zero is not covered and
might be object for further development of the generic
module. Also, the generic module is so far not prepared for

handling internally geared wheels or wheels with non-
parallel shafts.

Fig. 8.    Example of a Dymola model -- a rotating mass
(flywheel) connected to rotational elasticities
(flexible shafts). 

Part C:

14. INTRODUCTION OF A STEERING 
SYSTEM AS AN APPLICATION EXAMPLE

Many planetary gear trains are used at either steady state or
quasi-dynamic operating conditions, which is out of the
present scope.

To demonstrate the application of the fully dynamic analysis
of complex planetary gear trains, an example has here been
picked from the field of vehicle dynamics. It concerns the
problem of steering tracked vehicles by using a special
planetary gear train. This problem was at an early stage
treated by Jakobsson [6] when occurring at steady state
operating conditions. Recently, it has been partially
expanded to the dynamic range, as well, by Thuvesen [7]. 

From that example it is understood that the steering process
undergoes a number of different phases:

• No brake is engaged: the gear train operates as a tradi-
tional differential that divides the propulsion effort evenly
between left end right (the vehicle travels straight ahead).

• Left or right side brake is just engaged: the brake slips and
applies a definite torque to the rotor, whereby the vehicle
starts to change direction in a transient mode with differ-
entiated propulsion effort on left and right hand side.

• The brake locks at some instant: a definite constant speed
ratio and a differentiated torque ratio is created and main-
tained between the left and right hand side, which both
continue to bring the vehicle asymptotically towards the
limit steady state turning circle. 

• Eventually, the vehicle comes to steady state turning.

F (flywheel)

J*der(w)=T

S1 (spring)

S2 (spring)

der(T)=k*w

der(T)=k*w

physical system:

model:
w/T

w/T

w/-T

J
k1

k2flywheel

springs



Fig. 9.   Planetary steering gear system; the steering gear train is modeled in detail in Fig. 5. 

Thuvesen used the MBS program package ADAMS [8] to
describe and study the dynamics of the entire system, where
the main emphasis was on tracks as a new program and
system module. The planetary gear train was treated in a
simplified way as a number of on purpose created equations
that governed the motion of the planetary gear train.

In the present work Dymola is chosen as a tool for
systematically composing and automatically solving the
equations of motion of a planetary steering gear train
according to Parts A and B.

The gear train is embedded in a larger system according to
Fig. 9 to illustrate its total and integrated behavior as part of
a steering system.

This system asks for the creation of some other dedicated
special modules in Dymola syntax:

• the engine,
• the chassis, and
• the (driving) wheels.

15. SOME SPECIAL MODULES

The special modules needed here are intentionally modeled
in a crude way without any sophistication, just to make them
simple, allowing the planetary gear train module to be
highlighted.

THE ENGINE MODULE:

The engine is defined in terms of a performance map, Fig.
10, displaying developed torque versus rotational velocity at
various accelerator pedal positions. The maximum torque
curve is intended to remind of real world internal
combustion engines.

The corresponding code in Dymola syntax for the engine
module is given in Tab. 1.

Fig. 10.   Performance map of a hypothetical engine.

THE CHASSIS MODULE:

The chassis is modeled as a three-wheeled vehicle with two
rear driving wheels and a fixed, soft front wheel with low
cornering stiffness. The chassis has three degrees of motion
freedom in the horizontal plane: in longitudinal, transverse
and yaw directions. It has a mass and a moment of inertia
about a vertical axis. The fixed front wheel is intended to
stabilize the traveling motion. At cornering, it is assumed to
respond linearly to transverse slip. Its equations of motion
are derived in a moving frame of reference, cf. Wong [9].
The steering action is obtained by a difference in peripheral

Chassis
Left rear wheel

Right rear wheel

Steering

Engine
Engine flywheel

gear train

Constant

Clock
Table Gain

Tab. 1.  Dymola code for engine module.

model class Base 
  cut In (wIn/TIn)
  cut Out (wOut/-TOut)
end

model class (Base) Engine 
local A {Defined so that TOut=0 at -50 rad/s}
parameter MaxTorque=200
parameter SpeedMaxTorque =250
  cut Pedal (Pedal)
TOut=((Pedal+0.1)/1.1)* ->

(MaxTorque-A*(wOut-SpeedMaxTorque)**2)
0=MaxTorque-A*(-50-SpeedMaxTorque)**2 {Defines A}
wIn=0
end

Torque

Speed

Pedal



velocities of the two rear driving wheels (cf. tracked
vehicles), which transmit both longitudinal and transverse
forces, while the front wheel transmits transverse force only.

The corresponding code in Dymola syntax for the chassis
module is given in Tab. 2.

THE DRIVING WHEEL MODULE:

The driving wheels are modeled to give rise to frictional
force in the horizontal plane as the non-linear arctan
function of slip in a symmetrical way about the vertical axis.
The module also takes into account the influence of
rotational inertia about the axis of rotation.

The corresponding code in Dymola syntax for the driving
wheel module is given in Tab. 3.

16. CASES INVESTIGATED

The following cases are investigated numerically by running
the model in Fig. 9 at the following conditions:

• Vehicle data are kept constant as specified in the vehicle
module.

• Only one type of maneuver is considered: acceleration at a
constant accelerator pedal position; first driving straight
ahead, then after 5 seconds, the right side brake is engaged
until steady state conditions are reached.

• Four combinations of internal losses and inertia and exter-
nally applied braking torque rise time are investigated, see
Tab. 4.

The built-in speed ratio of the locked planetary gear train
with one of the brakes engaged is 81/49 = 1.653. This would
give rise to a theoretical turning radius of 3.06 m (at non-
slipping driving wheels and track width = 2 m), which is
realistic at tracked vehicles, but is extreme at wheeled
vehicles.

17. NUMERICAL RESULTS

A narrow selection from the broad variety of numerical
results is shown in Fig. 11 and Fig. 12, demonstrating results
that are characteristic to both the whole vehicle, Fig. 11, and
the planetary steering gear train, Fig. 12.

Tab. 2.  Dymola code for the chassis module.

model class Chassis
parameter m=1000 {mass, kg}
parameter J=1000 {moment of inertia, kg*m^2}
parameter B=2 {track width, m}, L=3 {wheel base,m}
parameter WShare_r=0.75 {weight share on rear axes}

parameter RollCoeff=0.02 {N/N}
parameter AirCoeff=0.5 {N/((m/s)^2)}
parameter VxInit=0.01 {initial speed, m/s}
parameter Calphaf=1e3 {undriven front, per wheel}
constant g=9.81 {m/s^2}
output Fx,Mz,X,Y,PHI
local Resist,Vx=VxInit,Vy,Omegaz
local Fyf, Fyr, alphaf
  cut LeftShaft (VxL, VyL / FxL, FyL, NL)
  cut RightShaft1 (VxR, VyR / FxR, FyR, NR)
Fx=FxL+FxR
Mz=FxL*B/2-FxR*B/2
Resist=RollCoeff*m*g+AirCoeff*Vx*abs(Vx)
Fyr=FyL+FyR
alphaf=arctan((-Omegaz*L/2-Vy)/Vx)
Fyf=2*Calphaf*alphaf
m*(der(Vx)-Vy*Omegaz)=Fx-Resist
m*(der(Vy)+Vx*Omegaz)=Fyf+Fyr
J*der(Omegaz)=Fyf*(L/2)-Fyr*(L/2)+Mz
der(PHI)=Omegaz
der(X)=+Vx*cos(PHI)-Vy*sin(PHI)
der(Y)=+Vx*sin(PHI)+Vy*cos(PHI)
NL=WShare_r*m*g/2; NR=WShare_r*m*g/2
VyL=Vy-Omegaz*L/2; VyR=Vy-Omegaz*L/2
VxL=Vx+Omegaz*B/2; VxR=Vx-Omegaz*B/2
end

Tab. 3.  Dymola code for the driving wheel module.

model class Wheel
parameter Radius=0.3 {m}
parameter muPeak=1  {max coeff. of friction}
local k10, F
parameter slip90=0.1 {slip at 90% of muPeak}
constant pi=4*arctan(1)
output slipx, slipy
parameter J=0.5 {kg*m^2}
  cut Shaft (w/T)
  cut Hub (Vx, Vy / -Fx, -Fy, -N)
J*der(w)=T-Fx*Radius
slipx=(Radius*w-Vx)/abs(Vx)
slipy=(0       -Vy)/abs(Vx)
k10=slip90*tan(0.9*(pi/2))
F=muPeak*N*(2/pi)*

arctan(k10*sqrt(slipx**2+slipy**2))
Fx=F*slipx/sqrt(slipx**2+slipy**2)
Fy=F*slipy/sqrt(slipx**2+slipy**2)
end

Tab. 4.  Four cases investigated

Case name
Gear train inertia 
and losses

Torque rise time 
for brake 
engagement

Reference

realistic 

(about 0.1 kgm2 per 
shaft and 1 % losses 
per gear mesh)

1 second

Simple zero as Reference case

Exaggerated
about 10 times larger 
than Reference case

as Reference case

Slow as Reference case
5 times longer than 
Reference case



Fig. 11.   Simulated vehicle trajectories for the four cases. Each trajectory covers 300 seconds. 

Fig. 12.   Simulated transmission quantities versus time for the first 10 seconds of the Reference case.
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18. SPECIAL CONCLUSIONS

This numerical evaluation of a planetary gear train operating
at transient running conditions demonstrates, how the
theoretical approach according to part A, and the use of
Dymola for automated equation composition and
integration according to Part B, are successfully applied to a
combined planetary gear train and vehicle dynamics
problem.

The integration of the governing differential equations of
motion of the entire system is here selectively performed
after automatic elimination of original constraints by using
symbolic manipulations, which is an option in Dymola.

Numeric results confirm and demonstrate anticipated phases
of the transient steering process of vehicles. To the
knowledge of the present authors, that has not been shown
elsewhere for the brake slip phase, when internal tooth
friction and rotational inertia are fully considered.

However, in the present case internal tooth friction and
rotational inertia seem to be numerically less significant
when studying the transient behavior of this particular
planetary gear train.

Concerning the problem of transient steering of vehicles, the
time history of the application of the braking torque is
significant and its influence can be studied in detail by using
the described and proposed methods.

GENERAL CONCLUSIONS

The present approach to the characterization and analysis of
planetary gear trains, in particular regarding the full
dynamics of them, is based upon two untraditional concepts:

• constraint or gear mesh based definition of the planetary
system, and

• geometric interpretation of gear mesh losses.

Those two concepts together enable the use of the concept
of Lagrange multiplier, which eliminates the need of
detailed and often cumbersome study of component
equilibrium.

Alternative methods have been mentioned for the
integration of the governing ordinary differential equations:

• simultaneous solution of differential algebraic equations,
DAE, as frequently practised in MBS software,

• elimination of dependent state variables by symbolic
manipulations, and

• integration of state variables disregarding constraints,

the two last mentioned methods needing ODE solvers, only.
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