
Integral equation method for evaluation of eddy-current impedance
of a tilted, surface-breaking crack

Lars Larsson,1 Anders Bostr€om,2 Peter B€ovik,2 and Håkan Wirdelius1
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An integral equation method for solving the eddy-current nondestructive evaluation problem for a

flat, tilted, and surface-breaking crack in a conducting half-space is presented. The method involves

use of a half-space Green’s tensor and the Bowler potential. This potential describes the jump in the

electric field over the crack and is expanded in basis functions related to the Chebyshev polynomials,

being a more analytical approach than the commonly used boundary element method. In the method,

the scatterer defines a transformation operator to be applied on the incoming field. This is practical in

simulations of the eddy-current inspection where this operator is independent of the position of the

probe. The numerical calculations of the change in impedance due to the crack are compared to a

Finite Element model of the problem and good agreement is found. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4832330]

I. INTRODUCTION

Much of the development of more and more advanced

nondestructive evaluation (NDE) technologies can be traced

to the introduction of structural design and risk based inspec-

tion programs based on the damage tolerance concept. New

and stronger demands on reliability of used nondestructive

methods and procedures have enforced different strategies to

quantify the inspection capability. The most dominant and

frequently used method within the aero industry is the proba-

bility of detection (POD) methodology, see, e.g., Jensen

et al.,1 Wirdelius and Persson,2 and Rosell and Persson.3 The

intention is that POD curves should provide a statistically

sound measurement of a method’s capacity to detect a defect

as function of its size. These POD curves can then be used to

find the optimal NDE technique with respect to a specific

object, material, defect size, and other defect characteristics.

The proposed qualification procedure with test pieces is very

expensive and it also tends to introduce a number of possible

misalignments between the actual testing situation and the

proposed experimental simulation. Experimentally validated

simulation tools that capture variations of both the NDE

methods and well-defined procedures and samples can then

be used to predict the outcome of a single NDE situation and

provide cost effective synthetic POD data.

Eddy-current NDE involves the detection of electromag-

netic field anomalies caused by inhomogeneities in an elec-

trically conducting material. The primary eddy-current field

is usually produced by sinusoidal excitation of a small induc-

tion coil located near the surface of the inspected part. By

scanning the coil over the surface, flaws can be detected by

observing a change in the coil impedance due to flaw-

induced perturbations of eddy-current density. A mathemati-

cal model of the NDE problem is often very useful, e.g., one

can obtain a better understanding of the physical process of

the NDE situation and it is easier to perform parametric stud-

ies. Computer simulations of the flaw detection process

require calculation of the electromagnetic field in the mate-

rial around the flaw and the response from the defect, for this

a reciprocity relation exists where the flaw response function

can be expressed as an integral over the surface of the flaw.

There have been several studies of simulating scattering

of eddy-currents from cracks in a conducting half-space dur-

ing recent decades, see Auld and Moulder.4 Harfield and

Bowler5 give a closed form expression for the change in

electromagnetic impedance of a conductor due to the pres-

ence of an infinitely long, perpendicular surface-breaking

crack in a normally incident, uniform electric field. The per-

turbed electromagnetic field was more accurately calculated

using Wiener-Hopf technique than Auld et al.6 A similar

problem is considered by Kahn et al.7 Harfield and Bowler8

develop a method based on geometrical theory of diffraction

(GTD) for eddy-current nondestructive evaluation. Lewis

et al.9 investigate thin skin electromagnetic scattering of

a semi-elliptical surface-breaking crack in an infinite half-

plane interrogated by a uniform surface current. Bowler

et al.10 calculate eddy-current probe responses for surface

cracks with a finite opening. Eddy-current interaction with

an ideal crack with negligible opening and acting as an

impenetrable barrier to electric current is considered by

Bowler.11 The method of Bowler11 was extended by

Beltrame and Burais12 to consider also the inclination of the

crack.

In the present paper the mathematical modeling of a

surface-breaking, infinite crack in a half-space, using an inte-

gral equation technique, is studied. The crack can have any

depth and tilt. The probe is modeled as a three-dimensional

single coil with a lift-off giving a three-dimensional incom-

ing field (Dodd and Deeds13) towards the crack. The integral

equation of Bowler11 is used. However, the solution proce-

dure is different and instead similar to the one used by B€ovik

and Bostr€om14 and Jansson and Bostr€om15 for scattering of

ultrasonic waves from internal and subsurface cracks in an

0021-8979/2013/114(19)/194504/6/$30.00 VC 2013 AIP Publishing LLC114, 194504-1

JOURNAL OF APPLIED PHYSICS 114, 194504 (2013)

http://dx.doi.org/10.1063/1.4832330
http://dx.doi.org/10.1063/1.4832330
http://dx.doi.org/10.1063/1.4832330
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4832330&domain=pdf&date_stamp=2013-11-20


elastic half-space. The integral equation for the jump in the

tangential electrical field over the crack is solved by expand-

ing the Green’s tensor in plane waves, where the free part is

expanded in the crack coordinate system and the additional

part due to interface between the half-spaces is expanded in

the half-space coordinate system. To discretize the integral

equation an expansion of the jump in the electrical field in

Chebyshev functions is performed in order to get the correct

singularity at the crack edge and mouth. This gives a more

analytical method which can be expected to be more numeri-

cally effective.

II. PROBLEM STATEMENT

Consider the typical eddy-current testing situation as

depicted in Fig. 1. An eddy-current probe in the shape of a

small cylindrical coil is scanning closely over the surface

z0¼ 0, which divides space into an air-filled half-space

z0 < 0 and a nonferromagnetic, conducting (metal)

half-space z0 > 0. The properties and modeling of the probe

is described in Sec. IV. The metal half-space contains an

infinitely long (in the y direction) surface-breaking crack of

height a (in the z direction), which is tilted by the angle w
from the normal to the interface. The two coordinate systems

x0 y0 z0 and xyz are introduced, where the origins and the y
and y0 axes along the crack mouth are coinciding. The x0 y0

z0 system has the z0 axis normal to the interface and the x0

axis in the interface perpendicular to the crack mouth. The

xyz system is tilted the angle w around the y0 axis so that the

z axis lies in the plane of the crack. The half-space z0 > 0 is

denoted region i¼ 0 and z0 < 0 as region i¼ 1. The geome-

try of the problem is thus 2D (with translational invariance

in the y direction), but the field distribution is 3D because of

the exciting probe.

Only time harmonic conditions are considered and the

time factor expð�ixtÞ is suppressed throughout. The wave

numbers in the two regions are k2
i ¼ ilixri þ x2liei, where

li is the magnetic permeability, ei the electric permittivity,

and ri is the conductivity, for i¼ 0,1. In the air the constants

are taken as those of vacuum, so the conductivity is vanish-

ing. In realistic eddy-current applications the wavelengths in

air are very much larger than all relevant geometrical lengths

so the wave number is practically zero. However, it is

retained as nonzero here for the sake of generality. The elec-

tromagnetic fields satisfy Maxwell’s equations, but after

eliminations this gives for the electric field Ei

r�r� Ei � k2
i Ei ¼ 0; i ¼ 0; 1: (1)

Between the two half-spaces the tangential parts of the elec-

tric and magnetic fields must be continuous

ẑ0 � E0 ¼ ẑ0 � E1; (2)

1

l0

ẑ0 � ðr � E0Þ ¼
1

l1

ẑ0 � ðr � E1Þ; (3)

where ẑ0 is the unit vector in the z0 direction. The crack is

assumed to be infinitely thin but with limited electric contact

between the faces so the boundary conditions across the

crack are taken as

x̂ � ðr � E�0 Þ ¼ x̂ � ðr � Eþ0 Þ; (4)

E�0x ¼ Eþ0x ¼ aV; (5)

where the indices plus and minus denote the limit from the

two sides x > 0 and x < 0, respectively. Here, V is a scalar

surface field on the crack that determines the jump in the

tangential electric field and a is a constant which determines

the degree of contact across the crack. For an open, infin-

itely thin crack a ¼ 0. To model a crack with partial contact

the following model proposed by Harfield and Bowler16 is

used:

a ¼ rf

cðrf � r0Þ
: (6)

This results in an electric contact corresponding to the case

of a volumetric flaw of the width c and the electric conduc-

tivity rf . To make the problem formulation complete, the

electric field must also satisfy radiation conditions.

III. INTEGRAL EQUATION SOLUTION

To solve the scattering problem the integral equation

derived by Bowler11 is used, but with a nonzero right-hand

side if electrical contact exists across the crack. This equa-

tion contains the Green’s tensor for the two half-spaces with-

out the crack, and the equation therefore only contains an

integral over the crack

Einc
0x ð0; y; zÞ þ k2

0 lim
x!0þ

ð1
�1

ða

0

G11ðx; y; z; 0; y0; z0Þ

� Vðy0; z0Þ dz0dy0 ¼ Eþ0xð0; y; zÞ; (7)

where Einc
0x ð0; y; zÞ is the incoming field, i.e., the field from

the coil in the absence of the crack. The unknown V is a sur-

face scalar function defined on the crack such that it deter-

mines the jump in electric field through r0Vðy0; z0Þ
¼ E�0 ð0; y0; z0Þ � Eþ0 ð0; y0; z0Þ. Only the 11 component of the

Green’s tensor is needed as only the normal (x) component

of the integral representation is used and the unknown only

has a normal component.11 According to the boundary con-

dition (5) the right-hand side of Eq. (7) can be written as

aVðy; zÞ. It is observed that the resulting integral equation is

singular, but the way of solving it makes it possible to later

take the limit under the integral.
FIG. 1. The 3D scattering geometry with the metal half-space z0 > 0, the air

half-space z0 < 0, the coil, and the tilted crack along the z axis.
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The Green’s tensor is divided into two parts, where one

is the free-space tensor of the metal and the other is due to

the interface to the air. The free-space Green’s tensor is

obtained by taking a double Fourier transform in the tangen-

tial coordinates y0 and z0. This straightforwardly gives

Gfree
nn0 ðx; y; z; x0; y0; z0Þ

¼ 2i
X

j

ð1
�1

ð1
�1

dq dp

h
fjn0 f

�
jneiðhjz00�z0jþpðy00�y0Þþqðx00�x0ÞÞ;

(8)

where j is summed over 1,2 and

f11 ¼ 0; f12 ¼
ik0q

4pk0s
; f13 ¼

�ik0p

4pk0s
;

f21 ¼
s

4pk0

; f22 ¼
�ph

4pk0s
; f23 ¼

�qh

4pk0s
: (9)

Here, q and p are Fourier transform variables in x0 and y0,

respectively, and h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � s2
p

and s2 ¼ p2 þ q2 (the square

root is defined such that =ð
ffiffiffiffiffiffiffi
ð�Þ

p
Þ � 0). Furthermore, f* is

obtained from f by changing all explicit i to �i. It is noted

that this expansion of the Green’s tensor can be viewed as an

expansion in plane waves. The free space Green’s tensor is

written in the coordinate system x0 y0 z0 of the interface, but

this part has of course the same appearance in all coordinate

systems, in particular, also in the crack system xyz.

To satisfy the boundary conditions at the metal-air inter-

face an additional part is added to the Green’s tensor, in the

metal this is a reflected part and in the air a transmitted one.

As the Green’s tensor is just an expansion in plane waves,

the appearing reflection and transmission coefficients are just

the well-known ones for plane waves. Using the boundary

conditions (2) and (3) to determine the reflection and trans-

mission coefficients and then transforming to the crack sys-

tem the reflected part in the metal becomes

Grefl
nn0 ðx; y; z; x0; y0; z0Þ ¼ 2i

X
jj0

ð1
�1

ð1
�1

dq dp

h
gjn0Rjj0g

þ
j0n � eiðx0ðq cos w�h sin wÞ�xðq cos wþh sin wÞþpðy0�yÞþz0ðh cos wþq sin wÞþzðh cos w�q sin wÞÞ;

(10)

where j and j0 are summed over 1, 2 and

g11 ¼
ip cos w

4ps
; g12 ¼

�iq

4ps
; g13 ¼

ip sin w
4ps

;

g21 ¼
�qh cos w� s2 sin w

4pk0s
; g22 ¼

�ph

4pk0s
;

g23 ¼
s2 cos w� qh sin w

4pk0s
:

(11)

Here, gþ is obtained from g by changing i to �i and h to �h.

The standard Fresnel reflection coefficients are

R11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � s2
p

� b01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � s2
p

þ b01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � s2
p ;

R22 ¼
b01k2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � s2
p

� k2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � s2
p

b01k2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � s2
p

þ k2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � s2
p ;

(12)

where b01 ¼ l0=l1 and the two off-diagonal elements are of

course zero: R12¼R21¼ 0.

To discretize the integral equation and to take care of

the hypersingularity, the unknown Vðy0; z0Þ is expanded as

Vðy0; z0Þ ¼
X

m0

ð1
�1

bm0 ðp0Þ/m0 ðz0Þe�ip0y0 dp0; (13)

where bm0 ðp0Þ are the unknown expansion coefficients. Here,

the expansion functions are defined as

/m0 ðz0Þ ¼ cosðð2m0 �1Þarcsinðz0=aÞÞ; m0 ¼ 1;2;3; :::; (14)

and the summation is over all positive integers. By expand-

ing Vðy0; z0Þ in these functions, which are related to the

Chebyshev polynomials, the correct weak singularity

appears at the crack edge, see Bowler.11 At the crack mouth

the expansion functions have a finite value to admit a finite

value of the jump in electric field. Inserting the sum of the

expansions of the Green’s tensor (8) and (10) and the expan-

sion of the unknown (13) into the integral Eq. (7), projecting

the result on the Chebyshev functions and taking a Fourier

transform in y yields

X
m0

bm0 ðpÞQm0mðpÞ ¼ �
ða

0

ð1
�1

Einc
0x ð0; y; zÞ eipy/mðzÞ dy dz;

(15)

where

Qm0mðpÞ ¼
ia2

2

ð1
�1

dq

h
ðs2ImðqaÞIm0 ð�qaÞ

þ cos2 w
s2
ðk2

0p2R11 � q2h2R22

� �

þ s2sin2w
� �

R22ÞImðha cos w� qa sin wÞ
� Im0 ðha cos wþ qa sin wÞÞ

�2pa
ða

0

/m0 ðzÞ/mðzÞ dz: (16)

Here, the following function is introduced:

ImðcÞ ¼
ð1

0

cosðð2m� 1Þarcsin tÞeictdt: (17)
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It seems that this integral can not be calculated in simple

analytical form, but except for large arguments it is straight-

forward to compute numerically. For an interior crack, with

a slightly different expansion of the unknown, the corre-

sponding integral is essentially a Bessel function.14 It should

be noted that the last term in expression (16) can be calcu-

lated analytically.

IV. THE PROBE

The eddy-current probe is assumed to be a coil with axis

perpendicular to the interface between the air and the metal.

An analytical expression for the magnetic vector potential is

given in Dodd and Deeds.13 By use of this expression the elec-

tric field in the metal in the absence of the crack is written as

Einc
0 ðx0; y0; z0Þ ¼ �

xl0J

2 p

ð1
�1

ð1
�1

1

s2
Yðr2; r1Þeiðqx0þpy0þhz0Þ

� ðe�sl1 � e�sl2Þ ðp;�q; 0Þ
s� ih

dp dq; (18)

where l1 is the lift-off, l2 � l1 the height of the probe, and J
is the current density, assumed to be constant inside the coil.

The function Y(r2,r1) is an integration in r over the radial

extension of the probe

Yðr2; r1Þ ¼
ðr2

r1

r J1ðrsÞ dr; (19)

where, r1 and r2 are the inner and outer radii of the coil,

respectively, and J1(rs) is a Bessel function. Inserting the

expression for the incoming field in Eq. (15) and carrying

out the integrations over y and p the right-hand side of the

equation can be written

�
ða

0

ð1
�1

Einc
0x ð0; y; zÞ eipy/mðzÞ dy dz

¼ �xl0aJ

ð1
�1

p cos w
s2ðs� ihÞYðr2; r1Þðe�sl1 � e�sl2Þ

� Imðha cos wþ qa sin wÞ dq: (20)

The remaining integral has to be computed numerically.

To calculate the eddy-current probe impedance change

DZ due to the crack it is convenient to use the following

expression (see Bowler et al.10):

DZ ¼ rf � r0

I2

ða

0

ð1
�1

Einc
0x ðrÞVðy; zÞdy dz; (21)

where I is the total current in the coil when acting as a trans-

mitter. Using Eq. (18) together with the expansion (13) of

V(y,z) yields

DZ¼ ðr0�rf Þxl0aJ

k2
0I2

X
m

ð1
�1

ð1
�1

bmðpÞ
pcosw

s2ðs� ihÞ

�Yðr2;r1Þ e�sl1 �e�sl2ð Þ � ImðhacoswþqasinwÞdqdp:

(22)

The computation of this quantity is now reduced to quadra-

tures and the solution of the system of Eq. (15). It is noted

that this system of equations has to be solved for each value

of p needed to compute the p integral in the impedance

change (22).

V. NUMERICAL EXAMPLES

In this section numerical examples are presented and

compared with a FEM solution. The implementation is rather

straightforward and is performed in MATLAB. First, this

involves the numerical integration in (16) and (20). This is

straightforward except that the integral in (16) has to be

handled with care as each term individually is divergent. So

the integral must be computed as a whole and to get reasona-

ble convergence the dominate behaviour for large arguments

is calculated and integrated analytically. Solving the system

of Eq. (15), there only remains to compute the integral in Eq.

(22). Here, the q integral is straightforward. It is noted that

the p integral in Eq. (22) involves a recomputation of all the

previous steps. This reflects the fact that the problem is in

effect solved by a Fourier transform in y (with transform

variable p), which results in a 2D problem for each p.

COMSOL Multiphysics is used to obtain the FEM solution. In

the used FEM model (Rosell and Persson17) the crack must

have a finite width (in the x direction) and this has a clear

influence on the results, see Rosell and Persson,17 where the

effect of crack width is investigated. In the model contact

across the crack is modelled by a finite conductivity, result-

ing in a volumetric flaw of width c and conductivity rf .

Obviously, the FEM mesh and the crack length (in the y
direction) are finite and the crack and the FEM mesh are in

the present case 7 mm long, which is long enough to simulate

an infinite crack and an infinite region with reasonable

accuracy.

The material is titanium with the conductivity

r ¼ 0:58 MS=m and l and � are the same as those of

vacuum. The probe is a single coil with height 1 mm, inner

diameter 0.75 mm, outer diameter 1 mm, and lift-off 0.1 mm.

There is no electric contact across the crack ða ¼ 0Þ unless

stated otherwise. The change in impedance DZ during a scan

perpendicular over the crack is presented for a few cases

below.

Figure 2 shows a comparison between the present

method and FEM for the frequency 1 MHz. The crack height

(along the z axis) is chosen as 0.66 mm, corresponding to

one skin depth at this frequency. This choice is critical in the

sense that there is a field varying with depth which is reason-

ably large also at the crack tip. Two different crack tilts are

shown and two FEM solutions are given for the crack widths

50 lm and 100 lm. If the two FEM results are extrapolated,

it is seen that the results agree very well with the present

solution. That a wider crack gives a larger change in imped-

ance is in agreement with the results in Refs. 17 and 18.

To illustrate the effect of electric contact across the

crack, Fig. 3 shows the real versus the imaginary part of DZ
during a surface scan. The frequency and the height of the

crack are kept the same as in Fig. 2. As expected an

increased electric contact gives a smaller DZ.

In Fig. 4, the change in impedance for four different

crack tilts, but with the same depth, are shown for the

194504-4 Larsson et al. J. Appl. Phys. 114, 194504 (2013)



frequency 1 MHz. The extension of the cracks in the z0 direc-

tion (which is a cos w) is 0.66 mm or one skin depth. This

results in different crack height along the z axis for different

crack tilts. It seems like the width of the signal could be a

good measure of different tilt angles. The maximum ampli-

tude, on the other hand, is almost the same for all of the

cracks.

Figure 5 shows the change in impedance as a function of

frequency for tilted defects relative the change in impedance

for a defect normal to the surface. For all frequencies the

coil is centered above the crack mouth, which is near the

position where maximum amplitude is achieved. The height

of the cracks are 0.66 mm and the range of frequency is cho-

sen as 105–108 Hz, which is a typical frequency range used

for titanium in the aero industry. The comparison shows that

the maximum amplitude, which is mostly dependent on the

depth of the crack, can be used to distinguish different tilt

angles if the frequency is not too high. In the thin skin fre-

quency domain where the amplitude is almost independent

of the depth of the crack the difference in amplitude between

different tilt angles is very small.

FIG. 2. The absolute value of DZ as a function of position during a surface

scan for the tilt angles w ¼ 0� and w ¼ 40�. The full-drawn curves are with

the present method, the dashed with FEM and crack width 50 lm, and the

dashed-dotted with FEM and crack width 100 lm.

FIG. 3. The real versus the imaginary part of DZ during a surface scan. The

tilt angles are w ¼ 0� and 40� (starting from the bottom). The electric con-

ductivity inside the crack rf is zero for the solid curves, rf ¼ 0:001 � r0 for

the dotted curves, and rf ¼ 0:01 � r0 for the dashed curves. The thickness

parameter c¼ 50 lm.

FIG. 4. The real versus the imaginary part of DZ during a surface scan. The

tilt angles are w ¼ 0� for the solid curve, 20� for the dashed curve, 40� for

the dotted curve, and 60� for the dashed-dotted curve.

FIG. 5. The maximum amplitude of the change in impedance for a tilted

crack relative the maximum amplitude of the change in impedance for a

crack with no tilt, plotted against the frequency. Tilt angles are 20�, 40�, and

60�, starting from the top.
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To explore the frequency dependence further, Figs. 6(a)

and 6(b) present the change in impedance during a surface

scan for a low (105 Hz) and a high (108 Hz) frequency,

respectively. The crack height (along the z axis) is chosen as

0.66 mm. Again there is a clear distinction between the dif-

ferent tilt angles, for the low frequency in amplitude and for

the high frequency in the width of the signals. If the tilt angle

is to be measured a higher frequency seems to be favourable,

whereas the difference in depth as might have been expected

is more evident when the frequency is not too high. It is

noted that there is a change in sign in the real part between

Figs. 6(a) and 6(b). The large change in amplitude for differ-

ent frequencies is a matter of the chosen normalization,

which has kept the current amplitude the same irrespective

of the frequency, thus resulting in more input effect at higher

frequencies. In a real experiment it is rather the effect that is

kept constant.

VI. CONCLUDING REMARKS

The eddy-current interaction problem for a tilted, flat,

surface-breaking crack is solved using an integral equation

method. The jump in the electric field over the crack (known

as the Bowler potential) is expanded in basis functions

related to the Chebyshev polynomials. The transformation

operator is generated and by reciprocity used to calculate the

change in impedance due to the crack. These calculations

show good agreement with a FEM solution of the problem.

The crack in the present paper is infinite, but the method can

be modified to handle finite cracks. The method is applicable

to other surface geometries than a plane and another possible

option is to add an extra layer above the crack.
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15P.-Å. Jansson and A. Bostr€om, “Modeling of ultrasonic nondestructive

testing of surface-breaking cracks,” in Proceedings of 18th World
Conference on Nondestructive Testing, Durban, South Africa, 2012.

16N. Harfield and J. R. Bowler, “A thin skin theory of current leakage across

surface cracks,” in Electromagnetic Nondestructive Evaluation(II), edited

by N. Albanese, G. Rubinacci, T. Takagi, and S. Udpa (IOS Press, 1998).
17A. Rosell and G. Persson, “Finite element modelling of closed cracks in

eddy current testing,” Int. J. Fatigue 41, 30–38 (2012).
18R. E. Beissner, “Slots vs. cracks in eddy current NDE,” J. Nondestruct.

Eval. 13, 175–183 (1994).

FIG. 6. The real versus the imaginary part of DZ during a surface scan for

the frequency 105 Hz in (a) and 108 Hz in (b). The tilt angles are w ¼ 0� for

the solid curve, 20� for the dashed curve, 40� for the dotted curve, and 60�

for the dashed-dotted curve.

194504-6 Larsson et al. J. Appl. Phys. 114, 194504 (2013)

http://dx.doi.org/10.1016/j.ijfatigue.2011.09.002
http://dx.doi.org/10.1080/09349847.2013.779401
http://dx.doi.org/10.1080/09349847.2013.779401
http://dx.doi.org/10.1023/A:1021898520626
http://dx.doi.org/10.1063/1.357259
http://dx.doi.org/10.1007/BF00614993
http://dx.doi.org/10.1063/1.323475
http://dx.doi.org/10.1098/rspa.1997.0063
http://dx.doi.org/10.1063/1.341384
http://dx.doi.org/10.1063/1.341384
http://dx.doi.org/10.1063/1.349615
http://dx.doi.org/10.1063/1.356511
http://dx.doi.org/10.1109/TMAG.2004.825433
http://dx.doi.org/10.1063/1.1656680
http://dx.doi.org/10.1121/1.420326
http://dx.doi.org/10.1016/j.ijfatigue.2011.12.003
http://dx.doi.org/10.1007/BF00742583
http://dx.doi.org/10.1007/BF00742583

