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Abstract

In this study, temporally-evolving incompressible and compressible Turbu-
lent Shear Layer (T'SL) instability problem is solved using an all-speed (all-
Mach), implicit, non-dissipative and kinetic energy conserving algorithm. An
in-house, fully parallel, finite-volume Direct Numerical Simulation (DNS)
solver was developed using PETSc. Convergence characteristics at low-Mach
numbers were also improved using a relaxation procedure. We aim here to as-
sess the performance and behavior of the present algorithm for complex flows
which contain multi- scale physics and gradually evolve into turbulence. The
results show that the algorithm is able to produce correct physical mecha-
nisms and capture the evolution of the turbulent fluctuations for both incom-
pressible and compressible cases. It is observed that the non-dissipative and
kinetic energy conserving properties make the algorithm powerful and appli-
cable to challenging problems. For higher Mach numbers, a shock-capturing
or a dissipative mechanism is required for robustness.
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1. Introduction

We present a three-dimensional Direct Numerical Simulation (DNS) study
of mixing in temporally-evolving Turbulent Shear Layer (TSL) instability.
For this purpose, an in-house, fully parallel, finite-volume DNS solver, :DNS,
was developed based on a fully implicit, non-dissipative, and discrete kinetic
energy conserving algorithm recently proposed by Hou & Mahesh [1]. The
PETSc library was utilized for an efficient parallelism [2].

Our aim here is two-fold: first, to demonstrate the algorithm’s ability
to evolve perturbations into turbulent mixing for the base flow with the
convective Mach number, M, = 0.3, and, second, to analyze the effects
of compressibility on the growth rate of the instability by increasing the
convective Mach number.

The following sections include a brief review of the algorithm with a
further improvement in convergence, the solver details, the definition and
the numerical setup of the problem. The results obtained are analyzed and
compared to those from previous experimental and numerical studies.

2. Numerical Method

The algorithm solves the set of time-dependent, three-dimensional com-
pressible Navier-Stokes equations. These are non-dimensionalized by us-
ing the reference values. Unlike in many other methods, pressure is non-
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dimensionalized, as p = 22 which is known as incompressible scaling

Preflpey
or low-Mach number scaling [3, 4]. The resulting non-dimensional forms

of the equations satisfy the incompressibility condition, and allow to study
low-Mach number flows with the same algorithm without encountering the
acoustic stiffness problem, when the Mach number goes to zero. The algo-
rithm is second-order in both space and time on orthogonal grids. It is stable
and robust at high-Reynolds numbers [1]. It is a pressure-correction type of
algorithm which uses an iterative predictor-corrector approach to update the
flow variables. The variables are stored at the cell centers. A fully implicit,
finite-volume discretization is used. The discretization is centered in both
space and time to ensure the non-dissipativeness. Thermodynamic quanti-
ties such as density, pressure, and temperature are also staggered in time by
half a time step relative to the velocities [5]. The values of the variables at



cell-faces are obtained by symmetric interpolation, which is the simple aver-
aging of two adjacent cell-center values. This also ensures the conservation of
kinetic energy discretely at the low-Mach number limit [6]. The face-normal
velocity, V,,, is treated as a separate flow variable like the velocity and is
updated in time [7, 8]. V,, is stored at the center of the cell-faces directly to
mimic the staggered grids to prevent the odd-even decoupling in pressure in
space. In order to give a fully implicit treatment of pressure, the algorithm
works with a weighted sum of previous, current, and predicted values of the
pressure, instead of the pressure itself directly [5]. An additional correction to
pressure is also adopted in the algorithm to enhance the convergence proper-
ties by preventing possible successive oscillating pressure corrections in time
[9]. This procedure provides a time- and space-dependent relaxation factor
for the pressure at the end of each time-step for low-Mach number flows.

3. Solver Detalils

In order to perform this study, an in-house, fully parallel DNS solver,
1DNS, was developed based on the algorithm mentioned above and the
PETSc parallel library. ¢DNS is a single-block, structured, fully implicit,
finite-volume solver working on uniform Cartesian grids. Fig.1 shows the
flowchart of :DNS and the iterative solution procedure as well. It consists of
three parts: pre-processing, core and post-processing. In pre-processing, the
PETSc framework is initialized. Grid related quantities and initial conditions
for the simulations are generated. Core performs all steps for the solution
of the discretized equations. Post-processing calculates necessary quantities
for analyzing and comparison, and also stores them into files. ‘DNS was
written in a modular fashion using Fortran syntax. The linear systems aris-
ing from the discretization are first pre-conditioned by incomplete-LU with
zero-filling (ILU(0)), and are then solved using GMRES. During the parallel
performance tests, very good speed-up and efficiency results were obtained.
Tests also showed that the solver is scalable, since it maintains the efficiency
when increasing the problem size and the number of cores.

4. Problem Definition and Setup

Turbulent shear layers are of interest for many physical and engineering
flows such as jets, wakes and mixing in combustion. They are induced by
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strong gradients in the shear stress. Although they have a relatively sim-
ple configuration, complex physical phenomena are included in these flows.
They are mostly dominated by large-scale, quasi-2D, organized structures.
However, they can rapidly undergo transition to turbulence in 3D. The first
theoretical analyses were presented in the 50’s and 60’s [10]. Experimental
investigations began in 70’s [11, 12], and this was followed by early DNS sim-
ulations in the 80’s and 90’s [13, 14] with the help of the advances in computer
technology. Recently, well-resolved numerical simulations were performed
[15, 16]. There has remained an ongoing interest in turbulent shear layers
and need for better understanding of their physical mechanisms, due to the
requirements of flight (such as in wake control) and combustion technolo-
gies (such as in supersonic mixing) for developing more efficient systems [17].
They can be studied both spatially and temporally. In spatially-evolving
mixing layers, mixing layer thickness of two emerging streams of fluids de-
velop in the streamwise direction. Such development requires a large extent
of the domain. This is computationally much more expensive to track than
the temporally-evolving mixing layers where the thickness of the layer in-
creases as a function of time rather than as a function of the streamwise
coordinate.

The flow is initialized with a hyperbolic tangent function for the mean

209(0)

mentum thickness. This defines two parallel streams moving in opposite
directions with the same velocity, %, where Awu is the velocity difference
between the lower and the upper streams. It is also taken as the reference
velocity. The normalwise (y) and the spanwise (z) mean velocities are set to
zero. The initial densities are equal for the two streams and are set to unity.
The initial pressure is uniform as well. It is set to give the speed of sound as
unity and is chosen as the reference pressure. The Reynolds number based
on the initial momentum thickness, Rey, the velocity difference, and the av-
erage dynamic viscosity is 160 and the Reynolds number based on the initial
vorticity thickness (4,,(0)), Re,, is 680. The ratio of the specific heats, v, is
1.4 and the Prandtl number, Pr, is 0.72. The density ratio between streams
is equal to 1. Different convective Mach numbers are studied. The idea of
the convective Mach number was first introduced in order to identify the
effects of compressibility on the shear-layer growth rate. For equal densities
and specific heats, it can be written as M, = cﬁ“@, where ¢; and ¢y denote
the speeds of sound for each of the streams.

streamwise velocity, & = 4% tanh (—L> , where dy(0) is the initial mo-




The initial momentum thickness is taken as the reference length scale.
The reference time scale is, 7 = 62—(3).

The boundary conditions are periodic in the streamwise (z) and spanwise
(z) directions. Inviscid slip-wall boundary conditions are used at bottom and
top boundaries in the normalwise (y) direction. The face-normal velocities
require special treatment and must be set to zero on inviscid slip-walls.

The non-dimensional time-steps are set to 6 x 1073 for the quasi-incom-
pressible case where M, is 0.3, 1 x 1072 for the mildly-compressible cases
where M, = 0.5,0.7, and 5 x 1073 for the highly compressible case where
M, = 0.9. The flow was followed up to the very late non-linear stage, and
then the simulation was stopped.

The same problem domain as was considered by Pantano & Sarkar [16]
is used for our computations. The domain is very large, especially in the
streamwise direction, in order to allow the flow to evolve into a self-similar
state. This resolution is also sufficient for representing the large scale struc-
tures in the flow, as shown by the same authors using a calculation of inte-
gral length scales (which are sufficiently small compared to the domain size
in homogeneous directions) and two-point correlations (which are decorre-
lated over half the domain size in homogeneous directions) in the self-similar
state. The domain size is given in terms of the initial momentum thickness
as L, x Ly, x L, = 34504(0) x 17265(0) x 86d¢(0) with corresponding resolu-
tion N, x N, x N, = 512 x 256 x 128 for the cases considered. The initial
momentum thickness is set to 0.093. A uniform orthogonal grid is used.

In addition to these mean values, turbulent three-dimensional velocity
fluctuations are superimposed on the initial mean velocity components. The
fluctuations are generated on the basis of a technique described by Davidson
[18] using the isotropic turbulence energy spectrum, E(k) = ufms(n—’i))‘l exp(—Z(:—0)4),
where K is the peak wave number. kg is adjusted so as to have 48 peak wave-
lengths in the streamwise direction for the simulations. .. . denotes the rms
of the velocity fluctuations and is given as u/, . = (ti- Au) where #i is the
turbulent intensity which is set to 0.1. The initial turbulent velocity fluctu-
ating field obtained is limited to the shear layer by multiplying with a shape
function in the form exp(—(5 5:0) )?). The runs were performed on distributed
memory architectures with Intel Xeon dual-core and quad-core processors.
256 cores with 2 GB of RAM per core were used for the simulations. The
total wall-clock time was 350 — 500 hours, depending on M,. Since the im-
plicit algorithm allows larger time steps as given above, this computational

time is quite acceptable and possibly much shorter than an explicit method.
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5. Results and Discussions

5.1. The quasi-incompressible case

The quasi-incompressible case (M, = 0.3) is chosen as the base case. This
case is also used for the code verification, and the comparison as well. In
order to analyze the results, the momentum thickness, dg, is first introduced
as

0g = ! s 1A 7 1A ty)d 1

1= | PGAu— i) (GAu+ i)y ()
where u; denotes the Favre averaged streamwise velocity component and p
is the Reynolds averaged density.

As an integral quantity, the momentum thickness is less sensitive to sta-

—0o0

tistical noise than the vorticity thickness, dw = ﬁ, and evolves smoothly
ay max
in time[14]. The growth rate can be found as the slope of a linear curve fit,
0 = L Do
Au dt

The time evolution of the momentum thickness is given in Fig. 2. After
an initial settling period, which mainly depends on the initial fluctuations,
an approximate linear growth is observed, in consistency with the previous
results. The growth rate is 0.0182 which is calculated by taking the slope
of the curve in the region where the flow is self-similar. Pantano & Sarkar
[16] obtained 0.0184 for the quasi-incompressible case from a DNS database.
They also obtained 0.016 in their DNS study at M. = 0.3. Our value is in
good agreement with Pantano & Sarkar [16].

The Reynolds stress transport equation is introduced as in [16] to calcu-
late the Reynolds stress tensor and the turbulent kinetic energy budget

T3k
&vk

d(pRij) . d(puyR;j)

ot oz, P ) =

+ 1L (2)
where R;; , Pi; ,€; ,Tii ,11;; are turbulent stress, production, dissipation,
transport and pressure-strain terms, respectively. Explicit forms and calcu-
lations of these terms can be found in [16].

Fig. 3 shows the time evolution of the rms of the velocity fluctuations in
the streamwise direction. In consistency with the previous studies, it starts
from an initial value, reaches a peak and then decreases to its specific value.
The comparisons of the Reynolds stresses are given in Fig. 4-compared with
those form experiments and other DNS studies. A procedure of averaging
over the time period between 200 and 600 was applied. As can be seen, the
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Table 1: Comparison of the peaks of the Reynolds stresses for M. = 0.3.

VRi1/Au  v/Roa/Au ~/Rs3/Au /Riz2/Au
Bell and Mehta [19] (EXP, M, =0)  0.180  0.140  0.146  0.100

Pantano and Sarkar [16] (DNS) 0.155 0.134 0.143 0.103
Hadjadj et. al. [20] (LES) 0170 0.134 0143  0.106
Foysi and Sarkar [21] (LES) 0.174 0.129 0.143 0.106
Present DNS 0.176 0.133 0.141 0.102

agreement is good. The streamwise component of the Reynolds stress is larger
than the other components. Table 1 compares the peak turbulent intensities
of the Reynolds stresses to those from some prior numerical studies. Our DNS
gives similar values to the others. Turbulent production and dissipation are
presented in Fig.’s. ba and 5b. Our values are in good agreement with those
from the other DNS studies [16, 14]

Figure 5c¢ shows the mean velocity in the streamwise direction and it is
compared to those from previous experimental and numerical studies. wean
is again obtained via an averaging between ¢/7 = 200 and t/7 = 600. The
agreement with other data is good.

The anisotropy of the Reynolds stresses shows the character and the de-
pendence of the velocity fluctuations on the direction in turbulent flows. Once
Reynolds stress terms are calculated, it can be obtained via b;; = % — 36ij,
where K is the turbulent kinetic energy and ¢;; is the Kronecker delta. It is
calculated by integrating over the shear layer [16], which is approximated by
summation.

Time evolutions of the anisotropy of the Reynolds stress terms are also
given in Fig. 5d. Table 2 compares their peak values to those from the Large-
Eddy Simulation (LES) of Foysi & Sarkar [21] and DNS of Pantano & Sarkar
[16]. In the self-similar region (i.e., after a sufficiently long time), the values
of the diagonal components of b;; reach a constant value. The present peak
values are very close to those of Pantano & Sarkar [16]. The anisotropy in
the streamwise is stronger than in the other directions.

5.2. The compressible cases

In the previous section it was demonstrated for the base quasi-incompressible
case that the algorithm and the solver produce the correct physical mecha-
nisms behind the TSL instability. In the following cases, the behavior of the
algorithm in the presence of compressibility effects is investigated. For this
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Table 2: Comparison of the peaks of the Reynolds stress anisotropies for
M, =0.3.

bui baa b2
Foysi & Sarkar[21] (LES) 0.35 —0.20 0.21
Pantano & Sarkar[16] (DNS) 0.26 —0.16 0.19
Present DNS 0.25 —0.16 0.17

purpose, variations of M. between 0.3 to 0.9 are studied. The results are
presented and are compared with the previous experimental and numerical
studies. Compressibility effects are also analyzed.

Fig. 6a compares the time evolutions of the momentum thicknesses for
different convective Mach numbers. A linear fit for each curve is plotted in
the self-similar region for calculation and comparison of the growth rates. It
is observed that the time required to obtain to a self-similar state increases
with increasing M,.. The growth rate values are normalized by the base
incompressible growth rate value and are plotted against M. in Fig. 6b.
The filled circles represent our results. As is clearly seen, the compressibility
reduces the growth rate of the instabilities, agreeing well with many previous
results and the widely accepted Langley experimental curve represented by
solid line [16, 22, 23, 24, 25, 26].

Figure 7 shows that the compressibility effects reduce the Reynolds stress
terms, production and dissipation, which is consistent with the previous stud-
ies [16, 14, 21, 27]. The reduction in production is the source of the decrease
in the growth rate, as confirmed by the other DNS studies [16, 14, 21]. The
turbulent dissipation is less affected by the compressibility than the other
terms, as previously noted in [16, 21]. A slight increase is observed in the
peak values of the Reynolds stress anisotropies at early times. The diagonal
components are more affected than the off-diagonal ones. The overall effect
of increasing M, on the values of b;;’s is not large, which is consistent with
previous numerical studies [16, 21].

6. Conclusions

An in-house, fully parallel DNS solver, iDNS, was developed based on
a fully implicit, non-dissipative, discrete kinetic energy conserving, all-speed

flow algorithm and was successfully applied to temporally-evolving Turbulent
Shear Layer (TSL) problem.

14



30
| o Mc=0'3
i ° M. =0.5
25 N o M =0.7 /
i s M=09 -
20 ; OAO “
| R
| OA
. 2
g | o
) = o®
Q15| I
Lo} B e
10 = el g
| AO
| (¢}
e O
B @
B o @
2}
5k
| g@@)
B @%
¢
0 L R ! R R |
0 500 1000 1500 2000 2500
t/t
(a)
1.2 — O Clemens and Mungal (EXP)
i \V4 Debisschop and Bonnet (EXP)
o | Hall et. al. (EXP)
11 ——— Langley curve (EXP)
= X Pantano and Sarkar (DNS)
1 - Papamoschou and Roshko (EXP)
- ]  samimy and Elliot (EXP)
o9k 4{ ° Present DNS
= o8|
o o
w 0.7F
) -
= 06fF
o o
o’ B
S 0.5 -
04
03 <
02F A £l
01\:\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I
' 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 6: Comparison of the momentum thicknesses (a) and the growth rates

(b) for different values of M..

(b)

15



0.18 T ° ° v v v
5 > v
- [ ]
0.16 |- A v
5 > °
n [m] fal
0.14 >
> ! o
< |
4012
m =
~ |
01 ; u} Debisschop and Bonnet (EXP)
L A Elliot and Samimy (EXP)
| v Goebel and Dutton (EXP)
| 4 Pantano and Sarkar (DNS)
0.08 & Wyganski and Fiedler (EXP)
- ° Present DNS
0.06 |-
i ] ] ]
0 0.5 1 1.5
MC
(a)
ul Debisschop and Bonnet (EXP)
0.18 - N Elliot and Samimy (EXP)
B v Goebel and Dutton (EXP)
B > Pantano and Sarkar (DNS)
0.16 B & Wyganski and Fiedler (EXP)
- v ° Present DNS
0.144
i L .
012 °
B N °
> [ NI 4
2 0.1F vog = >
Dim B v
= 0.08 u - A
- v
0.06 |~
B v
0.04
002
07\\\I\\\I\\\I\\\I\\\I\\\I\\\I\\
0 0.2 0.4 0.6 0.8 1 1.2 1.4

(b)

Figure 7: The effect of compressibility on the various terms of the Reynolds
stress transport equation (cont.) 16



o M_=0.3 Pantano and Sarkar (DNS)
M.=0.3 Present DNS

0.0025 - < MZ:OJ Pantano and Sarkar (DNS)
I — — — M_=0.7 Present DNS
i M_=0.9
0.002 |- °
c
S 0.0015
3]
S
°
e
o 0.001
0.0005
0
(c)
i a M_=0.3, Rogers and Moser (DNS)
0.0004 |~ o M_=0.3, Pantano and Sarkar (DNS)
L M_=0.3, Present DNS
0.0002 - ° M,=0.7, Pantano and Sarkar (DNS)
B — — — — M=0.7, Present DNS
- M_=0.9, Present DNS
Ok c
-0.0002 |
w—0.0004 :—
-0.0006 |-
-0.0008 |-
-0.001 |
-0.0012 [
N [ 1 ! 1 ! 1 ]
0'0014-4 -2 0 2 4
y/d,
(d)

Figure 7: The effect of compressibility on the various terms of the Reynolds
stress transport equation. 17



TSL simulation results prove that the algorithm is capable of captur-
ing the evolution of the perturbations into a non-linear hydrodynamic state
which can be regarded as the onset of the turbulence. By doing this study, we
performed further assessment of the algorithm and examined its behavior and
applicability to these kinds of flows, including complex spatial and temporal
multi-scale physics. All the results compare well to the previous experimen-
tal and numerical results. It seems that non-dissipativeness and discrete
kinetic energy conserving properties work well. The improved convergence
characteristic obtained via a time and space-relaxed procedure for the pres-
sure saves the computational resources and prevents the loss of accuracy at
low-Mach numbers. A dissipative mechanism is necessary for studying higher
Mach numbers. However, single, unified approaches are very attractive for
solving such complex problems.
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