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The non-linear interplay between the resistive wall mode (RWM) and the toroidal plasma flow is

numerically investigated in a full toroidal geometry, by simultaneously solving the initial value

problems for the n¼ 1 RWM and the n¼ 0 toroidal force balance equation. Here, n is the toroidal

mode number. The neoclassical toroidal viscous torque is identified as the major momentum sink

that brakes the toroidal plasma flow during the non-linear evolution of the RWM. This holds for a

mode that is initially either unstable or stable. For an initially stable RWM, the braking of the flow,

and hence the eventual growth of the mode, depends critically on the initial perturbation amplitude.

[http://dx.doi.org/10.1063/1.4793449]

I. INTRODUCTION

The resistive wall mode (RWM) is a global, macro-

scopic magnetohydrodynamic (MHD) instability that often

limits the operational space of fusion devices.1 The origin of

the mode is often an equilibrium current or pressure driven

external ideal kink instability. It is of particular importance

to study the RWM physics and control in the so called

advanced tokamaks, which aim at achieving economic fusion

reactors. In advanced tokamaks, suppression of the RWM of-

ten leads to a significant gain in the plasma pressure under

steady state conditions, and thus a significant gain in the

eventual fusion power production.

Even though the RWM is often regarded, and in fact stud-

ied, both in theory and experiments,1 as a linear MHD mode,

there is an abundant experimental evidence pointing to the

non-linear interactions between this instability and other MHD

modes,2 energetic particles,3,4 as well as the plasma flow.5

This work investigates the last question, namely, the non-

linear coupling between the RWM and the toroidal rotation of

a tokamak plasma.

This question has previously been addressed in analytic

theory, based on cylindrical approximations.6–8 For instance, in

Ref. 6, a simple set of non-linear evolution equations is derived

and investigated for the RWM in a large aspect ratio, rotating,

viscous tokamak plasma. This model essentially couples the

Fitzpatrick-Aydemir dispersion relation9 for a RWM to a toroi-

dal momentum balance equation. Simulations in Ref. 6 show

that a sufficiently large amplitude of the RWM triggers the

plasma deceleration and the loss of the wall stabilization for

the mode. A somewhat different RWM model (visco-resistive

Finn model10) was adopted in Ref. 7, which essentially investi-

gated the non-linear interaction between an unstable resistive

wall tearing mode (RWTM) and the plasma flow, with an addi-

tional presence of an external error field.

In this work, we carry out toroidal simulations of the

non-linear coupling between the RWM and the plasma flow,

using the recently developed MARS-Q code.11 Our RWM

model follows a single fluid, full resistive MHD formula-

tion in a generic toroidal geometry, with additional damp-

ing of the mode from a strong parallel sound wave damping

model. We solve the MHD equations together with a toroi-

dal momentum balance equation, which includes both the

electromagnetic torque and the neoclassical toroidal vis-

cous torque, induced by the 3D field perturbations due to a

RWM. For simplicity, we neglect the additional effect from

error fields, although the latter can be easily included into

the MARS-Q formulation.

The toroidal formulation is introduced in Sec. II.

Section III reports numerical results, where the non-linear

interaction between an either unstable or a stable RWM, and

the plasma flow is investigated. Section IV summarizes the

work.

II. TOROIDAL FORMULATION OF NON-LINEAR
COUPLING BETWEEN RWM AND PLASMA FLOW

The formulation is essentially the same as that of the

MARS-Q code,11 which was developed for investigating

the rotational braking and the penetration of resonant mag-

netic perturbation (RMP) fields into a stable plasma.

Below, we give a brief description of the equations that we

solve for studying the non-linear interaction between the

RWM and the plasma flow, in a generic toroidal geometry.

The RWM is described by single fluid perturbed MHD

equations that incorporates a (sheared) toroidal flow, with

the angular velocity XðrÞ that depends on the plasma minor

radius r

�
@

@t
þ inX

�
n ¼ vþ ðn � rXÞR2r/; (1)

q

�
@

@t
þ inX

�
v ¼ �rpþ j�Bþ J� b

� q½2XrZ� vþ ðv � rXÞR2r/� �r �P;
(2)
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�
b ¼ r� ðv� BÞ þ ðb � rXÞR2r/�r� ðgjÞ;

(3)�
@

@t
þ inX

�
p ¼ �v � rP� CPr � v; (4)

where ðR; Z;/Þ is the cylindrical coordinate system for the

torus. The quantities q; B; J ¼ r� B; and P denote the

equilibrium plasma density, the magnetic field, the plasma

current density, and the plasma pressure, respectively. The

quantities n; v; b; j ¼ r� b; and p, which are also our

solution variables, represent the plasma displacement, the per-

turbed velocity, the magnetic field, the current, and the pres-

sure, respectively. n is the toroidal mode number. Note that, in

this work, we consider only a single n (n¼ 1) RWM. This jus-

tifies the choice of the perturbed MHD equations. In the single

fluid MHD approximation, the ratio of specific heats, C from

Eq. (4), is taken to be 5/3 for an ideal gas. The above systemFIG. 1. The plasma boundary shape of the toroidal equilibrium.

FIG. 2. Radial profiles of the equilibrium quantities for (a) the safety factor q, (b) the plasma pressure normalized by B2
0=l0, (c) the plasma density normalized

to unity at the magnetic axis, and (d) the toroidal rotation frequency of the plasma, normalized by the on-axis Alfv�en frequency.
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of equations is written and solved in a dimensionless form,

where the time is normalized by the Alfv�en time at the mag-

netic axis, the length is normalized by the major radius R0 of

the torus, the magnetic field is normalized by the toroidal vac-

uum field B0 at the magnetic axis, and the pressure is normal-

ized by B2
0=l0, where l0 ¼ 4p� 10�7H=m is the vacuum

permeability.

It is worthwhile to comment on two specific components

from the above model for the RWM. A damping term, in the

form of a viscous tensor P, is included into the momentum

Eq. (2). For a proper description of the damping physics of

the RWM, it is essential to include this type of extra damping

terms. In principle, ideal MHD can provide continuum

damping on the mode, both from Alfv�en and sound waves.

The former requires the existence of rational surfaces inside

the plasma, whilst the latter occurs only in a finite pressure

plasma. However, ideal MHD theory generally does not

seem to adequately predict the mode damping observed in

experiments, both on the critical rotation velocity for the

mode suppression12 and on the resonant field amplification

from the response of a stable RWM.13 So far, probably the

most adequate damping model for the RWM is the drift

kinetic model, in which the viscous tensor term is calculated

from the drift kinetic theory, and represents the perturbed ki-

netic pressure tensor.14 On the other hand, it has been noted

that, in many cases, the RWM damping can be modeled by a

(strong) parallel viscous force15,16

r �P ¼ qjkjkkvth;ij½vþ ðn � rÞR2Xr/�k; (5)

where j is a numerical coefficient determining the damping

“strength.” kjj ¼ ðn� m=qÞ=R is the parallel wave number,

with m being the poloidal harmonic number and q being the

safety factor. vth;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=Mi

p
is the thermal ion velocity

with Ti;Mi being the thermal ion temperature and mass,

respectively. The parallel component of the perturbed ve-

locity is taken along the equilibrium field line. This damp-

ing model, originally coming from a fluid closure of the ion

Landau damping of the parallel sound wave, is often used

in the RWM modeling15,16 and in many cases provides

adequate damping on the mode. This damping model is

used in the present work.

As for the second comment, we use a resistive plasma

model to describe the RWM in this study, as evident from

Eq. (3), where g is the plasma resistivity. With the normal-

ization convention adopted in our formulation, g is the

inverse of the (magnetic) Lundquist number. The reason

for choosing a resistive plasma is to improve the numerical

resolution for the electromagnetic torque, which generally

occurs near rational surfaces. A resistive model, with large

Lundquist number at least in the plasma core, is also more

relevant to realistic experiments. We point out that the elec-

tromagnetic torque can remain finite even in an ideal

plasma.17,18

Normally, the RWM is well described by ideal MHD

(with extra damping physics as mentioned above). Inclusion

of the plasma resistivity can have two effects on the RWM:

It generally increases the mode growth rate; and more

qualitatively, it couples the RWM to a tearing mode.10,19

The question of which mode becomes more dominant

depends on the ratio between the plasma resistive time and

the wall resistive time, among other physical parameters. In

this work, we assume that the wall resistivity is much larger

than the plasma resistivity (the plasma is close to an ideal

plasma in the core), so that the mode remains a predomi-

nantly RWM.

For the RWM modeling, the above MHD equations

inside the plasma are solved together with the vacuum equa-

tions outside the plasma, as well as a resistive wall equation

with the thin shell approximation.

In addition, a toroidal momentum balance equation

@L

@t
¼ DðLÞ þ Tj�b þ TNTV þ Tsource; (6)

is also solved for L ¼ qhR2iX, where h�i denotes the surface

average of a quantity. D(L) is a (linear) momentum diffusion

operator. Tj�b is the surface averaged, toroidal electromag-

netic j�b torque, computed as

FIG. 3. Linear stability of (a) the ideal external, pressure-driven kink mode

and (b) the resistive wall mode in the presence of the plasma flow.
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Tj�b ¼
þ

Rj� b � /̂dS=

þ
dS;

where R is the major radius, j and b are the (total) perturbed

plasma current and magnetic field, respectively, as the solu-

tion of Eqs. (2)–(4). S denotes the flux surface.

TNTV is the neoclassical toroidal viscous (NTV) torque,

computed using formulas from Ref. 20, where various

regimes are smoothly connected. The module of the per-

turbed magnetic field (the Lagrangian part), from Eqs. (2)

to (4), directly enters into the NTV computations. Tsource is

the momentum source term. The RWM perturbations enter

into the momentum sinks (Tj�b and TNTV) in a quadratic

form. The NTV torque, which is a consequence of the radial

drift of banana orbits of trapped thermal particles, due to

the presence of 3D magnetic fields, is generally a rather

non-linear function of the plasma flow velocity. We refer to

Ref. 11 for detailed description of these sink and source

terms in the MARS-Q formulation.

Note that the parallel viscous force, Eq. (5) which

describes the damping of the n 6¼ 0 RWM, does not explic-

itly enter into the n¼ 0 momentum balance equation (6).

An important point is that we assume that a momentum

balance is reached at the start of our simulation t¼ 0,

such that DðLðt ¼ 0ÞÞ þ Tsource ¼ 0. This condition essen-

tially defines the initial rotation frequency. By further

assuming that the momentum source does not change dur-

ing the non-linear simulation, we instead solve the momen-

tum balance equation for the change of the toroidal

momentum, DL ¼ LðtÞ � Lð0Þ,

@DL

@t
¼ DðDLÞ þ Tj�b þ TNTV ; (7)

FIG. 4. Evolution of an initially unstable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the perturbed

radial field b1 at the q¼ 2 surface, (c) the radial profile of the plasma rotation frequency, and (d) the plasma rotation frequency at the q¼ 2 and q¼ 3 surfaces. The

dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the plasma flow is switched on. The dashed

vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The numbered lines in (c) correspond to time: 1–5:21� 104sA, 2–5:13

�104sA, 3–5:03� 104sA, and 4–4:95� 104sA. Both the electromagnetic and the NTV torques are included in this simulation.
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in which the momentum source does not explicitly enter into

the equation.

We use the homogeneous Neumann (Dirichlet) boundary

condition for DL at the plasma center (edge). The Dirichlet

edge boundary condition is motivated by discussions from

Ref. 21.

In MARS-Q, the n¼ 1 single fluid MHD equations, the

vacuum and wall equations, as well as the n¼ 0 toroidal mo-

mentum balance equation are solved together as an initial

value problem. An adaptive, semi-implicit time stepping

scheme is employed.11 In particular, a fully implicit scheme

is used for solving the MHD equations, allowing a time step

larger than the Alfv�en time without introducing numerical

instability. The initial condition for the n¼ 1 perturbation is

chosen as the eigenfunction of the linear RWM, computed

by running the eigenvalue code MARS-F.22

III. NUMERICAL RESULTS

A. Equilibrium

We consider a toroidal plasma representing the so called

advanced tokamak, with the plasma boundary shape, shown

in Fig. 1, resembling a typical JET plasma (in terms of aspect

ratio, elongation, and triangularity). The plasma boundary is

up-down symmetric. The vacuum toroidal field, at the mag-

netic axis R0 ¼ 2:90m, is assumed to be B0 ¼ 1:22T. The

total plasma current is 1.56 MA.

The radial profiles of the equilibrium quantities are

shown in Fig. 2. The advanced tokamak aims at high beta,

high fraction of non-inductive current drive. A peaked pres-

sure profile, as shown in Fig. 2(b), results in a large fraction

of the bootstrap current in the middle region of the plasma

column, which in turn creates a rather flat current profile

and a slightly reversed q profile in the plasma core. The equi-

librium with a broad current profile and a peaked pressure

profile tends to be more susceptible to the external kink

instability,23 which becomes a RWM in the presence of a

close fitting resistive wall. This motivates our choice of the

equilibrium for studying the interaction between the RWM

and the plasma flow. We note that this equilibrium pressure

does not have a clear edge pedestal. For the pressure driven

RWM, the edge transport barrier is not a critical factor.

The density profile, shown in Fig. 2(c), is normalized to

unity at the magnetic axis. The amplitude of the density only

enters into defining the Alfv�en time in the dimensionless,

single fluid MHD equations. However, the density amplitude

does enter into the NTV calculation (via the collisionality

coefficients). In this work, we assume a thermal electron

number density of Ne0 ¼ 3:09� 1019m�3. The thermal

(Deuterium) ion density is the same as that of the electrons.

This yields the Alfv�en time of sA � R0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
=B0 ¼ 0:86ls

at the magnetic axis. Here, q0 � Ne0mi, and mi is the mass of

Deuterium ions.

B. Linear stability

For the chosen equilibrium profiles, we first investigate

the linear stability of the external kink mode, using the

MARS-F code. Figure 3(a) shows the computed no-wall

(dashed line) and ideal-wall (solid line) growth rates of the

mode, while scanning the normalized plasma pressure bN .

Only the amplitude of the plasma pressure is varied during

the scan, without changing the radial profile shown in

Fig. 2(b). The total plasma current is also fixed. An ideal,

conformal wall is located at the 1.25a minor radius. The com-

puted no-wall and ideal-wall beta limits, which correspond to

the marginal stability points in Fig. 3(a), are bnw
N ¼ 2:56 and

biw
N ¼ 3:74, respectively.

Replacing the ideal wall by a resistive wall, located at the

same minor radius rw ¼ 1:25a, we obtain unstable RWMs in

the plasma pressure range between the no-wall and the ideal-

wall beta limits. In this study, we choose a representative

RWM at bN ¼ 3:15, which is half way between the no-wall

and ideal-wall limits. The safety factors are q0 ¼ 1:78 at the

FIG. 6. Radial profiles of the initial (i.e., before closing the non-linear cou-

pling loop) E�B rotation frequency xE, the precessional drift frequency

xD of deeply trapped thermal ions at thermal velocity, and the ion-ion colli-

sion frequency �ii. E is approximately the inverse aspect ratio.

FIG. 5. Time trace of the net toroidal electromagnetic (solid line) and NTV

(dashed line) torques acting on the plasma during the non-linear evolution of

an initially unstable RWM as described in Fig. 4.
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magnetic axis, qa ¼ 3:27 at the plasma edge, and q95 ¼ 2:73.

Assuming a resistive plasma, with the Lundquist number

S ¼ 107 and a uniform plasma resistivity (a more realistic re-

sistivity profile, e.g., S / T3=2
e , tends to increase the TM con-

tribution towards the plasma edge, which is what we try to

avoid in this work), and utilizing the parallel sound wave

damping model (with jjj ¼ 1:5) as described in Sec. II, we

compute the stability of the RWM in the presence of toroidal

plasma flow. We scan the amplitude of the flow speed while

fixing the radial profile of the toroidal rotation as shown in

Fig. 2(d). The growth rate of the RWM versus the on-axis

rotation frequency X0 is reported in Fig. 3(b). Note that we

normalize the mode growth rate by the wall time sw here.

Although a fixed wall time of sw ¼ 104sA ¼ 8:6 ms is

assumed in these computations, we mention that the growth

rate, normalized by the wall time, depends neither on the

wall time nor on the Alfv�en time, for a typical inertia-free

RWM as studied in this case. The RWM is fully stabilized

by the plasma flow, when the on-axis rotation frequency

exceeds a critical value of Xcr
0 ¼ 2:73� 10�2xA, where

xA ¼ B0=ðR0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p Þ is the on-axis toroidal Alfv�en fre-

quency. The damping of the mode in this case comes from

the Alfv�en and sound wave continuum damping, as well as

from the extra ion Landau damping represented by the paral-

lel viscous force term. As long as the plasma flow speed

remains sub-sonic, which is the case considered here, more

resonant damping is achieved with increasing the rotation

speed, explaining the monotonic decrease of the mode’s

growth rate as shown in Fig. 3(b).

C. Interaction between initially unstable RWM and
flow

The stability analysis in Fig. 3(b) allows us to choose

two representative cases for investigating the interaction

between the RWM and the plasma flow. For the first case,

FIG. 7. Evolution of an initially unstable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the

perturbed radial field b1 at the q¼ 2 surface, (c) the radial profile of the plasma rotation frequency, and (d) the plasma rotation frequency at the q¼ 2 and q¼ 3

surfaces. The dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the plasma flow is

switched on. The dashed vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The numbered lines in (c) correspond to

time: 1–5:77� 104sA, 2–5:67� 104sA, and 3–5:58� 104sA. Only the electromagnetic is included in this simulation.
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reported in this subsection, we consider an initial plasma

rotation frequency of X0 ¼ 2:5� 10�2xA. In this case, the

RWM is still linearly unstable. We launch the MARS-Q sim-

ulation starting from the computed linear eigenfunction at

X0 ¼ 2:5� 10�2xA. The amplitude of the eigenfunction is

scaled down to a small value, such that the perturbed radial

field amplitude is jb1j ¼ 3� 10�5 at the q¼ 2 rational sur-

face and at the outboard mid-plane.

Here, b1 is defined as b1 ¼ JB � rs, with J ¼ ðrs � rv
�r/Þ�1

being the jacobian of the curve-linear flux coordi-

nate system ðs; v;/Þ. s ¼
ffiffiffiffiffiffi
wp

p
is the square root of the nor-

malized equilibrium poloidal flux wp (wp ¼ 0 corresponds to

the magnetic axis, and wp ¼ 1 corresponds to the plasma

edge). v is the (generalized) poloidal angle. The perturbed

magnetic field quantities are normalized by the on axis vac-

uum toroidal field B0. The b1 field reported in this study is

always taken at the outboard mid-plane.

Figure 4 summarizes the computational results. In order

to verify whether the linear phase of the initial value code

(MARS-Q) recovers the results of the eigenvalue solver

FIG. 8. Time traces of the amplitude of the perturbed radial field b1 at the

q¼ 2 surface, with and without inclusion of the NTV torque in the simulation.

The dashed curve corresponds to the exponential growth of the initially unsta-

ble linear mode. The dashed vertical line indicates the moment of time when

the non-linear coupling between the mode and the plasma flow is switched on.

FIG. 9. Evolution of an initially stable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the

perturbed radial field b1 at the q¼ 2 surface, (c) the plasma rotation frequency at the q¼ 2 and q¼ 3 surfaces, and (d) the net toroidal electromagnetic and

NTV torques acting on the plasma. The dashed vertical lines in (a), (b), and (c) indicate the moment of time when the non-linear coupling between the mode

and the plasma flow is switched on. The initial mode amplitude, normalized by B0, is jb1jðq ¼ 2Þ ¼ 2:8� 10�4.
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(MARS-F), we decouple the time evolution of the RWM

from the momentum solver (i.e., the initial toroidal rotation

is not changed) for the first 280 time steps, which ends at

time T1 ¼ 1:65� 104sA ¼ 14 ms; sA ¼ 1=xA, indicated by

the vertical dashed lines in Figs. 4(a), 4(b), and 4(d). The

solid curve in Fig. 4(a) shows the amplitude of the radial

field b1 at the q¼ 2 surface, computed by MARS-Q.

Indeed, an exponential growth is recovered during

t 2 ½0; T1�. An analytic fitting of the numerical data yields

csA ¼ 9:27� 10�5 þ 3:58� 10�4i for the linear phase,

agreeing well with the eigenvalue of csA ¼ 9:63� 10�5

þ 3:58� 10�4i from the eigenvalue solver MARS-F. Note

that, because of the plasma flow, the mode is rotating while

growing. Figure 4(b) shows both the real (thick solid curve)

and imaginary (thick dashed curve) parts of b1ðq ¼ 2Þ. The

analytic fitting, shown as dashed curve in Fig. 4(a) and

thin-line curves in Fig. 4(b), is performed for these complex

quantity data.

At time t ¼ T1, we turn on the non-linear coupling

between the RWM and the plasma flow, and continue the

MARS-Q simulation. In the momentum balance equation,

both the electromagnetic and the NTV torques are included.

During this phase, the mode becomes more unstable than the

linear instability, accompanied by a flow damping shown in

Figs. 4(c) and 4(d). Figure 4(c) shows the evolution of the ra-

dial profile of the toroidal rotation frequency during the non-

linear phase. In this and later simulations, we plot the radial

profiles only at about 60 time slices, equally spaced in time.

The total number of time steps for this simulation is 855 (at

t ¼ 5:22� 104sA), before a full braking of the rotation

occurs. Figure 4(d) plots the simulated time traces of the

rotation frequency at the q¼ 2 and q¼ 3 rational surfaces.

We notice that the rotation also switches sign near the end of

the simulation. This is mainly due to the momentum sink

induced by the NTV torque, as will be shown in further

analysis. The time interval between T1 and the full braking

FIG. 10. Evolution of an initially stable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the per-

turbed radial field b1 at the q¼ 2 surface, (c) the radial profile of the plasma rotation frequency, and (d) the plasma rotation frequency at the q¼ 2 and q¼ 3

surfaces. The dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the plasma flow is

switched on. The dashed vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The numbered lines in (c) correspond

to time: 1–8:00� 104sA, 2–7:86� 104sA, and 3–7:73� 104sA. The initial mode amplitude, normalized by B0, is jb1jðq ¼ 2Þ ¼ 5:6� 10�4. Both the electro-

magnetic and the NTV torques are included in this simulation.
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of the edge rotation (beyond the q¼ 2 surface) of the plasma

is about 3:4� 104sA ¼ 29 ms. The time period for a consid-

erable change of the rotation, as well as the toroidal torques

shown in Fig. 5, is about 10 ms for the given plasma parame-

ters studied here. For a comparison, the full braking time

constant of the toroidal plasma flow is reported to be about

20 ms for a high-beta DIII-D plasma, due to the onset of the

RWM.5 The rotation braking time, observed in typical

MAST plasmas using the resonant magnetic perturbation

fields, was also reported to be tens of milliseconds.24

The rotation braking shown in Figs. 4(c) and 4(d) is

associated with the momentum sink terms—the electromag-

netic and the NTV torques in our model. Figure 5 compares

time traces of the radially integrated, net j� b and NTV tor-

ques acting on the plasma column, during the non-linear

phase of the MARS-Q simulation, for the same case shown

in Fig. 4. These net torques have negative values, indicating

deceleration of the plasma flow. More interestingly, we find

that, by amplitude, the net NTV torque is much larger than

the net electromagnetic torque. In other words, the NTV

torque contributes the major part of rotational damping in

this case. In fact, this holds for all the cases considered in

this paper. However, we cannot conclude that the NTV tor-

que is always dominant over the j� b for damping the

plasma flow in a toroidal plasma. One counter example was

reported in Ref. 24, where a static RMP (instead of a nearly

static MHD mode) field was applied to a MAST plasma,

and where we observed a larger electromagnetic torque

than the NTV torque for braking the plasma flow. There are

at least two factors that affect the comparison between

these two sink terms. One is the number of rational surfaces

inside the plasma. In the case reported in Ref. 24, the

applied field has a high-n (n¼ 3, 4, 6) toroidal mode num-

ber and high q-value, resulting in a very large number of

FIG. 11. Evolution of an initially stable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the per-

turbed radial field b1 at the q¼ 2 surface, (c) the radial profile of the change of the plasma rotation frequency, and (d) the plasma rotation frequency at the

q¼ 2 and q¼ 3 surfaces. The dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the

plasma flow is switched on. The dashed vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The initial mode amplitude,

normalized by B0, is jb1jðq ¼ 2Þ ¼ 5:6� 10�4. Only the electromagnetic torque is included in this simulation.
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rational surfaces. This facilitates generation of large net elec-

tromagnetic torque. The second factor is the initial plasma

flow speed. At fast plasma flow (as that in low aspect ratio

tokamaks such as MAST), the NTV torque tends to be small.

The NTV torque becomes considerably larger at slow plasma

flow, due to a resonant enhancement effect as discussed in

Ref. 24 and references therein.

We also note that the amplitudes of both the net electro-

magnetic and the NTV torques, shown in Fig. 5, grow faster

than the mode amplitude. In fact, during the initial phase of the

non-linear interaction, say between t1 ¼ T1 and t2 ¼ 3� 104sA

when the mode still grows nearly linearly, the amplitudes of the

net torques also grow nearly linearly, with the numerically

recovered growth rates of about cjxbsA ¼ 1:83� 10�4 and

cNTVsA ¼ 1:88� 10�4 for the net j� b and NTV torques,

respectively. These growth rates are about twice larger than that

of the linear RWM, confirming the quadratic nature of the

torques.

The amplitudes of the torques shown in Fig. 5 can be con-

verted into the SI unit by multiplying the dimensionless results

by a factor R3
0B2

0=l0 ¼ 1:3� 107, yielding total torques of up

to tens of Nm for this case. We point out that, since both the

electromagnetic and the NTV torques are quadratic functions

of the mode amplitude, for an unstable RWM, the torque can

become large as the mode amplitude grows to a large value.

For a stable RWM at smaller amplitude, both torques can be

in order of magnitude smaller as shown in Subsection III D.

Several Nm’s torque is measured in JET plasmas by applying

an n¼ 1 RMP fields.25 Dedicated experiments have also been

carried out in DIII-D,26 where the measured NTV torque is in

the order of several Nm. The direct modeling of this DIII-D

plasma using MARS-Q also recovers well the experimental

value.24

Figure 6 shows important frequencies relevant to the

NTV torque calculation, for the plasma studied in this work.

In the core region, both the ion-ion collision frequency and

the E�B frequency (shown at the initial stage) are small

compared to the precessional drift frequency, resulting in a

predominantly resonant NTV torque in the so-called super-

banana or superbanana plateau regime. This resonant torque

can be large and is responsible for the fast decay of rotation

in the plasma core, as shown in Fig. 4(c). In the middle of

the plasma column, the E�B rotation frequency is larger

than the precession and collision frequencies of trapped ions.

The resulting NTV torque has a predominant non-resonant

component (in the so-called � �
ffiffiffi
�
p

regime), which is nor-

mally small. In the region close to the plasma edge, where

xE is comparable or smaller than xD=�, we expect again a

resonant NTV torque which is larger. Very close to the

plasma edge, the collision frequency dominates resulting in

the so-called 1=�-regime, where the NTV torque is again rel-

atively small.

So far, most of the theory6–8 on the rotational damping

due to the onset of the RWM has only included the electro-

magnetic torque as the momentum sink. We perform a similar

simulation by excluding the NTV torque from the momentum

balance equation. The results are summarized in Fig. 7 for

the unstable RWM case at X0ðt ¼ 0Þ ¼ 2:5� 10�2xA. The

electromagnetic torque alone is also capable of braking the

flow, but the effect is generally more localized near rational

surfaces. Similar to the previous case (see Fig. 4(d)), there is a

narrow time window, during which the flow is rapidly

damped, as shown in Fig. 7(d).

In the absence of the NTV torque, the non-linear growth

of the RWM becomes slower during the rotation braking

phase, as shown in Fig. 8. This is expected to be taken into

account a slower damping of the flow.

D. Interaction between initially stable RWM and flow

Perhaps, a practically more important problem is the inter-

action between a (marginally) stable RWM and the plasma

flow. It has been shown, in both experiments and theory,1 that

the RWM often stays marginally stable even in the presence of

a strong damping, either from the kinetic damping or other

damping mechanisms. One example is shown in Fig. 3(b) with

a strong parallel sound wave damping. A shallowly stable

RWM is sensitive to external field perturbations, often leading

FIG. 12. Time traces of the net toroidal electromagnetic (solid line) and

NTV (dashed line) torques acting on the plasma, during the non-linear evo-

lution of an initially stable RWM, with the initial mode amplitude

jb1jðq ¼ 2Þ ¼ 5:6� 10�4: (a) both electromagnetic and NTV torques are

included in the toroidal torque balance and (b) only the electromagnetic

torque is included.
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to the so called resonant field amplification effect,27 which in

turn brakes the plasma flow. We investigate this phenomenon

in this subsection. In particular, we study how the flow braking

is affected by assuming a different level of the initial (stable)

mode amplitude. We assume an initial rotation frequency of

X0ðt ¼ 0Þ ¼ 2:8� 10�2, which stabilizes the RWM according

to Fig. 3(b).

Figure 9 reports a first case, where we assume a very small

initial mode amplitude, jb1jðq ¼ 2; t ¼ 0Þ ¼ 2:8� 10�4.

Again, the linear phase is well recovered by the initial value

solver, during t 2 ½0; T1 ¼ 1:65� 104sA�. When the non-linear

coupling between the mode and the plasma flow is introduced

at time T1, no appreciable braking of the flow is observed, in

the presence of both electromagnetic and NTV torques.

However, increasing the initial mode amplitude by a fac-

tor of 2, jb1jðq ¼ 2; t ¼ 0Þ ¼ 5:6� 10�4, results in a full

braking of the plasma flow and the eventual onset of an

unstable RWM, as demonstrated by Fig. 10. More interest-

ingly, by excluding the contribution of the NTV torque from

the momentum balance equation and keeping the same initial

mode amplitude, only a slight braking of the flow is

observed, and the mode stays stable after a rather long simu-

lation time (Tend ¼ 1:5� 105xA after 2520 time steps), as

shown by Fig. 11. Note that Fig. 11(c) shows the change of

the rotation frequency DX, which is non-monotonic, with the

radial profile evolution shown by two arrows. The change is

small compared to the initial rotation frequency. But never-

theless, this small change of rotation, in particular its radial

profile, does impact the mode evolution as shown in Figs.

11(a) and 11(b). The global radial distribution of DX, at

later stage of the simulation, is achieved due to the momen-

tum diffusion. The faster-than-linear decrease of the mode

amplitude, during certain periods of time, is associated with

the change of the radial profile of flow, and consequently,

FIG. 13. Evolution of an initially stable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the per-

turbed radial field b1 at the q¼ 2 surface, (c) the radial profile of the plasma rotation frequency, and (d) the plasma rotation frequency at the q¼ 2 and q¼ 3

surfaces. The dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the plasma flow is

switched on. The dashed vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The numbered lines in (c) correspond to

time: 1–3:98� 104sA, 2–3:91� 104sA, 3–3:85� 104sA, and 4–3:79� 104sA. The initial mode amplitude, normalized by B0, is jb1jðq ¼ 2Þ ¼ 1:4� 10�3.

Both the electromagnetic and the NTV torques are included in this simulation.
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the deviation of the mode structure from that of the linear

eigenmode.

A comparison of the net electromagnetic versus NTV

torque, shown in Fig. 12(a), again confirms that the latter

contributes the dominant momentum sink. In the absence of

the NTV torque (Fig. 12(b)), the electromagnetic torque is

too small to give an appreciable effect on the flow damping.

Further increase of the initial mode amplitude leads to a

full rotation braking with or without the NTV contributions.

Figures 13 and 14 show one example, where the initial mode

amplitude is increased by 5 times compared to that of Fig. 9.

Figures 15(a) and 15(b) compare time traces of the mode am-

plitude jb1jðq ¼ 2Þ with or without the NTV torque, for two

different values of the initial mode amplitude.

As a final comparison, we plot time traces of the mode

amplitude and the rotation frequencies at rational surfaces, in

Figs. 16(a) and 16(b), respectively. The initial mode ampli-

tude is increased by factors of 2,5,10, starting from the

lowest level of jb1jðq ¼ 2; t ¼ 0Þ ¼ 2:8� 10�4. Both elec-

tromagnetic and NTV torques are included here. We observe

a progressively earlier time of the rotational braking and the

mode onset, as the initial mode amplitude is increased. The

critical mode amplitude, above which the non-linearly

coupled system bifurcates from the stable solution to an unsta-

ble solution, is between 1:4� 2:8� 10�4 for jb1jðq ¼ 2Þ at

t¼ 0, for the toroidal plasma considered in this work.

IV. CONCLUSION AND DISCUSSION

We have presented toroidal simulation results of the

non-linear interaction between the RWM and the toroidal

plasma flow, for a typical advanced tokamak plasma. By

tuning the amplitude of the initial plasma flow, the linear

RWM, from which we launch the non-linear simulation,

can be either stable or unstable. An initially unstable RWM

brakes the plasma flow, leading to a non-linearly more

FIG. 14. Evolution of an initially stable RWM: (a) the amplitude of the perturbed radial field b1 at the q¼ 2 surface, (b) the real and imaginary parts of the per-

turbed radial field b1 at the q¼ 2 surface, (c) the radial profile of the plasma rotation frequency, and (d) the plasma rotation frequency at the q¼ 2 and q¼ 3

surfaces. The dashed vertical lines in (a), (b), and (d) indicate the moment of time when the non-linear coupling between the mode and the plasma flow is

switched on. The dashed vertical lines in (c) indicate the location of the q¼ 2 and 3 rational surfaces, respectively. The numbered lines in (c) correspond to

time: 1–9:00� 104sA, 2–8:85� 104sA, and 3–8:70� 104sA. The initial mode amplitude, normalized by B0, is jb1jðq ¼ 2Þ ¼ 1:4� 10�3. Only, the electromag-

netic torque is included in this simulation.
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unstable mode, compared to the linear phase. An initially sta-

ble RWM can also brake the flow, due to the resonant ampli-

fication effect. Depending on the initial amplitude of the

mode perturbation, the non-linear coupling can result in an

either stable or unstable solution. The critical (stable) mode

amplitude, above which an eventual rotation braking and an

unstable mode onset occur, is between 1:4 and 2:8� 10�4

(normalized by the toroidal vacuum field) for the radial field

at the q¼ 2 surface, for our toroidal example.

The general features of these toroidal simulation results

have been qualitatively predicted by cylindrical theory.6,7

On the other hand, toroidal simulations provide more quanti-

tative answers, in particular, with regard to the bifurcation

amplitude of an initially stable RWM. Also, the change of

the radial profile of the flow, which in turn modifies the

RWM eigenstructure, is normally not captured by analytic

theory. Another interesting observation, which has not been

addressed in previous theory, is the dominant role played by

the NTV torque in the flow damping due to the RWM. The

net toroidal NTV torque, acting on the plasma due to the

presence of the mode as well as a resistive wall, is generally

larger than the electromagnetic j� b torque, independent of

whether the RWM is initially stable or unstable.

In this work, an initially stable RWM is achieved by a

strong parallel sound wave damping, in combination with

the Alfv�en and sound wave continuum damping, at a suffi-

ciently fast plasma flow. The parallel sound wave damping

model is often a crude approximation of the ion Landau

damping, but nevertheless helps to suppress the mode, pro-

viding interesting toroidal cases for studying the non-linear

interaction between the RWM and the plasma flow.

In the future, it is certainly desirable to investigate the

RWM-flow coupling with more physics based mode damp-

ing models. One such model is the drift kinetic damping

included into the MARS-K code.14 Because of the often

FIG. 15. Time traces of the amplitude of the perturbed radial field b1 at the

q¼ 2 surface, with and without inclusion of the NTV torque in the simula-

tions for an initially stable RWM, with the initial mode amplitude at (a)

jb1jðq ¼ 2Þ ¼ 5:6� 10�4 and (b) jb1jðq ¼ 2Þ ¼ 1:4� 10�3. The dashed

curves correspond to the exponential decay of the initially stable linear

mode. The dashed vertical lines indicate the moment of time when the non-

linear coupling between the mode and the plasma flow is switched on.

FIG. 16. Time traces of (a) the amplitude of the perturbed radial field b1 at

the q¼ 2 surface, and (b) the plasma rotation frequency at the q¼ 2 and

q¼ 3 surfaces, with various choices of the initial mode amplitude. The

dashed curves in (a) correspond to the exponential decay of the initially sta-

ble linear mode. The dashed vertical lines indicate the moment of time when

the non-linear coupling between the mode and the plasma flow is switched

on. Both the electromagnetic and the NTV torques are included in the

simulations.
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rather complicated dependence of the linear mode stability

on the plasma flow speed within the kinetic model, we

expect generally more rich phenomena in the non-linear cou-

pling between the mode and the plasma rotation braking. In

particular, at slow plasma flow, the kinetic effects may intro-

duce significant changes in the time evolution of the rotation

profile. This is because, at sub-diamagnetic flow, the preces-

sional drift resonances of trapped particles can become im-

portant for the RWM stability. In a self-consistent model, the

drift kinetic effect can also modify the eigenfunction of the

fluid RWM. This adds even more interesting aspects into the

non-linear interaction between the mode and the plasma

flow.

As far as the RWM is concerned, there are other inter-

esting aspects that should be addressed in the future work,

such as the effects of 3D conducting structures, the presence

of electromagnetically thick walls (e.g., the volumetric blan-

ket modules in ITER), the presence of field errors that have

been included in cylindrical theory.7,8 Finally, quantitative

simulations of the RWM interaction with the plasma flow for

ITER plasmas can be performed, based on a similar

approach as that reported in this work.
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