
Linear Bayesian Reinforcement Learning

Nikolaos Tziortziotis
ntziorzi@gmail.com

University of Ioannina

Christos Dimitrakakis
christos.dimitrakakis@gmail.com

EPFL

Konstantinos Blekas
kblekas@cs.uoi.gr

University of Ioannina

Abstract
This paper proposes a simple linear Bayesian ap-
proach to reinforcement learning. We show that
with an appropriate basis, a Bayesian linear Gaus-
sian model is sufficient for accurately estimating
the system dynamics, and in particular when we
allow for correlated noise. Policies are estimated
by first sampling a transition model from the cur-
rent posterior, and then performing approximate
dynamic programming on the sampled model. This
form of approximate Thompson sampling results in
good exploration in unknown environments. The
approach can also be seen as a Bayesian general-
isation of least-squares policy iteration, where the
empirical transition matrix is replaced with a sam-
ple from the posterior.

1 Introduction
Reinforcement learning is the problem of learning how to act
in an unknown environment solely by interaction. The agent’s
goal is to find a policy for selecting actions that maximises its
expected utility. More specifically, we consider a discrete-
time setting, such that at time t the agent observes a reward
rt ∈ R, while its utility is the random quantity:

U =
∞∑
t=0

γtrt, (1.1)

where γ ∈ (0, 1) is a discount factor. The expected utility of
policy π ∈ Π for environment µ ∈M is denoted by Eµ,π U .
However, since the environment µ is unknown to the agent,
optimising with respect to π is not possible.

We consider reinforcement learning problems where the
underlying environment is a Markov decision process (MDP).
In this setting at each time step t the agent observes the envi-
ronment state st ∈ S, as well as the reward rt. The agent then
takes an action at ∈ A, before observing a new state-reward
pair (st+1, rt+1). In MDPs, the environment dynamics are
Markovian. Consequently, for a given MDP µ ∈Mwe have:

Pµ(st+1 ∈ S | st = s, at = a) = Tµ(S | s, a) (1.2)

where Tµ is a conditional measure on the space of states S.
That is, Tµ(S | s, a) is the probability that the next state is in

the set S when we take action a from state s in the MDP µ.
We assume that the reward is a deterministic function of the
state and action rt+1 = Rµ(st, at).

This paper focuses on Bayesian methods for solving the re-
inforcement learning problem (see [Vlassis et al., 2012] for
an overview). This is a decision-theoretic approach [DeG-
root, 1970], with two key ideas. The first is to select an
appropriate prior distribution ξ about the unknown environ-
ment, such that ξ(µ) represents our subjective belief that µ is
the true environment. The second is to replace the expected
utility over the real environment, which is unknown, with the
expected utility under the subjective belief ξ, i.e.

Eξ,π U =

∫
M

(Eµ,π U) dξ(µ). (1.3)

Formally, it is then possible to optimise with respect to the
policy which maximises the expected utility over all possible
environments, according to our belief. However, our future
observations will alter our future beliefs according to Bayes’
theorem. In particular the posterior mass placed on a set of
MDPs B ⊂M given a history ht composed of a sequence of
states, st = s1, . . . , st, actions at−1 = a1, . . . , at−1, is:

ξ(B | ht) ,
∫
B

∏t
k=1

d
dν Tµ(st+1 | at, st) dξ(µ)∫

M
∏t
k=1

d
dν Tµ(st+1 | at, st) dξ(µ)

, (1.4)

where d
dν Tµ denotes the Radon-Nikodym derivative with re-

spect to some measure ν on S.1 Consequently, the Bayes-
optimal policy must take into account all potential future be-
lief changes. For that reason, it will not in general be Marko-
vian with respect to the states, but will depend on the com-
plete history.

Most previous work on Bayesian reinforcement learning
in continuous environments has focused on Gaussian process
models for estimation. However, these suffer from two limita-
tion. Firstly, they have significant computational complexity.
Secondly, each dimension of the predicted state distribution
is modeled independently. In this paper, we investigate the
use of Bayesian inference under the assumption that the dy-
namics are (perhaps under a transformation) linear. Then the
modeling problem becomes multivariate Bayesian linear re-
gression, for which we can calculate (1.4) efficiently online.

1In the discrete case we may simply use Pµ(st+1 | at, st).

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

1721

An other novelty of our approach in this context is that we
do not simply use the common heuristic of acting as though
the most likely or expected model is correct. Instead, gener-
ate a sample model from the posterior distribution. We then
draw trajectories from the sampled model and collect simu-
lated data which we use to obtain a policy. The policy is then
executed in the real environment. This form of Thompson
sampling is known to be a very efficient exploration method
in bandit and discrete problems. We also show its efficacy for
continuous domains.

The remainder of this paper is organised as follows. Sec-
tion 2 gives an overview of related work and our contribution.
Section 3 formally introduces our approach, with a descrip-
tion of the inference model in Sec. 3.1, and the policy se-
lection method used in Sec. 3.2. Finally, the details of the
online and off-line versions of our algorithms are detailed in
Sec. 3.3. Experimental results are presented in Sec. 4 and we
conclude with a discussion of future directions in Sec. 5.

2 Related work and our contribution
As mentioned in the introduction, Bayesian reinforcement
learning models the reinforcement learning problem as a
decision-theoretic problem by placing a prior distribution ξ
on the set of possible MDPsM. However, the exact solution
of the decision problem is generally intractable as the trans-
formed problem becomes a Markov decision processes with
exponentially many states [Duff, 2002].

One of the first and most interesting approaches for approx-
imate Bayesian reinforcement learning is Thompson sam-
pling, which is also used in this paper. The idea is to sam-
ple a model from the posterior distribution, calculate the
optimal policy for the sampled model, and then follow it
for some period [Strens, 2000]. Thompson sampling has
been recently shown to perform very well both in theory
and practice in bandit problems [Kaufmanna et al., 2012;
Agrawal and Goyal, 2012]. Extensions and related models
include Bayesian sparse sampling [Wang et al., 2005], which
uses Thompson sampling to deal with node expansion in the
tree search. Taking multiple samples from the posterior can
be used to estimate upper and lower bounds on the Bayes-
optimal value function, which can then be used for tree search
algorithms [Dimitrakakis, 2008; 2010]. Multiple samples can
also be used to create an augmented optimistic model [As-
muth et al., 2009; Castro and Precup, 2010]; or they can
be used to construct a better lower bound [Dimitrakakis,
2011]. Finally, multiple samples can also be combined via
voting schemes [Doshi-Velez, 2009]. Other approaches at-
tempt to build optimistic models without sampling. For ex-
ample [Kolter and Ng, 2009] adds an exploration bonus to
rewards, while [Araya et al., 2012] uses optimistic transition
functions by constructing an augmented MDP in a Bayesian
analogue of UCRL [Jacksh et al., 2010].

For continuous state spaces, most Bayesian approaches
have focused on Gaussian process (GP) models [Rasmussen
and Kuss, 2004; Jung and Stone, 2010; Engel et al., 2005;
Reisinger et al., 2008; Deisenroth et al., 2009]. There are two
key ideas that set our method apart from this work. Firstly,
GP models are typically employed independently for each

state feature. In contrast, the model we use deals naturally
with correlated state features – consequently, less data may
be necessary. Secondly, we do not calculate policies using
the expected transition dynamics of the environment, as this
is known to have potentially bad effects [Poupart et al., 2006;
Dimitrakakis, 2011]. Instead, value functions and policies
are calculated by sampling from the posterior distribution of
environments. This also important for efficient exploration.

This paper proposes a linear model-based Bayesian frame-
work for reinforcement learning, for arbitrary state spaces S
and for discrete action spaces A using Thompson sampling.
First, we define a prior distribution on linear dynamical mod-
els, using a suitably chosen basis. Bayesian inference in this
model is fully closed form, so that given a set of example tra-
jectories it is easy to sample a model from the posterior dis-
tribution. For each such sample, we estimate the optimal pol-
icy. Since closed-form calculation of the optimal policy is not
possible for general cost functions even with linear dynamics,
we use approximate dynamic programming (ADP, see [Bert-
sekas, 2005] for an overview) with trajectories drawn from
the sampled model. The resulting policy can then be applied
to the real environment.

We experimented with two different ADP approaches for
finding a policy for a given sampled MDP. Both are approx-
imate policy iteration (API) schemes, using a set of trajecto-
ries generated from the sampled MDP to estimate a sequence
of value functions and policies. For the policy evaluation step,
we experimented with fitted value iteration (FVI) [Ernst et al.,
2005] and least-square temporal differences (LSTD) [Bradtke
and Barto, 1996].

In the case where we use LSTD, the approach can be seen
as an online, Bayesian generalisation of least-squares policy
iteration (LSPI) [Lagoudakis and Parr, 2003]. Instead of per-
forming LSTDQ on the empirical transition matrix, we per-
form a least-squares fit on a sample model drawn from the
posterior. This fit can be very accurate by drawing a large
amount of simulated trajectories in the sampled model.

We consider two applications of this approach. In the of-
fline case, data is collected using a uniformly random policy.
We then generate a model from the posterior distribution and
calculate a policy for it, which is then evaluated in the real en-
vironment. In the online case, data is collected using policies
generated from the sampled models, as in Thompson sam-
pling. At the beginning each episode, a model is sampled
from the posterior and the resulting policy is executed in the
real environment. Thus, there is no separate data collection
and evaluation phase. Our results show that this approach
successfully finds optimal policies quickly and consistently
both in the online and in the offline case, and that it has a
significant overall advantage over LSPI.

3 Linear Bayesian reinforcement learning
The model presented in this paper uses Bayesian inference
to estimate the environment dynamics. The assumption is
that, with a suitable basis, these dynamics are linear with
Gaussian noise. Unlike approaches using Gaussian pro-
cesses, however, the next-state distribution is not modeled
using a product distribution, i.e. we do not assume that

1722

the various components of the state are independent. In a
further innovation, rather than using the expected posterior
parameters, we employ sampling from the posterior distri-
bution. For each sampled model, we then obtain an ap-
proximately optimal policy by using approximate dynamic
programming, which is then executed in the real environ-
ment. This form of Thompson sampling [Strens, 2000;
Thompson, 1933] allows us to perform efficient exploration,
with the policies naturally becoming greedier as the posterior
distribution converges.

3.1 The predictive model
In our model we assume that, for a state set S there exists a
mapping f : S → X to a k-dimensional vector space X such
that the transformed state at time t is xt , f(st). The next
state st+1 is given by the output of a function g : X ×A → S
of the transformed state, the action and some additive noise:

st+1 = g(xt, at) + εt. (3.1)
In this paper, we model the noise εt and the function g
as a multivariate linear-Gaussian model. This is parameter-
ized via a set of k × k design matrices {Ai | i ∈ A}, such
that g(xt, at) = Aatxt and a set of covariance matrices
{Vi | i ∈ A} for the noise. Then, the next state distribution
is:

st+1 | xt = x, at = i ∼ N (Aix,Vi). (3.2)
In order to model our uncertainty with a (subjective) prior

distribution ξ, we have to specify the model structure. In our
model, we do not assume independence between the output
dimensions, something which could potentially make infer-
ence difficult. Fortunately, in this particular case, a conjugate
prior exists in the form of the matrix-normal distribution for
A and the inverse-Wishart distribution for V . Given Vi, the
distribution for Ai is matrix-normal, while the marginal dis-
tribution of Vi is inverse-Wishart. More specifically,

Ai | Vi = V̂ ∼ φ(Ai |M ,C, V̂) (3.3)
Vi ∼ ψ(Vi |W , n), (3.4)

where φi is the prior distribution on dynamics matrices condi-
tional on the covariance and two prior parameters: M , which
is the prior mean and C which is the prior output (dependent
variable) covariance. Finally, ψ is the marginal prior on co-
variance matrices, which has an inverse-Wishart distribution
with W and n. More precisely, the distributions are:

φ(Ai |M ,C, V̂) ∝ e−
1
2 tr[(Ai−M)>V −1

i (Ai−M)C], (3.5)

ψ(Vi |W , n) ∝ |V −1W /2|n/2e− 1
2 tr(V −1W). (3.6)

Essentially, the model is an extension of the univariate
Bayesian linear regression model (see for example [DeGroot,
1970]) to the multivariate case via vectorisation of the mean
matrix. Since the prior is conjugate, it is relatively simple
to calculate posterior values of the parameters after each ob-
servation. While we omit the details, a full description of
inference using this model is given in [Minka, 2001].

Throughout this text, we shall employ ξt = (φt, ψt) to
denote our posterior distributions at time t, with ξt referring
to our complete posterior. The remaining problem is how to
estimate the Bayes-expected utility of the current policy and
how to perform policy improvement.

3.2 Policy evaluation and optimisation
In the Bayesian setting, policy evaluation and optimisation
are not trivial. The most common method used is the ex-
pected MDP heuristic, where policies are evaluated or opti-
mised on the expected MDP. However, this ignores the shape
of the posterior distribution. Alternatively, policies can be
evaluated via Monte Carlo sampling, but then optimisation
becomes hard. A good heuristic that does not ignore the com-
plete posterior distribution and for which it is easy to calcu-
late a policy, called Thompson sampling, is the one we shall
actually employ in this paper. The following paragraphs give
a quick overview of each method.

Expected MDP A naive way to estimate the expected util-
ity of a policy is to first calculate the expected (or most proba-
ble) dynamics, and then use either an exact or an approximate
dynamic programming algorithm. This may very well be a
good idea if the posterior distribution is sharply concentrated
around the mean, since then:

Eξ,π U ≈ Eµξ,π U, µξ , Eξ µ. (3.7)

where µξ is the expected MDP model.2 However, as pointed
out in [Araya et al., 2012; Dimitrakakis, 2011] this approach
may give completely incorrect results,

Monte Carlo sampling An alternative method is to take a
number of samples µi from the current posterior distribution
and then calculate the expected utility of each, i.e.

Eξ,π U =
1

K

K∑
i=1

Eµi,π U +O(K−1/2), µi ∼ ξt. (3.8)

This form of Monte Carlo sampling gives much more accu-
rate results, at the expense of some additional computation.
However, finding an optimal policy over a set of sampled
MDPs is difficult even for restricted classes of policies [Dim-
itrakakis, 2011]. Nevertheless, Monte Carlo sampling can
also be used to obtain stochastic upper and lower bounds on
the value function, which can be used to improve the policy
search [Dimitrakakis, 2010; 2008].

Thompson sampling An interesting special case is when
we only sample a single MDP, i.e. when we perform Monte
Carlo sampling with K = 1. Then it is relatively easy to
calculate the optimal policy for this sample. This method,
which we employ in this work, is called Thompson sampling,
and was first used in the context of reinforcement learning
by [Strens, 2000]. The idea is to sample an MDP from the
current posterior and then calculate a policy that is optimal
with respect to that MDP. We then execute this policy in the
environment. The major advantage of Thompson sampling is
that it is known to result in a very efficient form of exploration
(see for example [Agrawal and Goyal, 2012] for recent results
on bandit problems).

2Similar problems exist when using the most probable MDP in-
stead.

1723

3.3 Algorithm overview
We can now put everything together for the complete linear
Bayesian reinforcement learning (LBRL) algorithm. The al-
gorithm has four steps. Firstly, sampling a model from the
posterior distribution. Secondly, using the sampled model to
calculate a new policy. Finally, executing this policy in the
real environment. In the online version of the algorithm the
data obtained by executing this policy is then used to calcu-
late a new posterior distribution.

Sampling from the posterior Our posterior distribution at
time t is ξt = (φt, ψt), with ψt being the marginal posterior
on covariance matrices, and φt being the posterior on design
matrices (conditional on the covariance). In order to sample
a model from the posterior, we first draw a covariance ma-
trix Vi using (3.4) for every action i ∈ A, and then plug
those into (3.3) to generate a set of design matrices Ai. The
first step requires sampling from the inverse-Wishart distribu-
tion (which can be done efficiently using the algorithm sug-
gested by [Smith and Hocking, 1972]), and the second from
the matrix-normal distribution.

ADP on the sampled MDP Given an MDP µ sampled from
our posterior belief, we can calculate a nearly-optimal pol-
icy π using approximate dynamic programming (ADP) on µ.
This can be done with a number of algorithms. Herein, we
investigated two approximate policy iteration (API) schemes,
using either fitted value iteration (FVI) or least-squares tem-
poral differences (LSTD) for the policy evaluation step. Both
of these algorithms require sample trajectories from the envi-
ronment. This is fortunately very easy to achieve, since we
can use the sampled model to generate any number of trajec-
tories arbitrarily. Consequently, we can always have enough
simulated data to perform a good fit with FVI or LSTD.3 We
note here that API using LSTD additionally requires a gen-
erative model for the policy improvement step. Happily, we
can use the sampled MDP µ for that purpose.4

Algorithm 1 LBRL: Linear Bayesian reinforcement learning
Input Basis f , ADP parameters P , prior ξ0
for episode k do
µ(k) ∼ ξtk(µ) // generate MDP from posterior
π(k) = ADP(µ(k), P) // Get new policy
for t = tk, . . . , tk+1 − 1 do
at | st = s ∼ π(k)(a | s) // Take action
ξt+1(µ) = ξt(µ | st+1, at, st) // Update posterior

end for
end for

Offline LBRL In the offline version of the algorithm, we
simply collect a set of trajectories from a uniformly random

3These use no data collected in the real environment.
4In preliminary experiments, we also investigated the use of fit-

ted Q-iteration and LSPI, but found that these had inferior perfor-
mance.

policy, comprising a history ht of length t. Then, we sample
an MDP from the posterior ξt(µ) = ξ0(µ | ht) and calculate
the optimal policy for the sample using ADP. This policy is
then evaluated on the real environment.

Online LBRL In the online version of the algorithm,
shown in Alg. 1 we collect samples using our own generated
policies. We begin with some initial belief ξ0 = (φ0, ψ0)
and a uniformly random policy π(0). This policy is executed
until either the episode ends naturally or due to reaching a
time-limit T . At the k-th episode, which starts at time tk, we
sample a new MDP µ(k) ∼ ξtk from our current posterior
ξtk(·) = ξ(· | htk) and then calculate a near-optimal station-
ary policy for µ(k):

π(k) ≈ argmax
π

Eµ(k),π U,

such that π(k)(a | s) is a conditional distribution on actions
a ∈ A given states s ∈ S. This policy is then executed in
the real environment until the end of the episode and the data
collected are used to calculate the new posterior. As the calcu-
lation of posterior parameters is fully incremental, we incur
no additional computational cost for running this algorithm
online.

4 Experiments
We conducted two sets of experiments to analyze both the of-
fline and the online performance of the various algorithms.
Comparisons have been made with the well-known least
square policy iteration (LSPI) algorithm [Lagoudakis and
Parr, 2003] for the offline case, as well as an online variant
[Buşoniu et al., 2010] for the online case. We used prelim-
inary runs and guidance from the literature to select the fea-
tures for the LSTDQ algorithm used in the inner loop of LSPI.
The source for all the experiments can be found in [Dimi-
trakakis et al.,].

We employed the same features for the ADP algorithms
used in LBRL. However, the basis used for the Bayesian re-
gression model in LBRL was simply f(s) , [s, 1]>. In
preliminary experiments, we found this sufficient for a high-
quality approximation. After that, we use API to find a good
policy for a sampled MDP, where we experimented with reg-
ularised FVI and LSTD for the policy evaluation step, adding
a regularisation factor 10−2I . In both cases, we drew sin-
gle step transitions from a set of 3000 uniformly drawn states
from the sampled model.

For the offline performance evaluation, we first drew roll-
outs from k = {50, 100, . . . , 1000} states drawn from the en-
vironment’s starting distribution, using a uniformly random
policy. The maximum horizon of each rollout was set equal
to 40. The collected data was then fed to each algorithm in or-
der to produce a policy. This policy was evaluated over 1000
rollouts on the environment.

In the online case, we simply use the last policy calculated
by each algorithm at the end of the last episode, so there is no
separate learning and evaluation phase. This means that effi-
cient exploration must be performed. For LBRL, this is done
using Thompson sampling. For online-LSPI, we followed the

1724

Figure 1: Offline performance comparison between LBRL-FVI, LBRL-LSTD and LSPI. The error bars show 95% confidence
intervals, while the shaded regions show 90% percentiles over 100 runs.

approach of [Buşoniu et al., 2010], who adopts an ε-greedy
exploration scheme with an exponentially decaying schedule
εt = εtd, with ε0 = 1. In preliminary experiments, we found
εd = 0.9968 to be a reasonable compromise. We compared
the algorithms online for 1000 episodes.

4.1 Inverted pendulum
The first set of experiments includes the inverted pendulum
domain, which tries to balance a pendulum by applying forces
of a mixed magnitude (50 Newtons). The state space consists
of two continuous variables, the vertical angle (θ) and the an-
gular velocity (θ̇) of the pendulum. The agent has at his arse-
nal three actions: no force, left force or right force. A zero re-
ward is received at each time step except in the case where the
pendulum falls (|θ| ≤ π/ 2). In this case, a negative (-1) re-
ward is given and a new rollout begins. Each rollout starts by
setting the pendulum in a perturbed state close to the equilib-
rium point. More information about the environment dynam-
ics can be found at [Lagoudakis and Parr, 2003]. Each rollout
is allowed to run for 3000 steps at maximum. Additionally,
the discount factor is set to 0.95. For FVI/LSTD and LSPI, we
used an equidistant 3×3 grid of RBFs over the state space fol-
lowing the suggestions of [Lagoudakis and Parr, 2003], which
was replicated for each action for the LSTDQ algorithm used
in LSPI.

4.2 Mountain car
In the second experimental set, we have used the mountain
car environment. Two continuous variables characterise the
vehicle state in the domain, its position (p) and its velocity
(u). The objective in this task is to drive an underpowered
vehicle up a steep road from a randomly selected position to
the right hilltop (p ≥ 0.5) with at most 1000 steps. In order
to achieve our goal, we can select between three actions: for-

ward, reverse and zero throttle. The received reward is −1
except in the case where the target is reached (zero reward).
At the beginning of each rollout, the vehicle is positioned to
a new state, with the position and the velocity uniformly ran-
domly selected. The discount factor is equal to 0.999. An
equidistant 4 × 4 grid of RBFs over the state space plus a
constant term is selected for FVI/LSTD and LSPI.

4.3 Results
In our results, we show the average performance in terms of
number of steps of each method, averaged over 100 runs. For
each average, we also plot the 95% confidence interval for the
accuracy of the mean estimate with error bars. In addition,
we show the 90% percentile region of the runs, in order to
indicate inter-run variability in performance.

Figure 1 shows the results of the experiments in the offline
case. For the mountain car, it is clear that the most stable
approach is LBRL-LSTD, while LSPI is the most unstable.
Nevertheless, on average the performance of LBRL-LSTD
and LSPI is similar, while LBRL-FVI is slightly worse. For
the pendulum domain, the performance of LBRL remains
quite good, with LBRL-LSTD being the most stable. While
LSPI manages to find the optimal policy frequently, neverthe-
less around 5% of its runs fail.5

Figure 2 shows the results of the experiments in the on-
line case. For the mountain car, both LSPI and LBRL-
LSTD managed to find an excellent policy in the vast ma-
jority of runs. In the pendulum domain, we see that LBRL-
LSTD significantly outperforms LSPI. In particular, after 80
episodes all more than 90% of the runs are optimal, while

5We note that the results presented in [Lagoudakis and Parr,
2003] for LSPI are slightly better, but remain significantly below
the LBRL results.

1725

Figure 2: Online performance comparison between LBRL-LSTD and LSPI. The error bars show 95% confidence intervals,
while the shaded regions show 90% percentiles over 100 runs.

many LSPI runs fail to find a good solution even after hun-
dreds of episode. The mean difference is somewhat less spec-
tacular, though still significant.

The success of LBRL-LSTD over LSPI can be attributed
to a number of reasons. Firstly, it could be the more efficient
exploration. Indeed, in the mountain car domain, where the
starting state distribution is uniform, we can see that LBRL
and LSPI have very similar performance. Another possible
reason is that LBRL also makes better use of the data, since
it uses it to calculate the posterior distribution over MDP dy-
namics. It is then possible to perform very accurate ADP
using simulated data from a model sampled from the poste-
rior. This is supported by the offline results in the pendulum
domain.

5 Conclusion
We presented a simple linear Bayesian approach to reinforce-
ment learning in continuous domains. Unlike Gaussian pro-
cess models, by using a linear-Gaussian model, we have the
potential to scale up to real world problems which Bayesian
reinforcement learning usually fails to solve with a reasonable
amount of data. In addition, this model easily takes into ac-
count correlations in the state features, further reducing sam-
ple complexity. We solve the problem of computing a good
policy in continuous domains with uncertain dynamics by us-
ing Thompson sampling. This not much more expensive than
computing the expected MDP and forces a natural exploration
behaviour.

In practice, the algorithm is at least as good as LSPI in
offline mode, while being considerably more stable overall.
When LBRL is used to perform online exploration, we find
that the algorithm very quickly converges to a near-optimal
policy and is extremely stable. Experimentally, it would be
interesting to compare LBRL with standard GP methods that

employ the expected MDP heuristic.
Thompson sampling could be used with other Bayesian

models for continuous state spaces. A natural extension
would thus be to move to a non-parametric model, e.g. re-
place the multivariate linear model with a multivariate Gaus-
sian process. The major hurdle would be the computational
cost. Consequently, in future work we would like to use a re-
cently proposed methods for efficient Gaussian processes in
the multivariate case, such as [Alvarez et al., 2011] that uses
convolution processes. Other Bayesian schemes for multi-
variate regression analysis [Mehmet, 2012] may be applica-
ble as well.

Finally, it would be highly interesting to consider other ex-
ploration methods. One example is the Monte-Carlo exten-
sion of Thompson sampling used in [Dimitrakakis, 2011],
which can also be used for continuous state spaces. Other
approaches, such as the optimistic transition MDP used
in [Araya et al., 2012] may not be so straightforward to adopt
to the continuous case. Nevertheless, while these approaches
may be costly computationally, we believe that they will be
beneficial in terms of performance.

Acknowledgements
We wish to thank the anonymous reviewers for their excel-
lent comments and suggestions. This work was partially sup-
ported by the Marie Curie Project ESDEMUU, Grant Number
237816 and by an ERASMUS exchange grant.

References
[Agrawal and Goyal, 2012] S. Agrawal and N. Goyal. Anal-

ysis of Thompson sampling for the multi-armed bandit
problem. In COLT 2012, 2012.

1726

[Alvarez et al., 2011] M. Alvarez, D. Luengo-Garcia,
M. Titsias, and N. Lawrence. Efficient multioutput
gaussian processes through variational inducing kernels.
2011.

[Araya et al., 2012] M. Araya, V. Thomas, O. Buffet, et al.
Near-optimal BRL using optimistic local transitions. In
ICML, 2012.

[Asmuth et al., 2009] J. Asmuth, L. Li, M. L. Littman,
A. Nouri, and D. Wingate. A Bayesian sampling approach
to exploration in reinforcement learning. In UAI 2009,
2009.

[Bertsekas, 2005] D. Bertsekas. Dynamic programming and
suboptimal control: From ADP to MPC. Fundamental
Issues in Control, European Journal of Control, 11(4-5),
2005. From 2005 CDC, Seville, Spain.

[Bradtke and Barto, 1996] S.J. Bradtke and A.G. Barto. Lin-
ear least-squares algorithms for temporal difference learn-
ing. Machine Learning, 22(1):33–57, 1996.

[Buşoniu et al., 2010] L. Buşoniu, D. Ernst, B. De Schutter,
and R. Babuška. Online least-squares policy iteration for
reinforcement learning control. In Proceedings of the 2010
American Control Conference, pages 486–491, 2010.

[Castro and Precup, 2010] P. Castro and D. Precup. Smarter
sampling in model-based Bayesian reinforcement learn-
ing. Machine Learning and Knowledge Discovery in
Databases, pages 200–214, 2010.

[DeGroot, 1970] M. H. DeGroot. Optimal Statistical Deci-
sions. John Wiley & Sons, 1970.

[Deisenroth et al., 2009] M.P. Deisenroth, C.E. Rasmussen,
and J. Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7-9):1508–1524, 2009.

[Dimitrakakis et al.,] C. Dimitrakakis, N. Tziortziotis, and
A. Tossou. Beliefbox: A framework for statistical methods
in sequential decision making. http://code.google.com/p/
beliefbox/.

[Dimitrakakis, 2008] C. Dimitrakakis. Tree exploration for
Bayesian RL exploration. In Computational Intelligence
for Modelling, Control and Automation, International
Conference on, pages 1029–1034, Wien, Austria, 2008.
IEEE Computer Society.

[Dimitrakakis, 2010] C. Dimitrakakis. Complexity of
stochastic branch and bound methods for belief tree search
in Bayesian reinforcement learning. In ICAART 2010,
pages 259–264. Springer, 2010.

[Dimitrakakis, 2011] C. Dimitrakakis. Robust bayesian re-
inforcement learning through tight lower bounds. In Euro-
pean Workshop on Reinforcement Learning (EWRL 2011),
number 7188 in LNCS, pages 177–188, 2011.

[Doshi-Velez, 2009] Finale Doshi-Velez. The infinite par-
tially observable Markov decision process. In Advances
in Neural Information Processing Systems 21, Cambridge,
MA, 2009. MIT Press.

[Duff, 2002] M. O. Duff. Optimal Learning Computa-
tional Procedures for Bayes-adaptive Markov Decision

Processes. PhD thesis, University of Massachusetts at
Amherst, 2002.

[Engel et al., 2005] Y. Engel, S. Mannor, and R. Meir. Rein-
forcement learning with gaussian process. In International
Conference on Machine Learning, pages 201–208, 2005.

[Ernst et al., 2005] D. Ernst, P. Geurts, and L. Wehenkel.
Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research, 6:503–556, 2005.

[Jacksh et al., 2010] T. Jacksh, R. Ortner, and P. Auer. Near-
optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 11:1563–1600, 2010.

[Jung and Stone, 2010] T. Jung and P. Stone. Gaussian pro-
cesses for sample-efficient reinforcement learning with
RMAX-like exploration. In ECML/PKDD 2010, pages
601–616, 2010.

[Kaufmanna et al., 2012] E. Kaufmanna, N. Korda, and
R. Munos. Thompson sampling: An optimal finite time
analysis. In ALT-2012, 2012.

[Kolter and Ng, 2009] J. Z. Kolter and A. Y. Ng. Near-
Bayesian exploration in polynomial time. In ICML 2009,
2009.

[Lagoudakis and Parr, 2003] M.G. Lagoudakis and R. Parr.
Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

[Mehmet, 2012] G. Mehmet. A bayesian multiple kernel
learning framework for single and multiple output regres-
sion. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI), pages 354–359, 2012.

[Minka, 2001] T. P. Minka. Bayesian linear regression. Tech-
nical report, Microsoft research, 2001.

[Poupart et al., 2006] P. Poupart, N. Vlassis, J. Hoey, and
K. Regan. An analytic solution to discrete Bayesian rein-
forcement learning. In ICML 2006, pages 697–704. ACM
Press New York, NY, USA, 2006.

[Rasmussen and Kuss, 2004] C.E. Rasmussen and M. Kuss.
Gaussian processes in reinforcement learning. In Ad-
vances in Neural Information Processing Systems 16,
pages 751–759, 2004.

[Reisinger et al., 2008] J. Reisinger, P. Stone, and R. Mi-
ikkulainen. Online kernel selection for bayesian reinforce-
ment learning. In International Conference on Machine
Learning, pages 816–823, 2008.

[Smith and Hocking, 1972] WB Smith and RR Hocking.
Wishart variates generator, algorithm as 53. Applied Statis-
tics, 21:341–345, 1972.

[Strens, 2000] M. Strens. A Bayesian framework for rein-
forcement learning. In ICML 2000, pages 943–950, 2000.

[Thompson, 1933] W.R. Thompson. On the Likelihood that
One Unknown Probability Exceeds Another in View of the
Evidence of two Samples. Biometrika, 25(3-4):285–294,
1933.

1727

[Vlassis et al., 2012] N. Vlassis, M. Ghavamzadeh, S. Man-
nor, and P. Poupart. Reinforcement Learning, chap-
ter Bayesian Reinforcement Learning, pages 359–386.
Springer, 2012.

[Wang et al., 2005] T. Wang, D. Lizotte, M. Bowling, and
D. Schuurmans. Bayesian sparse sampling for on-line re-
ward optimization. In ICML ’05, pages 956–963, New
York, NY, USA, 2005. ACM.

1728

