
Symbolic Interpretation and Execution of
Extended Finite Automata ⋆

Mohammad Reza Shoaei ∗ Bengt Lennartson ∗

∗ Department of Signals and Systems, Chalmers University of
Technology, SE-412 96, Gothenburg, Sweden

(email: {shoaei, bengt.lennartson}@chalmers.se).

Abstract: We introduce a symbolic interpretation and execution technique for Extended
Finite Automata (EFAs) and provide an interpreter that symbolically interprets and executes
EFAs w.r.t. their (internal) variables. More specifically, the interpreter iterates over the EFA
transitions, and by passing each transition, it symbolically interprets and evaluates the condition
on the transition w.r.t. the known values of variables, and leaves other variables intact, and when
it terminates, it returns the residual model. It is shown that the behavior of the residual system
with respect to the original system is left unchanged. Finally, we demonstrate the effectiveness
and necessity of the symbolic interpretation and execution combined with abstractions for the
nonblocking supervisory control of two manufacturing systems.

Keywords: Discrete-event systems; symbolic interpretation; supervisory control theory.

1. INTRODUCTION

Traditionally, finite-state automata have been used for the
supervisory control of discrete-event systems (DES), Cas-
sandras and Lafortune [2008] and Wonham [2013], which
has been found to be non-trivial for complex systems with
data. Modeling using Extended Finite Automata (EFAs),
i.e., an ordinary finite automaton whose transitions are
augmented with variable updates, makes it possible to,
efficiently and in a compact form, model DES that involve
non-trivial data manipulation, see Skoldstam et al. [2007].

A challenge with this new control framework is to symbol-
ically interpret and optimize the models before synthesiz-
ing the controller in order to be able to exploit various
abstraction methods, such as Shoaei et al. [2012] and
Mohajerani et al. [2013]; reducing the complexity and more
often avoiding state-space explosion. To this end, a naive
attempt would be to expand the domain of “internal” vari-
ables on every transition of the system. This is, however,
not efficient (in particular, for variables with large domain)
as it requires to “blindly” expand the domain, not only
those particular values which are required.

To overcome this problem, we introduce a symbolic inter-
pretation and execution (or just interpretation) technique
for EFAs. The interpretation process is performed by an
interpreter J.K that iterates over the EFA transitions and,
instead of blind expansion of the domain of variables, it
symbolically interprets and executes, or more specifically,
partially evaluates the condition on that transitions w.r.t.
the known variables value in the context. When J.K termi-
nates, it returns the “residual” EFA model.

The overall motivation for interpretation of EFAs is that
analyzing the residual models is often more efficient than
analyzing the original ones, since the interpreter J.K has
already pre-executed the portions of system that depend
on the internal variables without computing the global
(explicit) model. This pays off when, e.g, one seeks for

⋆ This work was carried out at the Wingquist Laboratory VINN Ex-
cellence Center within the Area of Advance –Production at Chalmers
University of Technology, supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA).

abstraction possibilities to further reduce the complexity
of the system before constructing the global model. An-
other application of EFA interpretation can be seen in the
process of synthesizing a supervisor for EFAs using BDDs,
see Miremadi et al. [2012]. In this, one can, instead of
directly convert the EFA models to BDDs, first interpret
and execute the (internal) variables and simplify the mod-
els, then convert the residual models to BDDs. This can,
sometimes significantly, help to decrease the number of
BDD variables and avoid (possible) out of memory errors.

In this paper, we provide an algorithm that implements
the interpreter J.K. Further, we formulate the partial eval-
uation (execution) process by a proof calculus, of which
we show its soundness. Furthermore, for the purpose of
supervisory control, we provide sufficient conditions to
guarantee that the behavior of the residual system is
left unchanged compared to the original system, hence
resulting in maximally permissive and nonblocking control
to the entire system by using the interpreted models.

We note that the proposed technique is conceptually
similar to that of program execution, cf. Jones et al.
[1993] and Hatcliff [2003]. In this paper, however, we
provide a basic starting point to bring the advantages
of the symbolic interpretation and execution to DES
with data and to the best of our knowledge, it is the
first attempt to use such a technique for the purpose of
supervisory synthesis. This paper also demonstrates the
importance of using not only abstractions, but also to
include the symbolic interpretation to obtain significant
state reduction before ordinary synthesis.

The rest of the paper is organized as follows. Section 2
briefly recall the predicates, their syntax and semantics,
and defines EFAs. In Section 3, we introduce the symbolic
interpretation and execution technique for EFAs together
with a calculus that mechanizes the partial evaluation
process of conditions. In Sections 4 we demonstrate the
symbolic interpretation combined with abstractions for
nonblocking supervisory control of two industrial manufac-
turing systems. Finally, we conclude our work in Section 5.
The proof details are referred to the appendix.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 228 10.3182/20140514-3-FR-4046.00129

2. PRELIMINARIES

In this section, we recall some basic definitions and con-
cepts to be used later.

2.1 Predicate Logic

Syntax The formulas of our logic are quantifier-free
first-order logic with equality over a countable set V of
individual variables x, y, . . . , and a signature set Θ con-
sisting of n-ary function symbols f ∈ Θ, where constants
are denoted by nullary functions, predicate symbols p ∈ Θ
including the binary equality symbol =, 1, 0, and the
propositional connectives↔,→,∧,∨,¬. A term t ∈ TΘ(V)
is a (well formed) expression over symbols in Θ and V . A
term is called a ground term if it contains no variables.
Formulas φ, ψ, . . . are defined inductively as follows. A
formula is either an atomic formula p(t1, . . . , tn) where p
is an n-ary predicate symbol and t1, . . . , tn are terms, a
spacial formula ⊥ (resp. ⊤) which is always false (resp.
true), or of the form ¬ϕ or ϕ ⊲ ψ where ⊲ ∈ {↔,→,∧,∨}
and ϕ, ψ are formulas.

Semantics Terms and formulas constructed over Θ and
V take on meaning when interpreted over a structure
called model. A model is a pair M=(D, I) consisting of:
A finite and nonempty set D called domain (or universe),
where we distinguish the values of an individual variable
x by a nonempty set Dx; and an interpreter function I
that assigns an n-ary function fI : Dn → D to each n-
ary function symbol f ∈ Θ where we regard constants
(nullary functions) as just elements of D, and an n-ary
relation pI ⊆ Dn to each n-ary predicate symbol p ∈ Θ.

Fix I and let D be the domain of variables. We define
a valuation map η : TΘ(V) → D on terms TΘ(V) over
variables V . A valuation is uniquely determined by its
values on V , since V generates TΘ(V). Moreover, any map
η : V → D extends uniquely to a valuation η : TΘ(V)→ D
by induction. A substitution is a mapping η : TΘ(V) →
TΘ(V). For a term t, η(t) = t[x/η(x)|∀x ∈ V] is a new
term obtained by “substituting” all (free) occurrences of
xi in t with ti (1 ≤ i ≤ n) and we denote by ǫ the
empty substitution such that ǫ(t) = t. The substitution
is done for all variables in t simultaneously. Furthermore,
we write η[x/t] (or η[x 7→ t]) to denote a new substitution
µ constructed from η such that µ(x) = t and µ(y) = η(y)
for y 6= x. We also write η[x 7→ ǫ] to denote that we drop
the substitution x/t from η. In this paper, without loss of
generality, we consider valuations as substitutions where a
valuation substitutes all variables to their ground terms.

The satisfaction relation � (also called semantic entail-
ment) is defined inductively on the structure of formulas
as usual [see Gallier, 2003]. If η � ϕ holds, we say that ϕ
is true (inM) under valuation η, or that η satisfies ϕ (in
M). If Γ is a set of formulas, we write η � Γ if η � ϕ for
ϕ ∈ Γ. If ϕ is true in all models, then we write � ϕ and say
that ϕ is valid. Two formulas φ, ψ are said to be logically
equivalent, denoted φ ≡ ψ, if � φ↔ ψ.

2.2 Proof Calculus

A proof calculus describes certain syntactic operations to
be carried out on formulas. We denote by ⊢ a calculus con-
taining “rules”, along with some definitions that say how
these rules are to be applied. The basic building blocks, to

which the rules or our calculus are applied are the sequents
of the form Γ =⇒ ∆ (in the literature also denoted as
Γ ⊢ ∆) where Γ and ∆ contain formulas. The formulas
on the left of the sequent arrow =⇒ are called antecedent
and the formulas on the right are called succedent. The
intuitive meaning of a sequent φ1, . . . , φm =⇒ ψ1, . . . , ψn
is as follows: whenever all the φi of the antecedent are
true, then at least one of the succedent is true, informally,∧
φi →

∨
ψj .

A rule (or schema) in the calculus is of the form

Ψ1, Ψ2, . . . , Ψn

Ψ0

where Ψi := Γi =⇒ ∆i for 0 ≤ i ≤ n denote sequents.
The sequent below the line is the conclusion of the rule
and the above sequents are its premises. A rule with no
premises is called a closing rule. The meaning of the rule
is that if the premises are valid, then the conclusion is also
valid. However, we use it in opposite direction, that is to
prove the validity of the conclusion, it suffices to prove the
premises.

A sequent proof is a tree that is constructed according to
a certain set of rules.

Definition 1. A proof tree for a formula φ is a finite tree
where the root sequent (shown at the bottom) is annotated
with =⇒ φ; each inner node of the tree is annotated at least
with a sequent; and a leaf node which may or may not be
annotated with a sequent. If it is, it is the (empty) premise
of one of the closing rules. A branch of a proof tree is a
path from the root to one of the leaves. A branch is closed
if the leaf is annotated with empty sequent. A proof tree
is closed if all its branches are closed.

We denote by Ψ0 Ψi a branch of a proof tree from the
root node Ψ0 to a node Ψi for some i ∈ N := {0, . . . , n},
whereN is the index set of n nodes. Let ⋆ denote an empty
sequent. Then, for a closed branch, we write Ψ0 Ψ⋆

i
instead of Ψ0 ⋆ where Ψ⋆

i is the conclusion of the rule
with empty premise. Further, we denote by πφ := {Ψ0

Ψi} the set of all branches in the tree. Then, we write π⋆
φ

when all the branches in πφ are closed, or that the proof
tree of φ is closed.

For example, consider the following proof for a formula φ
in some calculus ⊢:

Ψ3

Ψ1

⋆
Ψ4

⋆
Ψ5

Ψ2

Ψ0

The corresponding proof tree of the above proof has 8
nodes, Ψ0, . . . ,Ψ7, where Ψ0 is the root node and Ψ6,Ψ7
denote ⋆. Further, πφ := {Ψ0 Ψ3,Ψ0 Ψ⋆

4,Ψ0 Ψ⋆
5}

is the set of all branches. Clearly, πφ is not closed because
the branch Ψ0 Ψ3 is not closed.

A formula φ is valid in proof calculus ⊢, denoted ⊢ φ, iff
the proof tree for φ (Def. 1), is closed. Then it follows that
⊢ φ iff π⋆

φ, i.e., φ is valid in ⊢ if all branches of its proof
tree are closed. If this is the case, then we simply write
φ ⊢ π⋆

φ to denote that φ is valid in ⊢ according to a proof
tree with the set of branches π⋆

φ.

Definition 2. (Soundness). A calculus system ⊢ is said to
be sound w.r.t. a semantics � if ⊢ φ implies � φ.

In words, � φ holds whenever ⊢ φ is valid.

WODES 2014
Cachan, France. May 14-16, 2014

229

2.3 Extended Finite Automata

An Extended Finite Automaton (EFA) is a finite-state
automaton whose transitions are augmented with data,
Skoldstam et al. [2007], to symbolically represent DES.
In this paper, we formulate the data flow in systems by
means of predicates, henceforth conditions, on transitions.

EFA Syntax The behavior of DES, Wonham [2013] and
Cassandras and Lafortune [2008], can be recognized by a
finite-state automaton (FA) G = 〈Q,Σ, 7→, Q◦, Qm〉 with
the (finite) set of states Q, the (nonempty) alphabet Σ, the
transition function δ : Q×Σ→ Pwr(Q), where Pwr is the
power set, the set of initial state Q◦ and a set of marked
states Qm ⊆ Q. In this work, marked states are irrelevant
to our calculation and therefore, without loss of generality,
we assume that Qm = Q and we use the tuple 〈Q,Σ, δ, Q◦〉.
We write δ(q, σ)! if δ(q, σ) 6= ∅. The set of transitions in G
is 7→:= {(q, σ, q′) ∈ Q× Σ×Q | δ(q, σ)! and q′ ∈ δ(q, σ)}.

We sometimes write q
σ
7−→ q′ instead of (q, σ, q′) ∈ 7→. Let

Σ∗ be the set of all finite strings over Σ, including the
empty string ε. We write st ∈ Σ∗ for the concatenation
of two strings s, t ∈ Σ∗ and s ≤ t when s is a prefix
of t. Further, the notation δ is extended to strings in
Σ∗ in usual way [see Cassandras and Lafortune, 2008].
The closed language of the automaton G is defined by

L(G) := {u ∈ Σ∗|(∃q◦ ∈ Q◦; ∃p ∈ Q) q◦
u
7−→ p}.

Consider a set of variables V . In order to describe the
data flow on transition system of EFAs, we add a second
set of variables V ′, where each variable x in V has a
corresponding (next-state) variable x′ in V ′ over the same
domain. Let φg ∈ GV denote the set of formulas over
V called guard formulas (or just guards), and φa ∈ AV

denote the set of formulas over V ′ and/or V called action
formulas (or just actions). It is assumed that the actions
φa are deterministic, i.e., φa is of the form x′ = t′ for some
variable x′ and term t′.

Now, conditions c ∈ CV are formulas of the form c ≡ φg ∧
φa. Further, we denote by vars(c) (resp. vars′(c)) the set
of all variables x (resp. x′) appearing in c. Note that, if
V = ∅ then it is assumed that CV = {⊤,⊥}.

We now define extended finite automaton whose transi-
tions are augmented with conditions.

Definition 3. (Extended Finite Automaton). An extended
finite automaton is a tuple E = 〈V, L,Σ, T, ℓ◦, c◦〉, where V
is a finite set of variables, L is a finite set of locations, Σ is a
nonempty finite set of events (alphabet), T ⊆ L×Σ×CV×L
is the transition relation, where CV is the set of conditions
over V ∪ V ′, ℓ◦ ∈ L is the initial location, and c◦ ∈ GV is
the initial guard.

We denote by ℓ
σ:c
−−→ ℓ′ the presence of a transition in E,

from location ℓ to location ℓ′ with event σ ∈ Σ and
condition c ∈ CV .

EFA Semantics An instantaneous snapshot of data
flow at any moment in executing EFAs is determined
by the values of variables. Thus our locations contains
valuation of variables over the domain 1 .

1 Note that, in this paper we fix the interpretation over standard
interpretation of arithmetic symbols. However, any other interpreta-
tions can be used as long as a proper semantics is provided.

Let η and η′ be two valuations of the variables V and V ′,
respectively, over the domain D. Then, we associate the
pair (η, η′) with a condition c if (η, η′) � c. If (η, η′) � c
holds, we call η and η′ the present-state and the next-
state valuation. For example, let x be a variable over
domain {0, . . . , 5} and assume a transition with condition
c ≡ x > 2 ∧ x′ = x + 1. Given a present-state valuation
η[x/a], if there exists some b in the domain such that
(η[x/a], η′[x′/b])�c, then c results in the next-state valua-
tion η′[x/b] whenever the transition is fired. Otherwise, if
a ≤ 2 or a = 5, the transition is disabled.

For a condition c and subset of variables W ⊆ V , let c∧,W

denote a new condition

c∧,W ≡ c ∧
∧

y∈W−vars′(c)

y′ = y, (1)

namely, c∧,W keeps the current value of variables in W
which are not updated by c. The semantics of an EFA is
given by means of an FA as follows.

Definition 4. (EFA Semantics).
Let E = 〈V, L,Σ, T, ℓ◦, c◦〉 be an EFA. The finite-state
automaton G(E) of E is the tuple 〈QE ,ΣE , δE, Q

◦
E〉

with QE = L × D, ΣE = Σ, Q◦
E = {〈ℓ◦, η◦〉|η◦ �

c◦ for valuation η◦}, and the explicit transition relation
7→E⊆ QE × ΣE ×QE according to

SEM

ℓ
σ:c
−−→ ℓ′, (η, η′) � c∧,V

〈ℓ, η〉
σ
7−→ 〈ℓ′, η′〉

Intuitively, states of G(E) are pairs of locations ℓ and
valuations η. The transitions of G(E) are defined by the
above inference rule, stating that whenever there exists

a transition ℓ
σ:c
−−→ ℓ′ in E and two valuations η and η′

such that (η, η′) � c∧,V , there also exists a transition

〈ℓ, η〉
σ
7−→ 〈ℓ′, η′〉 in G(E).

EFA Behavior and Properties The behavior of E is
given by the language generated by its underlying explicit
transition system G(E). The language of E is defined as

L(E) := {u ∈ Σ∗|(∃p ∈ QE) q
◦ u
7−→E p}. For two EFAs E

and H , we say that E = H if and only if L(E) = L(H).

EFAs, similar to ordinary finite automata, are composed
by extended full synchronous composition (EFSC).

Definition 5. (EFSC).
Let Ek = 〈Vk, Lk,Σk, Tk, ℓ

◦
k, c

◦
k〉, k = 1, 2, be two EFAs.

The Extended Full Synchronous Composition of E1 and E2
is the tuple E1‖E2 = 〈V, L,Σ, T, ℓ◦, c◦〉, where V = V1∪V2,
L = L1 × L2, Σ = Σ1 ∪ Σ2, ℓ

◦ = 〈ℓ◦1, ℓ
◦
2〉, c

◦ = c◦1 ∧ c
◦
2,

Lm = Lm
1 × L

m
2 , and T is defined by the following rules:

SYN1

ℓ1
σ:c1−−→ ℓ′1, σ ∈ (Σ1 − Σ2)

〈ℓ1, ℓ2〉
σ:c1−−→〈ℓ′1, ℓ2〉

SYN2

ℓ2
σ:c2−−→ ℓ′2, σ ∈ (Σ2 − Σ1)

〈ℓ1, ℓ2〉
σ:c2−−→〈ℓ1, ℓ′2〉

SYN3

ℓ1
σ:c1−−→ ℓ′1, ℓ2

σ:c2−−→ ℓ′2, σ ∈ (Σ1 ∩ Σ2)

〈ℓ1, ℓ2〉
σ:c1∧c2−−−−−→〈ℓ′1, ℓ

′
2〉

Note that, in the rule SYN3, if 2 c1∧c2 then the underly-
ing transition in G(E1||E2) is not defined, see Def. 4; thus,
in general, we have L(E1‖E2) 6= L(E1)‖L(E2), where the
synchronous product ‖ for languages is defined as usual
[see Wonham, 2013].

WODES 2014
Cachan, France. May 14-16, 2014

230

1

2

3

γ σ:(y≤x∨z=x+1)
∧y′=z+1

λ:x≥2

β:z′=0

α:x′=x+1

Fig. 2. EFA E in the running example.

Labeled EFA Sometimes in our computation we need
to store substitutions on locations. To this end, we define
labeled EFA (LEFA) as follows.

Definition 6. (Labeled EFA). A labeled EFA is an ex-
tended Kripke-structure K = 〈V, L,Σ, T, ℓ◦, c◦,Λ,Φ〉,
where 〈V, L,Σ, T, ℓ◦, c◦〉 is an EFA E, Λ is a set of location
labels, and Φ : L→ Λ is a labeling function that associates
each location to a label.

An EFAE can be transformed to a LEFAK by considering
Λ be the set of all possible substitutions of variables and
Φ(ℓ) = ǫ for locations ℓ. Furthermore, all concepts and
notations that can be applied to EFAs are extended to
LEFAs in the straightforward way. The EFSC on EFAs
is simply extended to LEFAs by using Φ(〈ℓ1, ℓ2〉)E1‖E2

=
ΦE1

(ℓ1)ΦE2
(ℓ2), and ΛE1‖E2

= ΛE1
ΛE2

:= {η1η2|∀η1 ∈
Λ1, ∀η2 ∈ Λ2}. In what follows, the letter E subscripted or
not is used to represent both an EFA and its labeled EFA.

3. SYMBOLIC INTERPRETATION AND
EXECUTION OF EFAS

In practice, many systems use “internal” variables. Hence,
it is of great interest if we could symbolically interpret
systems modeled by EFAs w.r.t. their internal variables.
This can be useful for many techniques available for EFAs
such as abstractions, Shoaei et al. [2012] and Mohajerani
et al. [2013], and synthesis, Miremadi et al. [2008], since
the interpretation process has already pre-executed the
portions of system that depend on the internal variables
without computing the global (explicit) model.

To this end, we introduce an interpreter J.K for EFAs
according to the following intuition: For an EFA E with
a set of variables V and a subset of (internal) variables
Vint ⊆ V , the interpreter J.K starts from the initial location
of E with initial substitution of variables in Vint; iterates
over the transitions of E, and by passing each transition, it
symbolically interprets and partially evaluates (executes)
the condition on that transition w.r.t. the known values of
variables Vint from the previous step, and leaves the other
variables intact. Further, it stores the obtained values
(ground terms) as substitutions on the locations; and
when it terminates, i.e., reaching a fix point that no more
condition is left on the transitions or the evaluation results
in the same condition, it returns the interpreted parts of
E in form of a residual EFA, which we denote by JEKVint

.

This section is organized as follows: First we introduce a
proof calculus that formalizes the partial evaluation pro-
cess. Then, we provide an algorithm that implements the
interpretation process of EFAs. Throughout this section,
we use EFA E in Fig. 2, using variables x, y, z with the
domainDx := {0, 1, 2}, Dy = Dz := {0, . . . , 10} and initial
guard c◦ ≡ x = 0 ∧ y = 0 ∧ z = 0, as a running example,
for which we want to interpret E w.r.t. Vint = {x}.

Partial Evaluation For a condition c and a (present-
state) substitution η, we mechanize the steps in the partial
evaluation of c w.r.t. η by a proof calculus ⊢Vint

according

to the rules in Fig. 1. The sequents of ⊢Vint
are of the form

Γ =⇒ 〈ψ, . . . 〉∆. The element ∆ := (η, c∧,Vint
), which we

call configuration, is a pair of substitution η together with
the formula c∧,Vint

, as in Eq. (1). 〈ψ, . . . 〉 is a placeholder
for formulas, which we will process, and Γ contains the
processed formulas. The informal semantics of sequents
φ0, . . . , φm =⇒ 〈ψ0, . . . , ψn〉(η, c∧,Vint

) corresponds to the
formula ∧

0≤i≤m

φi →
∧

0≤j≤n

ψj ∧ η̇ ∧ c∧,Vint
, (2)

where η̇ :=
∧

x∈V x = η(x) and in particular ǫ̇ := ⊤.

The intuition behind the rules in Fig. 1 is the following:
Rule 1 states that for a root sequent =⇒ (η, c∧,Vint

) with
initial configuration (η, c∧,Vint

), it constructs a new sequent
of the form =⇒ 〈η(c∧,Vint

)〉(ǫ,⊤), where η(c∧,Vint
) is the

application of substitution η on c∧,Vint
. There are now other

rules that may be applied.
Rule 2 converts conjunctions to clauses of formulas and
Rule 3 converts disjunctions to premises, hence our proof
branches. Rule 4 is a closing rule which is applied whenever
the placeholder is exhausted.
Rule 5 takes formulas of the form x = t from the
placeholder; substitutes any occurrence of variable x in all
formulas with term t; conjuncts it to c′; and finally moves
it to the antecedent of the sequent.
Rule 6 deals with next-state variables, x′. It checks for the
formulas of the form x′ = t′ in the placeholder and if x is a
variable in Vint and t

′ is in the domain of x, it extends the
substitution η′ by η′[x′ 7→ t′]. Rule 7 takes any formula in
the placeholder but instead it just conjuncts them to c′.

Note that, first applying Rule 5 and then 6 results in a
“stronger” configuration since we first propagate the term
t to all formulas in the current sequent and then process
the other formulas. Similarly, applying Rule 5 and/or 6
first, until the placeholder is exhausted with x = t and
x′ = t′, and then 7 also results in a stronger configuration.
Therefore, in such cases, we always apply these rules in
a way that the end result is the strongest configuration,
namely in the following order: 5, 6, and then 7.

Note also that, in every step of the proof, it is assumed
that the formulas are presented in their simplified form,
e.g., ¬¬φ ≡ φ, ⊤ ∨ φ ≡ ⊤, ⊥ ∧ φ ≡ ⊥, etc. For other
simplification rules we refer to Gallier [2003].

We now clarify the above rules by the following example.
Consider the condition c ≡ (y ≤ x∨z = x+1)∧y′ = z+1 on
σ-transition of EFA E (see Fig. 2) and assume η := [x/1]
is the current substitution at location 2. Then, the proof
of the initial configuration ([x/1], (y ≤ x ∨ z = x + 1) ∧
y′ = z + 1 ∧ x′ = x) in ⊢Vint

is
⋆

4

z=2,x′=1,y′=3=⇒〈 〉([x′/1],z=2∧y′=3) [Ψ11]
7

z=2,x′=1=⇒〈y′=3〉(ǫ[x′ 7→1],z=2)
6

z=2=⇒〈[z/2]y′=z+1,[z/2]x′=1〉(ǫ,⊤∧z=2)
5

=⇒〈z=2,y′=z+1,x′=1〉(ǫ,⊤) [Ψ5]

⋆
4

x′=1,y≤1,y′=z+1=⇒〈 〉([x′/1],y≤1∧y′=z+1) [Ψ10]
7,7

x′=1=⇒〈y≤1,y′=z+1〉(ǫ[x′ 7→1],⊤)
6

=⇒〈y≤1,y′=z+1,x′=1〉(ǫ,⊤) [Ψ4]

Ψ4 Ψ5

3

=⇒〈(y≤1∨z=2),y′=z+1,x′=1〉(ǫ,⊤) [Ψ3]
2,2

=⇒〈([x/1](y≤1∨z=2)∧y′=z+1∧x′=1)〉(ǫ,⊤)
1

=⇒([x/1],(y≤x∨z=x+1)∧y′=z+1∧x′=x) [Ψ0]

(3)

WODES 2014
Cachan, France. May 14-16, 2014

231

1

=⇒ 〈η(c∧,Vint
)〉(ǫ,⊤)

=⇒ (η, c∧,Vint
)

2

Γ =⇒ 〈ψ1, ψ2, · · · 〉∆

Γ =⇒ 〈ψ1 ∧ ψ2, · · · 〉∆
3

Γ =⇒ 〈ψ1, · · · 〉∆ Γ =⇒ 〈ψ2, · · · 〉∆

Γ =⇒ 〈ψ1 ∨ ψ2, · · · 〉∆
4

Γ =⇒ 〈 〉∆

5

Γ, x= t, φ[x/t] =⇒ 〈ψ[x/t], · · · 〉(η′, c′ ∧ x= t)

Γ, φ =⇒ 〈x= t, ψ, · · · 〉(η′, c′)
6

Γ, x′= t′ =⇒ 〈 · · · 〉(η′[x′ 7→ t′], c′)

Γ =⇒ 〈x′= t′, · · · 〉(η′, c′)
if x ∈ Vint and t

′ ∈ Dx

7

Γ, ψ =⇒ 〈 · · · 〉(η′, c′ ∧ ψ)

Γ =⇒ 〈ψ, · · · 〉(η′, c′)

Fig. 1. Proof rules of calculus ⊢Vint
for the partial evaluation of input configuration (η, c∧,Vint

).

In (3), Ψ0 denotes the root sequent and ⋆ denotes the
empty premise. Note that, in the sequent Ψ3, the proof
branches to two sequents, Ψ4 and Ψ5, because of the
disjunction y ≤ 1 ∨ z = 2.

Theorem 1. (Soundness). If a sequent Γ=⇒∆ is derivable
in the calculus ⊢Vint

according to the rules in Fig. 1, then
it is logically valid according to Eq. (2).

The soundness of the calculus ⊢Vint
provides the validity

of the rules in Fig. 1. Since our proof branches only
because of the disjunction in the formulas (see Rule
3), we prove that the disjunction of all configurations
whose sequent is the conclusion of the closing rule, i.e.
Rule 4, is equivalent to the initial configuration. For a
sequent Ψ := Γ =⇒ ∆, let succedent(Ψ) = ∆ be a
function that retrieves the succedent of Ψ. With abuse
of notation, let succedent⋆(Ψ0 Ψ⋆

i) := succedent(Ψ⋆
i)

and succedent⋆(Ψ0 Ψj) := ∅ for i, j ∈ N . Further, let
succedent⋆(πφ) :={succedent

⋆(β)|for all branches β ∈ πφ}.

Proposition 1. Let (η, c∧,Vint
) be a configuration. Then,

(η, c∧,Vint
) ⊢Vint

π⋆
(η,c∧,Vint

) =⇒

(η, c∧,Vint
) �

∨
succedent⋆(π⋆

(η,c∧,Vint
)),

where π⋆
(η,c∧,Vint

) is the proof tree (see Def. 1) of the root

sequent =⇒ (η, c∧,Vint
) in ⊢Vint

.

The proof of Prop. 1 is by an induction on the structure
of the proof tree of (η, c∧,Vint

). That is, we can inductively
derive the validity of (η, c∧,Vint

) by following the leafs of
the proof tree to the root sequent =⇒ (η, c∧,Vint

). Hence,
the proof is left out.

For example, consider the proof in (3). Since all branches
of (3) are closed, we have that φ ⊢Vint

π⋆
(η,c∧,Vint

) := {Ψ0

Ψ⋆
10,Ψ0 Ψ⋆

11}. Consequently, it follows that

([x/1], (y ≤ x ∨ z = x+ 1) ∧ y′ = z + 1 ∧ x′ = x)
def
⇐⇒

(y ≤ 1∧y′ = z + 1∧x′ = 1)∨(z = 2∧y′ = 3∧x′ = 1) �
∨
{([x′/1], y ≤ 1∧y′ = z + 1), ([x′/1], z = 2∧y′ = 3)}

def
⇐⇒

(y ≤ 1∧y′ = z + 1∧x′ = 1)∨(z = 2∧y′ = 3∧x′ = 1),

as expected by the result of Prop. 1.

For a condition c and a present-state substitution η, we
use η⋆ and c⋆ in (η⋆, c⋆) ∈ succedent⋆(π⋆

(η,c∧,Vint
)) as

respectively the next-state substitutions and the residual
conditions of partial evaluation of c w.r.t. η.

Interpretation Algorithm Taking a labeled EFA E
and a subset of variables Vint, Algorithm 1 implements the
interpretation process JEKVint

. From an abstract view, the
algorithm collects the reachable transitions with residual
conditions starting from the initial location ℓ◦ with initial
substitution ηint of variables in Vint.

Algorithm 1 (Symbolic Interpretation of EFAs)

Require: A labeled EFA E = 〈V, L,Σ, T, ℓ◦, c◦,Λ,Φ〉 and
a set of variables Vint ⊆ V .

1: procedure JEKVint

2: Let ηint := ǫ, L⋆ := ∅, and T ⋆ := ∅;
3: Let η◦ be a valuation s.t. η◦�c◦;
4: Let S be a stack of configurations;
5: (∀x ∈ Vint) ηint := ηint[x 7→ η◦(x)]; S ← (ℓ◦, ηint);
6: repeat
7: (ℓ, η) := S.pop();
8: Let 〈ℓ, η〉 be a new location;
9: if 〈ℓ, η〉 ∈ L⋆ then continue

10: Φ(〈ℓ, η〉) := η; L⋆ ← 〈ℓ, η〉;
11: T ′ := {(ℓ, σ, c, ℓ′) ∈ T |∀σ ∈ Σ, ∀ℓ′ ∈ L};
12: for all (ℓ, σ, c, ℓ′) ∈ T ′ do
13: for all (η⋆, c⋆) ∈ ⊢Vint

(η, c∧,Vint
) do

14: Φ(〈ℓ′, η′⋆〉) := Φ(ℓ′)η⋆; L⋆ ← 〈ℓ′, η′⋆〉;
15: T ⋆ ← (〈ℓ, η〉, σ, c⋆, 〈ℓ′, η′⋆〉);
16: S.push((ℓ′, η′⋆));
17: end for
18: end for
19: until S 6= ∅
20: return E⋆=〈V, L⋆,Σ, T ⋆, 〈ℓ◦, ηint〉, c◦,Λ,Φ〉
21: end procedure

22: procedure ⊢Vint
(η, c∧,Vint

)
23: R := ∅;
24: if (η, c∧,Vint

) ⊢Vint
π⋆
(η,c∧,Vint

) as in Fig. 1 then

25: for all (η⋆, c⋆) ∈ succedent⋆(π⋆
(η,c∧,Vint

)) do

26: if c⋆ ≡ ⊥ then continue
27: (∀x ∈ Vint) η⋆ = (η⋆[x/η⋆(x′)])[x′ 7→ ǫ];
28: R← (η⋆, c⋆);
29: end for
30: end if
31: return R
32: end procedure

1,{x/0}

2,{x/0}

3,{x/0}γ

σ:φ1

0

σ:φ2

0

β:z′=0

1,{x/1}
α

2,{x/1}

3,{x/1}γ

σ:φ1

1

σ:φ2

1

β:z′=0

1,{x/2}
α

2,{x/2}

3,{x/2}γ

σ:φ1

2

σ:φ2

2

β:z′=0
λ

Fig. 3. The residual EFA JEKx. Here, φ1i and φ2i are
respectively equivalent to the formula y ≤ i∧y′ = z+i
and z = i+ 1 ∧ y′ = i+ 2 for integer i = 0, 1, 2.

Let us illustrate Algorithm 1 by applying it to the EFA
E in Fig. 2 for Vint := {x}. The stack S is initialized by
(1, [x/0]). In the first iteration, the configuration (1, [x/0])
is removed from the stack and a new location 〈1, [x/0]〉
with Φ(〈1, [x/0]〉) = [x/0] is added to the set L⋆. Then,

for outgoing transitions of location 1, i.e., 1
α:x′=x+1
−−−−−−→ 1

WODES 2014
Cachan, France. May 14-16, 2014

232

and 1
γ
−→ 2, Algorithm 1 obtains the residual conditions

and next-state values of x′ = x + 1 and ⊤ w.r.t. [x/0]
by calling ⊢Vint

(., .). The procedure ⊢Vint
(., .) implements

the partial evaluation process according to the rules in
Fig. 1. Consequently, ⊢Vint

([x/0], x′ = x + 1) and ⊢Vint

([x/0],⊤) return the sets {([x/1],⊤)} and {([x/0],⊤)},
respectively. Note that, in line 27, the variable x′ is
replaced by x. Then, for the residual pair ([x/1],⊤),
Algorithm 1 creates a new location 〈1, [x/1]〉 labeled by
Φ(〈1, [x/1]〉) = [x/1] and adds it to the set L⋆ and stack S.
Note that 〈1, [x/0]〉 6= 〈1, [x/1]〉. Further, a new transition

〈1, [x/0]〉
α
−→〈1, [x/1]〉 is added to the (residual) transition

set T ⋆. Similarly, for ([x/0],⊤), we have the location
〈2, [x/0]〉 with Φ(〈2, [x/0]〉) = [x/0] and the transition

〈1, [x/0]〉
γ
−→〈2, [x/0]〉. Algorithm 1, iterates over the pairs

in stack S, and when S is empty, it terminates and returns
the residual EFA JEKx, see Fig. 3.

Proposition 2. (Algorithm 1 Correctness).
Let E be a labeled EFA with set of variables V over finite
domain D. Let Vint ⊆ V . Algorithm 1 terminates; and
when it terminates it holds that JJEKVint

KV −Vint
= JEKV .

That is, interpretation of E w.r.t. Vint and then with the
remaining variables V − Vint, results in the same EFA
as interpret of E w.r.t. V returns. Since the domain of
variables, D, is finite, it is straightforward to show that
Algorithm 1 terminates.

A realistic DES is often composed from a group of EFA
components. LetDES := {E1, . . . , En} be a discrete-event
system consisting of n EFA components over the respective
alphabet Σ1, . . . ,Σn and variables V1, . . . , Vn, for which
we want to symbolically interpret it. In DES some of
the variables might be internally updated by only one
component. Let V a

i denote the set of such variables in Ei,
i.e., V a

i := {x ∈ Vi|x ∈ (vars′(CVi
)−

⋃n
j=1,j 6=i vars

′(CVj
))}.

Theorem 2. Let Ei (i = 1, 2) be two EFAs in DES over
Vi with V a

i , Vi,int ⊆ Vi. Consider E := E1‖E2 and let
Vint := V1,int ∪ V2,int. If Vi,int ⊆ V a

i , then it holds that
JE1‖E2KVint

= JE1KV1,int
‖JE2KV2,int

.

In a straightforward way, we can further extend Theorem 2
to all components in DES. This implies that the interpre-
tation of each component w.r.t. to their internal variables
will not change the global behavior of the system.

4. APPLICATION OF SYMBOLIC
INTERPRETATION

In this section, we discuss an application of symbolic in-
terpretation in the nonblocking supervisory control of the
cluster tool example in Su et al. [2010] modeled by EFAs.
The cluster tool is an integrated manufacturing system
used for wafer processing. It consists of one entering load
lock (Lin) and one exit load lock (Lout), nine chambers
(Cij , where, for i = 1, 2, 3, we have j = 1, 2, and for
i = 4, we have j = 1, 2, 3), three one-slot buffers (Bk

for k = 1, 2, 3), and four transportation robots (Ri for
i = 1, 2, 3, 4), see Fig. 4.

Fig. 5 illustrates the EFA models of R1 and buffer B1.
In this, the Boolean variables R1i, C11, and C12 for i =
1, . . . , 4, models the robot and chambers status, and the
Boolean variable B1 representing the buffers capacity of
one. Also, in Fig. 5, the desired routing specification are
represented by guard formulas on the EFAs. We refer to
Shoaei and Lennartson [2014] for the complete EFAmodels
of the system.

C11 C21 C31 C41

C
4
2

C12 C22 C32 C43

Lin

Lout
B1 B2 B3

R1 R2 R3 R4

Fig. 4. Structure of Cluster Tool example.

R11 ℓ0 ℓ1 R12 ℓ0 ℓ1

R13 ℓ0 ℓ1 R14 ℓ0 ℓ1

B1

ℓ1

ℓ0

ℓ2

R1-pk-Lin:
R1=0∧
R′

1
=1

R1-dp-C11:
C11=0∧

R′

1
=0∧C′

11
=1

R1-pk-C11:
R1=0∧C11=1∧
R′

1
=1∧C′

11
=0

R1-dp-B1:
B1=0∧

R′

1
=0∧B′

1
=1

R1-pk-B1:
R1=0∧B1=1∧
R′

1
=1∧B′

1
=0

R1-dp-C12:
C12=0∧

R′

1
=0∧C′

12
=1

R1-pk-C12:
R1=0∧C12=1∧
R′

1
=1∧C′

12
=0

R1-dp-Lout:
R′

1
=0

R
1
-d

p
-B

1

R
2
-p

k
-B

1
R
2
-d

p
-B

1

R
1
-p

k
-B

1

Fig. 5. EFA models of robot R1 with the routing specifi-
cation as guard formulas and buffer B1 specification.

ℓ0

ℓ2

ℓ4 ℓ5

ℓ3 ℓ1

ℓ7 ℓ9

ℓ8

ℓ11

ℓ10 ℓ6

R1-pk-Lin R1-dp-C11

R1-pk-C11
R1-dp-B1:

B1=0∧B′

1
=1

R1-pk-B1:
B1=1∧B′

1
=0

R1-dp-C12

R1-pk-C12

R1-dp-Lout

R1-pk-in R1-dp-C11

R1-pk-C11
R1-dp-B1:

B1=0∧B′

1
=1

R1-pk-C12

R1-dp-Lout

R1-pk-B1:
B1=1∧B′

1
=0

R1-dp-C12

(a)

ℓ̃0

ℓ̃1

ℓ̃2

R1-pk-B1:
B1=1∧B′

1
=0

R1-pk-B1:
B1=1∧B′

1
=0

R1-pk-Lin

R1-pk-C11

R1-dp-B1:
B1=0∧B′

1
=1

(b)

Fig. 6. (a) Residual EFA R⋆
1 := JR1K{Ri,C11,C12} and (b)

the abstracted EFA R̃
⋆

1.

We now apply the abstraction techniques in Shoaei et al.
[2012] to this system. However, because of the structure
of the system, none of the events can be abstracted since
each of them has action formulas. To end this problem,
first we synchronize the robots models. Then, we apply the
proposed symbolic interpretation on these synchronized
models where we obtain the residual EFAs, in which the
variables Ri and Cij are interpreted while the variable
Bk remains. The residual EFA JR1K{Ri,C11,C12} for the
synchronized model R1 := ‖R1i (i = 1, . . . , 4) is shown
in Fig. 6(a), where for brevity we drop the variables value
in each location.

Now for the residual models we are able to apply the
abstraction since the internal variables are interpreted. For

EFA R⋆
1, the abstracted model R̃

⋆

1 is depicted in Fig. 6(b),

where ℓ̃0 = {ℓ0, ℓ1, ℓ3, ℓ7}, ℓ̃1 = {ℓ4, ℓ5, ℓ6, ℓ8, ℓ10, ℓ11}, ℓ̃2 =
{ℓ2, ℓ9} denote the equivalent class of locations. Finally,
we use the Supremica to synthesize the controller for the
abstracted residual models. The nonblocking supervisor to
achieve a nonblocking control based on the original models
has 237 648 states, while the supervisor using the reduced
models has 9 682 states.

WODES 2014
Cachan, France. May 14-16, 2014

233

5. CONCLUSION

In this paper we introduce a symbolic interpretation tech-
nique for EFAs. The interpreter symbolically interprets
and executes EFAs w.r.t. their internal variables and re-
turns the remaining parts as residual models. Furthermore,
for the purpose of supervisory control, we provide sufficient
conditions to guarantee that the behavior of the residual
system and the original system is left unchanged, hence
resulting in nonblocking supervisory control to the entire
system by using the residual models. Finally, we demon-
strate the effectiveness and necessity of the proposed tech-
nique combined with abstractions for nonblocking super-
visory control of an industrial manufacturing system.

APPENDIX

Proof of Theorem 1

We need to show that the rules in Fig. 1 preserve the
validity of the sequent Γ ⇒ ∆. Recall the semantics of
sequent in Eq. (2), where Γ = ∅ defined as ⊤. Also, it is
straightforward to show that η(c) is logically equivalent
to η̇ ∧ c. We sketch the proof as follows. (Rule 1) In the
conclusion, we have ⊤ → η̇ ∧ ĉ ≡ η̇ ∧ ĉ, and in the premise
we have⊤ → η(ĉ)∧⊤ ≡ η(ĉ). Clearly, η̇∧ĉ � η(ĉ). (Rule 2)
Conjunctions in 〈φ1 ∧φ2, . . . 〉 are inductively transformed
to clauses separated by comma. Hence, straightforwardly
the validity is preserved. (Rule 3) Disjunctions 〈φ1 ∨
φ2, . . . 〉 branch the proof. Again, it is straightforward to
show that the validity is preserved. (Rule 4) This is the
closing rule which is valid by the hypotheses. (Rule 5) For
any formula of the form x = t, the term t is propagated
(by applying the substitution [x/t]) to all formulas in the
sequent. After that, x = t is added to c′. The preservation
of validity is straightforward. (Rule 6) For any formula of
the form x′ = t′ s.t. x ∈ Vint and t′ ∈ Dx, the substitution
η′ is extended by η′[x′ 7→ t′]. In this case, the preservation
of validity is also straightforward. (Rule 7) This rule is a
special case of rules 5 and 6 which takes any formula in
the placeholder and conjuncts to c′.

Proof of Proposition 2

We prove by induction on w ∈ Σ∗ in G(E). Let V =
{x1, . . . , xm, xm+1, . . . , xn} be the set of variables in E.
Assume Vint = {x1, . . . , xm} and let V ′

int = V − Vint :=
{xm+1, . . . , xn}. (Base) w = ε. By the hypothesis, ℓ◦ is
the same. On lhs, JEKVint

gives ηl = [x1/t1, . . . , xm/tm] for
ti ∈ D (i = 1, . . . ,m) and then by JJEKVint

KV ′

int
we get η◦l′ =

η◦l [xm+1/tm+1, . . . , xn/tn] for tj ∈ D (j = m + 1, . . . , n).
On the rhs, JEKV gives η◦r = [x1/t1, . . . , xn/tn]. Hence,
η◦l η

◦
l′ = η◦r as expected. (Induction) w = w′σ for some

w′ ∈ Σ∗
E and σ ∈ Σ. We have 〈ℓ◦, η◦〉

w′

−→ 〈ℓ, η〉
σ
−→ 〈ℓ′, η′〉

for some valuations η and η′. The proof of this part is
similar to the (Base) for 〈ℓ′, η′〉, hence it is left out.

Proof of Theorem 2

We sketch the proof as follows. Let i = 1, 2 be an
index and let xi be two distinct variables that appear

in Ei. Further, consider ti := ℓi
σ:φi
−−−→ ℓ′i s.t. ti ∈ Ei,

σ ∈ Σ1 ∪ Σ2, and x1, x2 ∈ vars(φi) ∪ vars′(φi), and let

t12 ∈ E1‖E2, where t12 := 〈ℓ1, ℓ2〉
σ:φ1∧φ2

−−−−−→ 〈ℓ′1, ℓ
′
2〉. Then

the proof follows on considering the different cases of xi

membership in sets V a
i . We write ℓ

σ:c
−−→ ℓ′ ∈ E to the

existence of the transition ℓ
σ:c
−−→ ℓ′ in transition set of E.

(xi ∈ Va

i
) : Then t̃i := ℓ̃i

σ:φi[xi/ti]
−−−−−−−→ ℓ̃′i ∈ JEiKxi

and t̃12 :=

˜〈ℓ1, ℓ2〉
σ:φ1∧φ2[x1/t1,x2/t2]
−−−−−−−−−−−−−→ ˜〈ℓ′1, ℓ

′
2〉 ∈ JE1‖E1K{x1,x2}.

Clearly, by Def. 5, {t̃1}‖{t̃2} result in a similar transition
as t̃12 up to renaming the locations, i.e., for the transition
labels we have {σ : φ1[x1/t1]}‖{σ : φ2[x2/t2]} = σ : φ1 ∧
φ2[x1/t1, x2/t2]. (x1 ∈ Va

1
,x2 /∈ Va

1
∪Va

2
) : Then t̃1 :=

ℓ̃1
σ:φ1[x1/t1]
−−−−−−−→ ℓ̃′1 ∈ JE1Kx1

, t̃2 := ℓ̃2
σ:φ2

−−−→ ℓ̃′2 ∈ JE2K∅, and

t̃12 := ˜〈ℓ1, ℓ2〉
σ:φ1∧φ2[x1/t1]
−−−−−−−−−−→ ˜〈ℓ′1, ℓ

′
2〉 ∈ JE1‖E1K{x1}. Again,

by Def. 5, {t̃1}‖{t̃2} result in a similar transition as t̃12
up to renaming the locations, namely, {σ : φ1[x1/t1]}‖{σ :
φ2} = σ : φ1 ∧ φ2[x1/t1]. (xi /∈ Va

i
) : Then t̃i ∈ JEiK∅ and

t̃12 ∈ JE1‖E1K∅ are the same as t1, t2, and t12, respectively,
which by the hypothesis assumptions are similar. Other
cases of xi membership in V a

i and for different conditions
φi can be shown similarly, the proof of which is left out.

REFERENCES

Christos G Cassandras and Stéphane Lafortune. Introduc-
tion to Discrete Event Systems. Springer US, Boston,
MA, 2nd edition, 2008.

Jean H. Gallier. Logic For Computer Science. Addison-
Wesley Wokingham, 2003.

John Hatcliff. An Introduction to Online and Offline
Partial Evaluation Using a Simple Flowchart Language.
In John Hatcliff, Torben ÆMogensen, and Peter Thie-
mann, editors, Partial Eval., volume 1706 of Lecture
Notes in Computer Science, pages 20–82. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program Generation.
Peter Sestoft, 1993.

Sajed Miremadi, Knut Akesson, and Bengt Lennartson.
Extraction and representation of a supervisor using
guards in extended finite automata. In 9th Int. Work.
Discret. Event Syst., pages 193–199, May 2008.

Sajed Miremadi, Bengt Lennartson, and Knut Akesson. A
BDD-Based Approach for Modeling Plant and Supervi-
sor by Extended Finite Automata. IEEE Trans. Control
Syst. Technol., 20(6):1421–1435, November 2012.

Sahar Mohajerani, Robi Malik, and Martin Fabian. Com-
positional nonblocking verification for extended finite-
state automata using partial unfolding. In IEEE Int.
Conf. Autom. Sci. Eng., pages 930–935, August 2013.

Mohammad Reza Shoaei and Bengt Lennartson. On the
Computation of Natural Observers for Extended Finite
Automata. In 19th World Congr. Int. Fed. Autom.
Control, page 8, 2014.

Mohammad Reza Shoaei, Lei Feng, and Bengt Lennart-
son. Supervisory control of extended finite automata
using transition projection. In 51st IEEE Conf. Decis.
Control, pages 7259–7266, December 2012.

Markus Skoldstam, Knut Akesson, and Martin Fabian.
Modeling of discrete event systems using finite automata
with variables. In 46th IEEE Conf. Decis. Control, pages
3387–3392, 2007.

Rong Su, Jan H. van Schuppen, and Jacobus E. Rooda.
Aggregative Synthesis of Distributed Supervisors Based
on Automaton Abstraction. IEEE Trans. Automat.
Contr., 55(7):1627–1640, July 2010.

W. M. Wonham. Supervisory Control of Discrete Event
Systems. Department of Electrical and Computer Engi-
neering, University of Toronto, 2002-2012, 2013.

WODES 2014
Cachan, France. May 14-16, 2014

234

