
Chalmers Publication Library

MDE-based Sensor Management and Verification for a Self-Driving Miniature
Vehicle

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proceedings of the 13th Workshop on Domain-Specific Modeling (DSM’13)

Citation for the published paper:
Mamun, M. ; Berger, C. ; Hansson, J. (2013) "MDE-based Sensor Management and
Verification for a Self-Driving Miniature Vehicle". Proceedings of the 13th Workshop on
Domain-Specific Modeling (DSM’13)

http://dx.doi.org/10.1145/10.1145/2541928.254192
9

Downloaded from: http://publications.lib.chalmers.se/publication/190359

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1145/10.1145/2541928.2541929
http://dx.doi.org/10.1145/10.1145/2541928.2541929
http://publications.lib.chalmers.se/publication/190359

MDE-based Sensor Management and Verification
for a Self-Driving Miniature Vehicle

Md Abdullah Al Mamun, Christian Berger, and Jörgen Hansson
Chalmers | University of Gothenburg, Sweden

Department of Computer Science and Engineering
[abdullah.mamun, christian.berger, jorgen.hansson]@chalmers.se

ABSTRACT
Innovations for today’s vehicle functions are mainly driven by
software. They realize comfort systems like automated park-
ing but also safety systems where sensors are continuously
monitoring the vehicle’s surroundings to brake autonomously
for avoiding collisions with cars, pedestrians, or bicyclists.
In simulation environments, various traffic situations with
alternative sensor setups are imitated before testing them
on prototypical cars. In this paper, we are presenting an
MDE approach for managing different sensor setups in a
cyber-physical system development environment to lever-
age automated model verification, support system testing,
and enable code generation. For example, the models are
used as the single point of truth to configure and gener-
ate sensor setups for system validations in a 3D simulation
environment. After their validation, a considered sensor
configuration is transformed into a constraint-satisfaction
model to be solved by the logical programming language
Prolog. Based on this transformation, the conformance to
the embedded system specification is formally verified and
possible pin assignments, for how to connect the required
sensors are calculated. The approach was validated during
the development of a self-driving miniature vehicle using an
STM32F4-based embedded system running the real-time op-
erating system ChibiOS as the software/hardware interface
to the sensors and actors.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing; D.1.6 [Logic Programming]: Prolog

General Terms
Formal Verification for Sensor Layout Configurations with
Prolog in a Cyber-Physical Development Environment

Keywords
Model-Driven Engineering (MDE), Sensor, Simulation, For-
mal Verification, Prolog, Cyber-Physical Systems

1. INTRODUCTION AND MOTIVATION
Comfort and safety systems from today’s vehicles are pow-
ered by software, which continuously process data from the
vehicle’s surroundings perceived by various sensors. However,
identifying, experimenting, and validating various sensor
configurations to find the layout, which serves the intended
use cases in the best way, is a challenging, time-consuming,
and error-prone task for engineers. During the realization

of a possible sensor layout, different sensor setups need to
be evaluated regarding their mounting position, orientation,
and detection characteristics like opening angle or viewing
distance within a virtual environment before testing them in
prototypical cars [6, 9, 10].

Interfacing restrictions from an embedded system, which is
processing the incoming sensor readings, like pin assignment
must be kept in mind. As a running example in this article,
we use an STM32F4 Discovery Board as the software’s gate-
way to the sensors and actors of our self-driving miniature
vehicle [7]. The board’s microprocessor is an ARM-based
system [18], which has a low power consumption profile, 80
connection pins, and is powerful enough to interface with var-
ious sensors as shown in Fig. 1. Different pin assignments are
possible but constrained by the target hardware environment
(STM32F4 Discovery Board in our case).

Infrared Steer Motor Infrared Infrared

Ultrasonic Ultrasonic Ultrasonic

ESC

STM32F4 Discovery Board

Razor
Board

PD8 (TX)
PD9 (RX)

PC8 PC9

PB6 (SCL) PB9(SDA)

PC1 PC4 PC5

USB
I2C Power PWM

UART ADC
Pxy = Connection PIN

To main ECU

Figure 1: Possible pin assignment to interface with
sensors and actors for the STM32F4 Discovery
Board.

In this paper, we outline an MDE-based sensor manage-
ment approach, which relies on a domain-specific language
(DSL) to describe the domain model of possible sensor con-
figurations. We use its instances for their validation in a
3D simulation environment before verifying them for the
intended target hardware environment with Prolog.

The benefits of using an MDE approach are that models
are considered to be the single point of truth throughout
the development. Furthermore, the models are defined and
managed based on the actual domain needs; thus, the DSL re-
mains in the best case very close to the actual use cases to be
supported without unnecessary complications. Additionally,
it defines sound engineering approaches to the definitions
of the models and their accompanying transformations for
model to model and model to code.

The rest of the paper is structured as follows: In Sec. 2, we
introduce our sensor management language and its design
rationales. Afterwards, we outline two use cases in Sec. 3,
where an instance of the meta-model is transformed into a
configuration for our simulation environment [8] to carry out
experiments with the chosen sensor configuration. Once the
experiments’ results have been approved, the configuration
is transformed into a constraint-satisfaction problem (CSP)
for the logic programming language Prolog to formally verify
its conformance to the possibilities of the target hardware
environment. The article closes with a discussion of related
work (Sec. 4) and a conclusion.

2. SENSOR MANAGEMENT LANGUAGE
We used the Eclipse Modeling Framework (EMF) [2] to
capture the domain knowledge, abstract syntax, and static
semantics for our DSL. Our main design drivers were sim-
plicity and extensibility of the meta-model. Our meta-model
is easily extensible in the sense that adding new sensors,
sensor properties, and configuration properties would require
minimal modification in the existing meta-model. For exam-
ple, adding a new sensor would require just adding a new
EClass with an inheritance link with the Sensor abstract
EClass without requiring modifying any other references in
the meta-model.

UnitType enumerations are introduced to avoid the occur-
rence of invalid/mismatched assumptions related to physical
units(cf. [4]). Further enumerations like SensorClass, Exe-
cutionBoard, and OperatingSystem are introduced to allow
adding static semantics to verify the correct usage of COTS
components like a concrete ultrasonic sensor or an OS.

2.1 Domain Meta-Model
The meta-model defining the abstract syntax of the DSL
is shown in Fig. 2. Class Vehicle is the top-level semantic
element of the meta-model that maintains relationships with
the rest of the classes in the meta-model. The class Sensor
represents physical sensors, which can be of type Infrared or
Ultrasonic. Hereby, SensorClass captures the identity of a
concrete sensor given by its manufacturer like “SRF08” from
Devantech, which is used by our self-driving miniature vehicle.
This per-sensor annotation introduces further restrictions
that need to be considered during the code generation stage.
A brief description of the available Properties is listed in the
following.

• rotZ : Rotation of the sensor around the Z-axis.

• translation: Position of the sensor in 3-dimensional
axis(X;Y;Z) with respect to the vehicle’s center.

• angleFOV : The field of view of the sensor in AngleUnit.

• distanceFOV : The length of the field of view at its
maximum viewable position in DistanceUnit.

• clampDistance: Effective distance of the sensor to
which the physically possible viewing distance is re-
duced e.g. to reduce unwanted noise.

• address: Address used by a sensor, e.g. for the I2C bus.

• pinConnection: Physical pin identifier of the execution
platform to which the sensor is connected. This infor-
mation is computed automatically depending on the
target hardware environment (cf. Sec. 3.3.1).

• connectionType: Type of standard connection used by
the sensor (e.g., ADC, I2C, . . .). This information is
used to verify a desired configuration as described in
Sec. 3.3.1.

PropertyCategory indicates whether a property or configu-
ration property is related to the vehicle simulation (Cyber),
its run-time realization (Physical), or both (CyberPhysical).
This annotation is used during the code generation stage.
ExecutionPlatform indicates the physical execution platform
(in our case: STM32F4 DiscoveryBoard) to which a sensor
shall be connected and the ApplicationPlatform captures the
software/hardware interface (in our case: Chibi/OS).

2.2 Ensuring Static Semantics
We use the Object Constraint Language (OCL) to verify
static semantics within the meta-model. General constraints
of the meta-model are checked no matter which SensorClass,
ExecutionPlatform, etc. is used in the model. An example of
such a constraint is “sensors of a certain SensorClass must
have exactly one SensorConfiguration”. Other constraints
which are related to specific COTS components used in our
miniature vehicle are listed in the following:

• SRF08 : SensorClass “SRF08” can only be associated
with an Ultrasonic sensor.

• SRF08 : The connectionType property of “SRF08” must
use I2C bus as ConnType.

• STM32F4 : The maximum number of Ultrasonic sen-
sors is 48 in case of using STM32F4 as the target
hardware environment because three I2C buses are
available each hosting up to 16 devices.

3. MODEL TRANSFORMATIONS
In the following, we describe how model transformations of
our meta-model is applied to serve our two subsequent use
cases.

Use Case A: This use case involves experiments with differ-
ent sensor layouts within our 3D simulation environment. It
requires modeling of sensors with associated properties like
rotZ, clampDistance, angleFOV, distanceFOV, and transla-
tion to validate a sensor layout. Use case A does not require
adding target information like concrete pin assignment.

Use Case B: This use case verifies if the selected sensor layout
from use case A can be realized with the regarded target
hardware environment. More specifically, we want to find a
possible pin assignment for all sensors in a given layout.

3.1 Model-to-Text Transformation
To enable our use cases, the Model-To-Text (M2T) trans-
formation is realized with Acceleo [1], an open source code
generation framework based on the MOF Model to Text
Language (MTL) standard. It can be used with any EMF
based models to generate any type of code. Fig. 3 gives an
overview of the M2T process for an instance model.

As depicted by Fig. 3, we generate configurations for the
simulation environment from an instance model as described
in use case A. Requests as required for our Prolog-based
verification approach (cf. Sec. 3.3.1) for use case B are also
derived from an instance.

Figure 2: Meta-model of our DSL for managing sensor configurations.

ECORE.ecore
SensorModel.ecore

InstanceModel.xmi

conforms to

GenerateCyber.mtl

M2T

conforms to

Check Realizability

Use Case A

Use Case B

Configuration for
simulation

Possible pin
assignment

Generated Artifacts

Figure 3: Overview of the M2T transformation pro-
cess

3.2 Use Case A: Validating a Sensor Layout
We have developed a sensor layout with two infrared and
three ultrasonic sensors to realize an automated parking
scenario with the self-driving miniature vehicle. Once, the
layout configuration is complete, we generate configuration
code as shown in Fig. 4 for the 3D simulation environment.
To save space, in Fig. 4, we have shown only one infrared
sensor from the layout and removed the comments from

the generated code. Fig. 5 visualizes the same sensor lay-
out for the automated parking scenario in the simulation
environment.

irus.numberOfSensors = 5

irus.showPolygons = 1

...

irus.sensor2.id = 2

irus.sensor2.name = Infrared_RearRight

irus.sensor2.rotZ = -90.0

irus.sensor2.translation = (-1.0;-1.0;0.0)

irus.sensor2.angleFOV = 5.0

irus.sensor2.distanceFOV = 3.0

irus.sensor2.clampDistance = 2.9

irus.sensor2.showFOV = 1

...

Figure 4: Generated sensor layout consisting one
infrared sensor for the 3D simulation environment.

Figure 5: Configured sensor layout in a vehicle in
the 3D simulation environment.

3.3 Use Case B: Verifying a Sensor Layout for
a Target Hardware

After validating a suitable sensor layout in the simulation
environment, the developer needs to find a possible pin as-
signment for the embedded system of interest–in our case for
the STM32F4 Discovery Board which is a constraint satisfac-
tion problem (CSP) as elaborated in section 3.3.3. To solve
this CSP, we use Prolog to verify a given sensor configuration.
In the following, we describe our approach, code generation
to Prolog, and results from our case study.

3.3.1 Verification Approach
Our verification approach utilizes a directed graph G =
(N,E,A) as shown in Fig. 6 to describe allowed configurations
for a specific embedded system. Hereby, a node n denotes a
specific pin of an embedded system and its incoming edge e
with its annotation the specific usage for that pin (e.g. analog
input). Set A contains all possible edge annotations, like
{analog, I2C, . . . }.

����

����

����������

����
������

���

���

������

Figure 6: Simplified example for a possible configu-
ration graph with six possible paths from n0 to nfinal.

A path p from the root node nroot to the final node nfinal

describes a concrete configuration for the embedded system.
In Fig. 6, the following six paths with their corresponding
configurations are described:

1. nroot → nfinal: trivial path.

2. nroot → npin 1 → nfinal: analog.

3. nroot → npin 2 → nfinal: analog.

4. nroot → npin 2 → nfinal: I2C.

5. nroot → npin 1 → npin 2 → nfinal: analog, analog.

6. nroot → npin 1 → npin 2 → nfinal: analog, I2C.

To match a desired sensor configuration from the simulation
environment, we need to find a possible path pmatch from
nroot to nfinal, which has the required annotations alongside
its edges. Hereby, we use Prolog to model possible configura-
tion specifications as facts, their graph-oriented traversal as
inference, and a match request as a CSP query to be solved.

edge(root, pin1, analog).

edge(root, pin2, analog).

edge(root, pin2, i2c).

edge(pin1, pin2, analog).

edge(pin1, pin2, i2c).

edge(pin1, final, -).

edge(pin2, final, -).

Figure 7: Configuration graph in Prolog.

path(From, To, Path, RequiredProperties) :-

traverse(From, To, [From], P, RequiredProperties),

length(RequiredProperties, LenRequiredProperties),

length(P, LenP),

LenRequiredProperties =:= (LenP - 2),

reverse(P, Path).

traverse(From, To, Path, [To|Path], _) :-

edge(From, To, _).

traverse(From, To, Visited, P, RequiredProperties) :-

edge(From, Other, Annotation),

not(Other == To),

not(member(Other, Visited)),

member(Annotation, RequiredProperties),

traverse(Other, To, [Other|Visited], P,

RequiredProperties).

Figure 8: Graph traversal as Prolog source is the
inference engine to find paths.

3.3.2 Code Generation to Prolog
In Fig. 7, the configuration space represented by the graph
depicted by Fig. 6 is shown as facts in Prolog.

The resulting graph is the basis for the traversal algorithm
shown in Fig. 8. Hereby, path expects four arguments, where
the last one contains a list of required edge annotations. To
only return those paths, which fulfill entirely the required
configuration, its length must match the length of the argu-
ment RequiredProperties. The second rule describes the
case where a direct connection between the nodes nFrom and
nTo has been found while the last rule describes the transitive
case to start the recursive graph traversal.

verify(RequiredProperties, Path) :-

path(root, final, Path, RequiredProperties).

Figure 9: User interface to solve the verification
query in Prolog.

In Fig. 9, the usage is shown. Hereby, the rule verify is
called with a desired configuration set in the first parameter
like verify([analog, i2c], Path). Prolog replies either
with false or with a potential pin assignment like Path =

[root, pin1, pin2, final] .

3.3.3 Case Study Results
For our self-driving miniature vehicle, we modeled a config-
uration graph for the STM32F4 Discovery Board up to a
graph with a height of six resulting in 1,388 facts for Prolog.
Thus, it is possible to check configurations, which contain
up to five different connection requirements. In Table 1, the

results for different verification runs are depicted: In the first
column, the actual length of the configuration to be verified
is shown, the second column indicates whether the given
configuration was valid or not, and the last column shows
the actual execution time on a 1.8GHz Intel Core i7 with
4GB RAM running Mac OS X 10.8.4.

Configuration length Valid Execution time

1 true 0.00s
1 false 0.00s
2 true 0.01s
2 false 0.56s
3 true 0.57s
3 false 0.69s
4 true 112.61s
4 false 29.24s
5 true 36,044.65s
5 false 7,168.48s

Table 1: Results of verifying configurations in with
a specification graph of depth six.

As shown by the table 1, Prolog detected all given invalid
configurations. Interestingly, the longer the specification the
relatively less time was spent to detect invalid configura-
tions. However, the problem to find a path with certain
characteristics (in this case, matching a given pre-defined
configuration) is not solvable in polynomial time specifically
for longer configuration lengths, which can be seen by the
exponentially increasing execution times in the last column.

4. RELATED WORK
The use of sensors spans from simple water heater to space
shuttles. The application areas of wireless sensor networks
(WSN) e.g., sea observatory, weather forecasting, air/water
monitoring etc. highly depend on different quality factors of
the sensor nodes. Thus, there is a clear need for an advanced
sensor management and these areas have advanced on this
direction.

SensorML [12], a part of Open Geospatial Consortium (OGC),
is a generic data model expressed using UML that captures
classes and associations common to all sensors. OGC PUCK
(Programmable Underwater Connector with Knowledge)[14]
is a standard command protocol and focuses on the au-
tomated configuration and installation of sensors used in
devices. When the device is connected to the host computer,
PUCK protocol allows data transfer between the involved par-
ties. IEEE 1451 TEDS (Transducer Electronic Data Sheet)
[3] is a set of smart transducer standard, which has con-
ceptual similarity with the OGC PUCK. IEEE 1451 TEDS
provides a common set of interfaces so that transducers data
can be accessed when they are connected to the system
through wired or wireless networks.

However, the mentioned approaches do not precisely fulfill our
needs. From an architectural point of view these approaches
deal with distributed systems while we are focused on a
shared memory system. Our approach does not require any
standardized protocols or set of interfaces to read data from
different sensor nodes since reading data in our case depends
on the connectionType of sensor Properties. Moreover, we

are focusing on the domain of self-driving vehicles inspired
by [5] with a specific set of COTS components. Since our
goal is to achieve a domain specific and semantically rich
model that we can use to generate code for both simulation
and execution environment, we have designed a DSL what
would precisely fulfill our needs.

An approach to visually assist developers in managing con-
figurations for middleware and simulations on the example
of autonomous vehicles is presented by the authors of [16].
They focus on the “correct-by-construction” principle to con-
figure both elements of a cyber-physical system development
process. As an extension to their work, we focus additionally
on the verification of a considered configuration for the target
hardware environment by utilizing automatically generated
models for CSP solving with Prolog.

The use case as described in Sec. 3.3.1 is also supported by
commercial tools. The manufacturer of the embedded system
used on our self-driving miniature vehicles provides the tool
MicroXplorer to support the pin configuration and code
generation for their low-level system library [19]. However,
that tool has two main drawbacks compared to our approach:
Firstly, they require the user to select the pin layout to be
used for the peripherals being handled by the STM32F4
microprocessor; thus, the user needs to work in a solution-
driven instead of requirement-driven manner (i.e. specifying
what to support and not how to use the microprocessor).
Secondly and more importantly, the proprietary tool does
not support our target realtime operating system Chibi/OS,
which we aim to use to be platform-independent for future
use cases and hardware environments.

An alternative to the aforementioned tool would be CooCox
CoOS with their own toolchain to support the microproces-
sor configuration and code generation [13]. However, as at
the time of writing of this article, they do not support our
intended hardware environment. Furthermore, both alterna-
tives do not support the merging, concatenation, or difference
calculation of two or more configurations for the embedded
system due to their nature of being a graphical tool. With
our textual approach, those aspects can be realized easily.

An approach pointing in a related direction for applying logic
programming to solve pin assignment and configuration is
described by the authors of [15]. However, their work appears
to be at a very early stage so far as they neither describe any
successfully carried out experiments nor discuss any results.

The work by Berlier and McCollum [11] describes a self-
implemented backtracking algorithm with a heuristic exten-
sion. Thus, they limit the state space, which needs to be
explored to find a solution for a possible pin assignment.
Compared to our approach, they do not discuss the challenge
how to provide the formal hardware specification as input
to their algorithm as well as how to merge, concatenate, or
calculate the difference between several configurations.

In previous work, it was demonstrated how to systematically
enumerate all potential system stimuli vectors as a formal ap-
proach to requirements engineering to generate test cases [17].
Therefore, it is required to define the required system bound-
aries in terms of input and output vectors. Our approach

outlined here serves as an extension to assist an engineer
to design a system, which exhibits just enough inputs and
outputs to fulfill a given use case while considering hardware
limitations already in the design space exploration phase.

5. CONCLUSION AND OUTLOOK
In this article, we have outlined a DSL to manage different
sensor configurations for a self-driving miniature vehicle. The
MDE approach bridges between the cyber and the physical
system development environment. For the former, the meta-
model supports the configuration process for using a 3D
simulation environment to evaluate different sensor layouts.
The latter deals with realizing a chosen sensor configuration
within a prototypical hardware environment–a self-driving
miniature vehicle in our case.

While the former case tries to preserve the design freedom
during the evaluation process, the latter must consider con-
straints from the intended target hardware environment. We
outlined an approach to derive a CSP model for Prolog from
our meta-model, which we used to formally verify the chosen
sensor configuration’s conformance to the hardware speci-
fication of the target embedded system. The advantage of
the outlined verification approach is the intuitive and highly
compact representation; thus, concatenation, merging, or the
difference calculation of two or more given configurations can
be easily carried out. Though, future work needs to be done
in the area of optimizing the graph-based representation of
the hardware specification to reduce the computation time
for verifying a given configuration. Our vision also spans
toward finding an optimal sensor layout from a list of given
scenarios and considering the cyber-physical aspects of the
placement of the sensors.

Acknowledgments
The authors would like to thank Dr. Matthias Tichy for his
comments and suggestions about the DSL meta-model.

6. REFERENCES
[1] Acceleo.

http://projects.eclipse.org/projects/modeling.m2t.acceleo.

[2] Eclipse Modeling - EMF.
http://www.eclipse.org/modeling/emf/?project=emf.

[3] IEEE standard for a smart transducer interface for
sensors and actuators wireless communication protocols
and transducer electronic data sheet (TEDS) formats.
IEEE Std 1451.5-2007, pages C1–236, 2007.

[4] M. A. Al-Mamum and J. Hansson. Review and
challenges of assumptions in software development. In
Proc. of the Second Analytic Virtual Integration of
Cyber-Physical Systems Workshop (AVICPS), 2011.

[5] C. Basarke, C. Berger, K. Berger, K. Cornelsen,
M. Doering, J. Effertz, T. Form, T. Gülke, F. Graefe,
P. Hecker, K. Homeier, F. Klose, C. Lipski, M. Magnor,
J. Morgenroth, T. Nothdurft, S. Ohl, F. W. Rauskolb,
B. Rumpe, W. Schumacher, J. M. Wille, and L. Wolf.
Team CarOLO - Technical Paper. Informatik-Bericht
2008-07, Technische Universität Braunschweig,
Braunschweig, Germany, Oct. 2008.

[6] C. Berger. From Autonomous Vehicles to Safer Cars:
Selected Challenges for the Software Engineering. In
F. Ortmeier and P. Daniel, editors, Proceedings of the

SAFECOMP 2012 Workshops, LNCS 7613, pages
180–189, Magdeburg, Germany, Sept. 2012.
Springer-Verlag Berlin Heidelberg.

[7] C. Berger, M. A. Al Mamun, and J. Hansson.
COTS-Architecture with a Real-Time OS for a
Self-Driving Miniature Vehicle. In E. Schiller and
H. Lönn, editors, Proceedings of the 2nd Workshop on
Architecting Safety in Collaborative Mobile Systems
(ASCoMS), Toulouse, France, Sept. 2013.

[8] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, and
E. M. Schiller. Model-based, Composable Simulation
for the Development of Autonomous Miniature
Vehicles. In Proceedings of the SCS/IEEE Symposium
on Theory of Modeling and Simulation, San Diego, CA,
USA, Apr. 2013.

[9] C. Berger and B. Rumpe. Autonomous Driving - 5
Years after the Urban Challenge: The Anticipatory
Vehicle as a Cyber-Physical System. In U. Goltz,
M. Magnor, H.-J. Appelrath, H. K. Matthies, W.-T.
Balke, and L. Wolf, editors, Proceedings of the
INFORMATIK 2012, pages 789–798, Braunschweig,
Germany, Sept. 2012.

[10] C. Berger and B. Rumpe. Engineering Autonomous
Driving Software. In C. Rouff and M. Hinchey, editors,
Experience from the DARPA Urban Challenge, pages
243–271. Springer-Verlag, London, UK, 2012.

[11] J. A. Berlier and J. M. McCollum. A Constraint
Satisfaction Algorithm for Microcontroller Selection
and Pin Assignment. In Proceedings of the 2010 IEEE
SoutheastCon, pages 348–351, Concord, NC, Mar. 2010.

[12] M. Botts and A. Robin. OpenGIS sensor model
language (SensorML) implementation specification.
OpenGIS Implementation Specification OGC 07-000,
Open Geospatial Consortium Inc., 2007.

[13] CooCox. CoSmart.
http://www.coocox.org/CoSmart.html, Aug. 2013.

[14] K. L. Headley, D. Davis, D. Edgington, L. McBride,
T. C. O’Reilly, and M. Risi. Managing Sensor Network
Configuration and Metadata in Ocean Observatories
Using Instrument Puck. In Proceedings of the 3rd
International Workshop on Scientific Use of Submarine
Cables and Related Technologies, pages 67–70, 2003.

[15] B. Joshi, F. M. Rizwan, and R. Shettar.
MICROCONTROLLER PIN CONFIGURATION
TOOL. International Journal on Computer Science and
Engineering, 4(05):886–891, 2012.

[16] A. Schuster and J. Sprinkle. Synthesizing Executable
Simulations from Structural Models of
Component-Based Systems. In Proceedings of the 3rd
International Workshop on Multi-Paradigm Modeling,
volume 21, pages 1–10, 2009.

[17] S. Siegl, K.-S. Hielscher, R. German, and C. Berger.
Formal Specification and Systematic Model-Driven
Testing of Embedded Automotive Systems. In
Proceedings of the Conference on Design, Automation,
and Test in Europe, pages 1530–1591, Grenoble, France,
Mar. 2011. European Design and Automation
Association.

[18] STMicroelectronics. Discovery kit for STM32F407/417
line. http://goo.gl/hs7X28, Aug. 2013.

[19] STMicroelectronics. MicroXplorerMCU graphical
configuration tool. http://goo.gl/3UUgdh, Aug. 2013.

	Introduction and Motivation
	Sensor Management Language
	Domain Meta-Model
	Ensuring Static Semantics

	Model Transformations
	Model-to-Text Transformation
	Use Case A: Validating a Sensor Layout
	Use Case B: Verifying a Sensor Layout for a Target Hardware
	Verification Approach
	Code Generation to Prolog
	Case Study Results

	Related Work
	Conclusion and Outlook
	References

