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ABSTRACT 

Secure, clean and renewable energy sources are believed to be the eventual solution for 

sustainable energy, especially by the direct utilization of solar energy. Organic 

photovoltaics offer such an option to convert solar energy into electricity based on 

solution-processed, lightweight, large-area, and potentially flexible devices. The current 

challenges for organic photovoltaics remain to further improve efficiency as well as 

durability and cost-effectiveness, to compete with traditional silicon-based solar cells.  

Material design through band gap and energy level tuning has been playing a key role in 

developing new donor materials for efficient polymer solar cells. Computationally driven 

material design can accelerate the search for optimal conjugated polymers, and the 

exploration of chemical methodologies is highly desirable in pushing the efficiency further 

toward the theoretical limit. 

This thesis deals with the design, synthesis, characterization, and computational modelling 

of -conjugated polymers for bulk heterojunction organic solar cells. It focuses on material 

design of conjugated donor polymers through band gap and energy level engineering via 

structural modifications such as backbone manipulations, side-chain engineering, as well 

as incorporation of newly developed building blocks. This also establishes structure–

property relationships of the polymer systems here studied, and explores potential 

chemical methodologies for future judicious material design. 

Keywords: conjugated polymers, organic photovoltaics, material design, band gap, energy 

level, computational modelling, structure–property relationships  
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1 Introduction 

1.1 Energy 
Energy remains a critical issue for the survival and prosperity of human civilization. The 

use of energy is projected to increase with population and economic growth in the world.1 

Currently, the energy consumption mainly originates from fossil resources (e.g., 

petroleum, coal and natural gas). In addition to the environmental and climate impacts 

(e.g., environmental pollutions and global warming) caused by the production and 

combustion of fossil fuels, these non-renewable resources are also becoming increasingly 

shorter in supply. Secure, clean and renewable energy sources are believed to be the 

eventual solution for sustainable energy, to avoid an energy crisis, especially by the direct 

utilization of solar energy that can be affordable, inexhaustible and clean. Among the 

options for sustainable energy, photovoltaic technologies offer a way to harness an 

unlimited energy resource (i.e., solar energy) to generate electricity with minimum 

environment impacts, compared to other alternatives such as water, wind and nuclear 

energy resources.2  

1.2 Organic Photovoltaics 
Organic photovoltaics are a promising technology for solar energy conversion based on 

solution-processed, lightweight, large-area, and potentially flexible devices. In particular, 

during the past five years we have witnessed a rapid progress of bulk heterojunction 

organic photovoltaics boosted by (i) design and synthesis of novel conjugated donor 

materials, (ii) control and optimization of device fabrication, and (iii) the development of 

new device architectures such as tandem and ternary solar cells. The current challenges for 

OPVs remain to further improve photovoltaic efficiency as well as durability and cost-

effectiveness, to compete with silicon-based solar cells.3 Material design through band gap 

and energy level tuning has been playing a key role in developing new donor materials for 

efficient organic solar cells. Computationally driven material design has received 

increasing interest to accelerate the search for optimal conjugated photovoltaic materials, 

and the exploration of chemical methodologies is highly desirable in pushing the efficiency 

further toward the theoretical limit.  
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1.3 Aim and Outline of the Thesis 
The goal with this project is to synthesize polymers for efficient solar cells. The work 

described in this thesis deals with the design, synthesis, characterization, and 

computational modelling of -conjugated polymers for bulk heterojunction organic 

photovoltaic solar cells. It focuses on material design of conjugated donor polymers 

through band gap engineering via structural modifications such as backbone 

manipulations, side-chain engineering, as well as incorporation of newly developed 

building blocks. This also establishes structure–property relationships of the polymer 

systems here studied, and explores potential chemical methodologies for future judicious 

material design. 

 The thesis includes an introduction to organic photovoltaics (Chapter 2) and conjugated 

polymers (Chapter 3). Chapter 4 describes energy level modulation with chemical 

strategies described in further detail in Paper I and II. In Chapter 5 the influence of 

different donor units in the donor–acceptor polymers will be discussed, which is based on 

Paper III. Chapter 6 discusses the influence of conjugated bridges in the donor polymer 

design featured in Paper IV. Chapter 7 features a discussion on the effect of side-chain 

engineering on photovoltaic performance that originates from work presented in Paper V. 

Some concluding remarks are provided in Chapter 8 to sum up the thesis. 

 The synthesis, characterization, and computational modelling has been done at 

Chalmers University of Technology, Göteborg, Sweden, through a Ph.D. studentship 

funded by the Swedish Energy Agency, the European Commission FP7 collaborative 

project SUNFLOWER and the Swedish Research Council, while device characterization 

has been mainly conducted at Linköping University, Linköping, Sweden, within the 

framework of Center of Organic Electronics (COE), and Consiglio Nazionale delle 

Ricerche (CNR), Bologna, Italy, within the European Commission FP7 collaborative 

project SUNFLOWER. 
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2 Organic Photovoltaics 

2.1 Background 

2.1.1 Solar Energy 
The solar radiation that hits the earth consists of a distribution of photons with varying 

energy. Shown in Figure 2.1 is the spectral distribution of photon flux at ~48° relative to 

the Earth’s normal, based on the standardized AM1.5G solar radiation spectrum, as is used 

to test the photovoltaic performance of the solar cells. Ideally a photovoltaic material 

should absorb as many of the available photons as possible and convert them to electricity. 

Also included are the Shockley–Queisser efficiency limit4 of a p–n junction solar cell and 

the maximum theoretical current density under AM1.5G illumination.5 

 
Figure 2.1  AM1.5G solar radiation spectrum and Shockley–Queisser limit. 

2.1.2 A Brief History of Solar Cells 
Solar cells harness solar energy, which is an abundant and renewable energy resource, and 

convert it directly into electrical energy by the photovoltaic effect. The photovoltaic effect 

was discovered in 1839 by French physicist Edmund Becquerel,6 but the first working 
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solar cell was created in 1883 by American inventor Charles Fritts, who achieved around 

1% efficiency, based on the junctions from the semiconductor selenium coated with an 

extremely thin layer of gold.7 In 1946 Bell Laboratories patented the modern junction 

semiconductor solar cell,8 and in 1954 the first practical photovoltaic cell was developed 

using a diffused silicon p–n junction that reached 6% efficiency.9 The best efficiency of 

silicon solar cells to date is around 25%.10 Even though silicon solar cells can be efficient 

and reliable, they are still too expensive to compete with fossil fuels, due to the need of the 

photoactive materials of high purity,10c apart from the serious environmental impact of the 

silicon industry.3b  

 During the past half century, organic solar cells have been attracting interest in both 

academia and industry. By the use of organic photoactive materials (e.g. semiconductive 

polymers) and low-temperature solution processing techniques, they show great potential 

for low-cost, lightweight, large-area and flexible devices.11 The first organic solar cell was 

made in 1959 by Kallmann et al. based on a single crystal of anthracene. It was not until 

1986 that an organic solar cell reached about 1% efficiency, based on a thin-film bilayer 

heterojunction from copper phthalocyanine and a perylene tetracarboxylic derivative, 

pioneered by Physical Chemist Ching Wan Tang.12 The success of the electron 

donor/acceptor heterojunction concept largely stimulated the research in the organic 

photovoltaics field. The current state-of-the-art device structures are based on the concept 

of bulk heterojunction (BHJ),13 and organic solar cells have achieved rapid progress 

especially during the past few years,10a,14 with power conversion efficiency (PCE) as high 

as 8.6%15 and 9.35%16 respectively reported for conventional and inverted single-junction 

solar cells. The development of new device architectures including tandem17 and ternary18 

solar cells has now enabled OPVs to break through the benchmarking efficiency of 

10%.10a,17c,d In June 2012, Mitsubishi Chemical announced a world record efficiency of 

~11% for organic thin-film photovoltaic cells.10a The current challenges for OPVs are to 

further improve photovoltaic efficiency as well as durability and cost-effectiveness, to 

compete with silicon-based solar cells.3  

2.2 Photovoltaic Device Operation 
2.2.1 Organic Heterojunction 
The success of the donor/acceptor heterojunction concept in a thin-film bilayer device 
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architecture12 in 1980s greatly vitalized the research in the organic photovoltaics field.19 

The discovery of fullerenes in an earlier year, for which the Nobel Prize in Chemistry in 

1996 was awarded jointly to Robert F. Curl., Harold W. Kroto and Richard E. Smalley,20 

also enlivened the organic photovoltaics field, due to the synthesis of new fullerene 

derivatives and their applications as the electron acceptor in the heterojunction structure.21 

The problem with the bilayer heterojunction device architecture is that the exciton 

diffusion lengths in these organic materials are typically ~10 nm,19,22 much shorter than the 

active layer thickness (~100 nm) commonly required to ensure sufficient light absorption. 

Consequently, many of the generated excitons may not be able to reach the interface to 

dissociate into free carriers. To overcome this issue, the two materials, acting as an 

electron donor and an electron acceptor respectively, can be deposited as a finely 

intermixed blend film, forming a so-called bulk heterojunction (BHJ).13 Ideally, a 

bicontinuous interpenetrating blend is formed as the BHJ, with domain sizes of 

approximately twice the exciton diffusion length that potentially allows efficient charge 

separation and transport. The BHJ structure can provide a much larger interfacial area due 

to the interpenetrating network formed, as compared to the bilayer device architecture.  

 It should be pointed out that the interplay of these two components in the 

heterojunction is among the most important aspects determining the properties of the solar 

cell. A small change in the chemical structure of one material could alter its molar mass, 

solubility, band gap, mobility, stability, and interplay with the other component. Therefore, 

understanding how the chemical structure influences the polymer properties is of crucial 

importance in the solar energy material design. One should also bear in mind that in BHJ 

organic photovoltaics, control of the active layer morphology can be of critical importance, 

apart from altering the chemical structure of the materials. Insufficiently exploring 

processing parameters may cause a potentially good candidate of photovoltaic material to 

drop significantly in photovoltaic performance. It has been shown that the choice of proper 

solvents for the materials,23 control of spin-speed during spin-coating to change the drying 

time and thickness of films,24 the use of processing additives,25 or thermal annealing26 can 

alter the morphology and the performance.  

 In this thesis, unless otherwise specified, OPV devices are fabricated in a conventional 

device architecture based on polymer:fullerene bulk heterojunctions as the active layer, as 
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schematically shown in Figure 2.2.27 

 
Figure 2.2  Schematic device structure of an 

organic photovoltaic cell. 

Figure 2.3  Molecular structures of PC61BM and 

PC71BM. 

 In bulk heterojunction13 polymer:fullerene solar cells, [6,6]-phenyl-C61-butyric acid 

methyl ester (PC61BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) (Figure 

2.3) are among the most widely used as the electron acceptor in the active layer. The 

intermixed blend film is sandwiched between two electrodes, typically a transparent 

conducting anode (e.g., indium tin oxide (ITO)) and a metal cathode in a conventional 

device configuration (Figure 2.2). Additionally, a thin layer of poly(3,4-

ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) is generally applied in 

between the ITO and the active layer to improve their electrical contact and to adjust 

energy levels as well as to smoothen the ITO surface.28 More recently, the incorporation of 

a cathode interlayer, such as lithium fluoride (LiF), or poly[9,9-bis(3'-(N,N-

dimethylamino)propyl)fluorene-2,7-diyl)-alt-(9,9-dioctylfluorene-2,7-diyl)] (PFN), has 

also been shown to greatly enhance the device performance.15d 

 Worth mentioning is the fast development of inverted solar cells and other new device 

architectures including tandem17 and ternary18 solar cells, which has now enabled OPVs to 

break through the benchmarking efficiency of 10%.10a,17c,d Photovoltaic data included in 

this thesis work only resulted from single-heterojunction devices, but the material design 

concept for tandem and ternary solar cells may also be touched. 

2.2.2 Operation Principle 
The design and synthesis of new conjugated donor materials with desirable chemical and 

physical properties has played a key role in realizing highly efficient OPVs, along with an 
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improved understanding and control behind the photovoltaic device operation in terms of 

absorption of light and photogeneration of excitons,29 exciton diffusion and 

dissociation,22b,e,30 charge transport,31 and charge extraction.19  

 The operation of an organic photovoltaic cell is illustrated in Figure 2.4, in a simplified 

manner. (a) A photon is absorbed and an exciton is created. (b) The exciton diffuses 

toward the heterojunction interface and (c) forms an intermediate state by performing a 

charge transfer. (d) The exciton is then dissociated into free charge carriers, (e) which are 

transported to their respective electrodes and collected. It is worth emphasizing that upon 

charge transfer between the donor and the acceptor, electrons and holes are still 

Coulombically bound though spatially separated across the interface, forming a new state 

which is referred to as the charge-transfer (CT) state. After the interfacial CT state is 

formed, the first and desired possibility is for the excitons in the CT state to dissociate into 

free charge carriers that can be transported to their respective electrodes and collected 

there. However, it may decay radiatively (luminescence) or nonradiatively (by the release 

of heat), which results in a loss of photocurrent.32 It has been found that the photovoltage 

that can be obtained for the photovoltaic cell is directly related to the energy of the CT 

state.33 

 
Figure 2.4  Illustration of the principle of charge separation in a D/A heterojunction solar cell.  
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2.2.3 Photovoltaic Characteristics 
In a single-junction photovoltaic cell, the power conversion efficiency (PCE), which is a 

measurement of how much electric power can be generated by conversion of the power 

provided from the light irradiation, is the most important performance quantity. It is 

characterized by three important parameters with a given incident power, namely open-

circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF), as illustrated in 

Figure 2.5.  

 
Figure 2.5  Typical J–V characteristics for a solar cell indicating the meaning of JSC, VOC, FF, and 

PCE. The P–V curve is also illustrated. Jm and Vm are respectively the current density and voltage at 

the maximum power point (MPP or Pm), and Pin is the input irradiance. 

 Another way to evaluate the solar cell performance is to measure the external quantum 

efficiency (EQE). The EQE is a measurement of the ratio of the number of charge carriers 

collected by the solar cell to the number of incident photons of a given energy absorbed by 

the solar cell from outside.  

 In principle, to push the efficiency toward the theoretical limit in a single-junction 

photovoltaic cell, achieving both a high JSC and a high VOC is crucial, as well as a high FF. 

The FF characterizes how square-shaped the J–V curve is and represents how easily the 

photogenerated carriers can be extracted out of a photovoltaic cell. To collect the 

photocurrent effectively, electrical transport must be adequate, and mobility of charge 
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carriers must be balanced to avoid formation of space charges, as in many materials 

generation and recombination of charge carriers is the limiting step. Many of these aspects 

are compressed in the FF of the device.34 Therefore, understanding of the FF and the shape 

of a J–V curve can be helpful to probe what processes are occurring inside an OPV, 

especially when a new material is characterized.34 Currently, a VOC over 1 V,23b,27b,35 a JSC 

as high as 17–18 mA/cm2,16a,17d,36 coupled with an EQE as high as 70–85%,16a,36c-h and a 

FF as high as 70–80%15a-d,16,17c,36c,37 have been demonstrated in different single-junction 

organic solar cells. The challenge remains to combine all such promising photovoltaic 

characteristics in one solar cell, the success of which will bring the final efficiency of 

single-junction organic solar cells further to 12–15%.  

 
Figure 2.6  Contour plot showing calculated efficiency (%) versus donor band gap (eV) & LUMO–

LUMO level offset (eV) under AM1.5G illumination for a single-junction solar cell with PCBM as 

the acceptor material, assuming FF = 75% & EQE = 80%. 

 By assuming a FF of 75% and EQE of 80%, it is found possible to reach over 12% 

efficiency for polymer:fullerene solar cells (Figure 2.6),17b,38 and very likely, a PCE of 

over 17% can be achieved by constructing double-junction tandem solar cells (Figure 2.7).  
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Figure 2.7  Contour plot of calculated efficiency (%) under AM1.5G illumination for a double-

heterojunction tandem device as a function of the band gaps of both donors, assuming ELL = 0.3 eV 

& Eg(A) = 1.7 eV & FF = 75% & EQE = 80% for all subcells. 

2.3 Band Gap and Energy Level Modulation 

2.3.1 Band Gap and Optical Gap 
The energy gap between the electronic levels of the highest occupied (HOMO) and lowest 

unoccupied (LUMO) molecular orbitals is a critical parameter determining the electronic, 

optical, redox, and electrical transport properties of a material.39  

 At the material level, the band gap (Eg) is defined as the energy difference between the 

top of the valence band and the bottom of the conductive band. It corresponds to the 

energy difference between the ionization energy (IE) and electron affinity (EA) of the 

material. For a conductive material there would be no band gap due to the overlap of the 

two bands, allowing easy access for electrons in the valence band to move into the 

conductive band. Conversely, an insulator generally has a large band gap, making the 

electron moving between the two bands almost impossible. For a semiconductor, such as a 

conjugated polymer, the band gap is intermediate, enabling electrons to be excited to move 

from the valence band into the conductive band by various means. By measuring the 

ionization energy and electron affinity, it will be possible to assess the band gap of a 

material, but inconsistency in the values may occur with various methods and the results 
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should be used carefully.  

IE

EA

Eg
optEg

EB

Evacum

 
Figure 2.8  Illustration of gap energies in the molecular case: the IE – EA difference represents the 

electronic band gap, Eg; the electron–hole pair binding energy, EB, is given by Eg – Eg
opt.39 

 The optical gap (Eg
opt) is defined by the lowest optical transition upon photon 

absorption, that is, the energy threshold for photons to be absorbed. For conjugated 

polymers, the electron and hole remain electrostatically bound to one another in the excited 

state upon light absorption. This is different from the electronic band gap, which is defined 

by the minimum energy required to create an electron–hole pair that is not bound together. 

Thus, there will be an energy difference between the electronic band gap and the optical 

gap, which is termed as the exciton binding energy (EB), as shown in Figure 2.8. For 

conventional inorganic semiconductor crystals, the exciton binding energy is normally 

negligible, such that the optical gap and the electronic band gap become almost identical.  

 Different techniques may yield slightly different results in determination of the band 

gap. It can be noted that the optical gap of a conjugated polymer, as deduced from the 

onset of the UV–vis absorption spectrum, is often smaller than its electronic band gap, as 

accessed by electrochemical measurements such as square-wave voltammetry, which is 

commonly seen in the literature.27d,38b,39-40 This can be due to the aforementioned fact that 

for conjugated polymers, the electron and hole remain electrostatically bound to one 

another in the excited state upon light absorption (contrary to the ionized state in the 

electrochemical measurements).39 Besides that, polymer interchain interactions can 

generally result in a reduction in optical gaps in the solid state absorption, as compared to 
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electrochemical band gaps.27d,38b In addition, the interface barrier between the polymer film 

and the electrode surface can further cause a difference, making the electrochemical band 

gaps even larger than the optical gap.40  

 Since the band gap is such a critical parameter as mentioned above, being able to tune 

the band gap and the band edges will be of utmost importance in order to design new 

conjugated polymers for optoelectronic devices. For example, for a polymer solar cell, not 

only the band gap will influence the light absorption and thus the photocurrent generation, 

but also the position of its band edges may influence the photovoltage and photocurrent 

that can be extracted in the device.  

2.3.2 Band Gap and Energy Level Modulation 
For a solar cell to perform well, the most important part of the solar radiation spectrum 

(Figure 2.1, Section 2.1.1) should be covered and efficiently absorbed, typically ranging 

from ~315–1400 nm (with photon energy of about 0.9–4 eV). Light-harvesting materials 

that have an optical gap between 1–2 eV are desired to maximize the solar cell 

efficiency.4,38a Clearly, to boost the efficiency toward the theoretical maximum in a single-

junction photovoltaic cell, attaining both a high JSC and a high VOC is crucial, as well as a 

high FF. Both JSC and VOC are influenced by the band gap of the photoactive material and 

by the alignment of the HOMO and LUMO energy levels with respect to the acceptor 

material used in the donor–acceptor heterojunction. It has to be noted that the PCE is not 

monotonically correlated to either the band gap of the donor material or the LUMO-level 

offset of the donor material to the acceptor material (i.e., LUMODonor – LUMOAcceptor), but 

both of them need to be optimized independently.17a,b,41 Decreasing the band gap of the 

donor material will broaden the absorption spectrum, making it possible to harvest more 

photons for charge generation.5 But decreasing the band gap of the donor material means 

that the HOMO level of the donor material (HOMODonor) is raised or the LUMO level of 

the donor material (LUMODonor) is lowered. Raising HOMODonor will decrease the 

maximum value for VOC, approximated by (LUMOAcceptor – HOMODonor)/e.17b,41-42 

Lowering LUMODonor will reduce the LUMO-level offset of the donor material to the 

acceptor material used (i.e., LUMODonor – LUMOAcceptor). The LUMODonor – LUMOAcceptor 

difference is considered to provide the driving force for exciton dissociation as well as to 

prevent recombination of photogenerated charges.43 A compromise is therefore needed to 
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balance the trade-off between the band gap of the donor material and the favorable 

alignment of HOMO/LUMO energy levels of the donor material with respect to the 

acceptor material.17b,41 As a result, the effort to search for new electron donor polymers for 

OPVs is not merely directed to obtaining low band gaps but also to controlling the band 

gap by modulating the HOMO and LUMO energy levels to their optimal positions. 

Molecular engineering to carefully fine-tune the HOMO/LUMO energy levels and band 

gap is therefore of critical importance.  

 It is worth mentioning that energy level modulation is just one of the most important 

aspects in material design for organic solar cells. A good material design should try to take 

into account as fully as possible the whole process of the factors or properties that affect 

the photovoltaic device operation, such as absorption of light by the active layer, 

generation of excitons, diffusion of the excitons, CT-state dissociation of the excitons with 

generation of charge, mobility of charge carriers, charge collection at electrodes and so 

on.19,42  

 Even though the maximum attainable PCE can be predicted, the realization of this 

relies on the judicious molecular design and synthesis, especially in exploration of 

chemical methodologies.17b,44 Furthermore, the design of efficient tandem solar cells 

requires an achievable high VOC or high JSC in conjunction with a high PCE from the donor 

components to be integrated, in order to exploit the overall performance.17b,c,18b All of these 

require a superior understanding of material design and device design. 
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3 Conjugated Polymers for Organic Solar Cells 

3.1 Polymers and Dispersity 
A polymer is a substance composed of macromolecules, usually in a range of molar 

masses (unit kg/mol), as not all of them are identical.45 Generally the polymer chains can 

be portrayed as consisting of regular structural repeating units, along with end-groups.  

 The term “dispersity” has been recommended since 2009 by the IUPAC Polymer 

Division to describe the dispersions of distributions of properties such as molar masses (or 

relative molecular masses, or molecular weights) and degrees of polymerization.46 Above 

all, molar-mass dispersity ( M) is defined as the ratio of the mass-average molar mass (Mw, 

or Mm) to the number-average molar mass (Mn). Analogously, degree-of-polymerization 

dispersity ( X) is defined as the ratio of the mass-average degree of polymerization (Xw) to 

the number-average degree of polymerization (Xn). For a homopolymer or an alternating 

copolymer of sufficiently large molar masses, such that the effects of the distinct structures 

of the end-groups of the constituent macromolecules can be neglected, these dispersities 

will become identical to each other and can simply be referred to as  (i.e., M = X = ).  

3.2 Conjugated Polymers 
Polymers are typically insulators and may be used in power cables. In 1977, the 

exceptional conductivity (38 S cm 1) of polyacetylene upon iodine doping was reported by 

Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa,47 who were jointly awarded the 

Nobel Prize in Chemistry in 2000 for the discovery and development of conductive 

polymers. A conjugated polymer is a polymer composed of macromolecules with a 

sequence of conjugated multiple bonds in the main chains.48 A conjugated polymer is 

referred to as a -conjugated polymer if -electrons are delocalized along the polymer 

main chain. Polyacetylene47,49 is the simplest example as a -conjugated polymer, 

consisting of alternating single and double bonds in its linear hydrocarbon chains. -

Conjugated polymers, such as poly(2,5-thiophene)s,50 are widely used as photoactive 

materials with appropriate optical and electronic properties for optoelectronic applications 

due to their unique delocalized -electron systems.  
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Figure 3.1  Chemical structures of PA, PPV and PT. 

 It should be noted that a conjugated polymer may also be a -conjugated polymer 

(other than -conjugated polymer), such as polysilanes51 and polygermanes,48 in molecules 

of which -electrons are delocalized along the main chain. Unless otherwise specified, the 

conjugated polymers discussed hereafter refer to those with delocalized -electron systems.  

3.3 Required Properties of Donor Materials 
In general, an ideal organic electron donor component should present a broad spectral 

coverage of light absorption with a high absorption coefficient,52 suitable frontier 

molecular orbital energies matching those of the acceptor to facilitate power generation,41 a 

sufficient hole mobility to avoid formation of space charges,53 and appropriate solution 

processability with film-forming and nano-structuring ability, once blended with the 

acceptor material, to form a beneficial morphology in the photoactive layer with nano-

segregated and bicontinuous interpenetrating donor:acceptor domains, and long-term 

stability. The challenge, however, is to combine so many different properties into one 

single material. Therefore, conjugated polymers with fine-tuned HOMO and LUMO levels 

for efficient function in solar cells and for absorption covering the important part of the 

solar emission can be synthesized as a starting strategy of choice generally, while further 

structural modifications may be needed to tailor the other important properties for the 

material to perform well.3b,5,17a,38b,41,54  

3.4 Material Design and Donor–Acceptor Strategy 
3.4.1 Donor Polymer Design 
Generally, a conjugated polymer can be arbitrarily divided into three constituting 

components: the conjugated backbone, the side chains and the substituents.55 The 

conjugated backbone is the most important component because it determines most of the 

physical properties related to photovoltaic performance and is of utmost importance in the 
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further development of polymer solar cells. The conjugation length of the polymer is quite 

important for conjugated polymers and is mostly dependent on the conjugated backbone. 

The longer the conjugation length of the polymer the smaller the band gap will be.56 As the 

degree of polymerization reach high levels there will however be a saturation of this 

effect.57 The conjugation could also be interrupted by torsion of the polymer backbone. For 

this reason a planar conformation of the backbone is preferred for achieving a small band 

gap.  

 
Figure 3.2 Aromatic/quinoid forms and the optical gap of (a) PPP, (b) PT, (c) PITN and (d) PT34bT. 

3.4.2 Aromatic and Quinoid Resonance 
Generally conjugated polymers used in organic electronics consist of macromolecules 

containing various aromatic rings and/or fused heterocycles in the backbone. The inclusion 

of aromatic structures in the polymer backbone can improve the stability of the materials 

significantly. If we consider poly(p-phenylene) (PPP, Eg
opt = 3.4 eV)58 or poly(2,5-

thiophene) (PT, Eg
opt = 2.1 eV),59 one quinoid resonance form can be derived apart from 

their energetically favored aromatic structure (Figure 3.2).60 In the quinoid structure, the 

-electrons are more delocalized. Properties of such a structure include smaller difference 

between single and double bond lengths, a more planar structure, a reduced band gap and a 

red-shifted absorption.61 Upon chain extension via coupling of donor and acceptor 

monomers, to some extent the quinoid form is stabilized in the resulting polymer, 

strengthening the double bond character between the monomers and reducing the band 
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gap.  

 Improving the quinoid character of the backbone has been shown to be one effective 

way to narrow the band gap of a polymer. For example, fusing an aromatic benzene ring 

onto the parent thiophene in PT (Figure 3.2) resulted in poly(1,3-benzo[c]thiophene) (i.e., 

polyisothionaphtalene, PITN, Eg
opt = 1.0 eV),62 where the quinoid form is made more 

stable, which lowers the band gap by almost 50%.63 Another similar example is poly(4,6-

thieno[3,4-b]thiophene) (PT34bT), with an optical gap as low as 0.9 eV.64 

3.4.3 Donor–Acceptor Motif  
One well-established approach to obtain conjugated polymers is based on the strategy of 

donor–acceptor polymers,65 which could not only form strong interchain interactions that 

favor charge transport, but also fine-tune the electronic structures of conjugated polymers, 

resulting in desired optoelectronic properties.  

 
Figure 3.3  Schematic representation of molecular orbital mixing in the alternating donor–acceptor 

motif in narrowing the effective band gap. Note that the resulting HOMO/LUMO do not necessarily 

originate from the frontier molecular orbitals of the respective segments. 



Conjugated Polymers for Organic Solar Cells 

-18- 

 
Figure 3.4  Frontier orbitals of TQ1 monomer arising from the respective subunits (with isodensity 

plots, isovalue surface 0.02 au) as evaluated by DFT at the B3LYP/6-31G(d) level of theory.66 

 In this approach, -electron-donating (donor) and -electron-accepting (acceptor) 

conjugated moieties are combined into the backbones (i.e. the repeating units) of 

conjugated polymers, forming internal donor–acceptor structures. The energy levels and 

band gap of conjugated polymers can thus be controlled by choosing appropriate donor 
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and acceptor moieties, with the HOMO energy level determined synergistically by the 

donor and acceptor moieties, and the LUMO energy level by the acceptor moiety. A 

schematic representation of molecular orbital mixing to result in the HOMO and the 

LUMO of a donor–acceptor polymer is illustrated in Figure 3.3, which narrows the band 

gap.17b As an example in our study, Figure 3.4 shows the molecular orbital contribution of 

the respective donor and acceptor moieties in the repeating unit of the donor–acceptor 

polymer TQ1 (Scheme 4.1, Section 4.1), as evaluated by DFT calculations.66  

3.4.4 Building Blocks 
As discussed in Section 3.4.1, the design of conjugated polymers relies first of all on the 

construction of the conjugated backbone (i.e. the repeating unit), which is the most 

important component because it determines most of the physical properties related to 

photovoltaic performance and is of utmost importance in the further development of 

polymer solar cells. In order to design a conjugated donor polymer that can combine as 

many desired properties as possible into one conjugated backbone, as noted in Section 3.3, 

appropriate building blocks are needed. With the well-established donor–acceptor 

polymers approach, a conjugated backbone can be arbitrarily divided into three 

constituting components: the donor moiety, the acceptor moiety and the -conjugated 

bridge. In these donor–acceptor architectures, both the donor and acceptor units as well as 

the conjugated -bridging groups, if used, inserted between them as spacers, play a 

fundamental role. In some cases, the -conjugated bridges are also arbitrarily combined 

into the donor moiety, as often in these cases they are more electron-releasing as compared 

to the acceptor moiety. Nevertheless, the most important thing is to be able to identify the 

functions of their incorporation either more as the donor moiety or more as the -

conjugated bridge.  

 As can be noted in Section 4.3.4, for a rational material design based on energy level 

modulation, a common strategy is to first control the LUMO level of a conjugated polymer, 

even though it may end up with suboptimal band gap engineering due to the complex 

effect on the JSC and the VOC. Such unpredictable band gap engineering is very often 

accompanied with a careful choice of the acceptor units. Our efforts in Chapter 4 should be 

helpful to a better material design.  

 To begin with, an acceptor building block need be carefully chosen, which is of 
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paramount importance to achieve conjugated donor polymers for highly efficient solar 

cells. With decades of efforts in the OPV or related field, some promising acceptor units 

have been recognized. Quinoxaline36e,37q,67 and isoindigo67d,68 are among those that can be 

used to achieve state-of-the-art performance in conjunction with an efficient synthesis, 

which are very attractive for the future mass production of polymer solar cells. In the 

meantime, the potential of these acceptor units had not yet been fully explored at the 

beginning of our work, but was identified.35a,52,68a,69 Hence, it is worth choosing these 

promising electron-deficient units as the acceptor moiety to construct donor–acceptor 

conjugated polymers and modulate their energy levels to the optimal positions. In Chapter 

5, we will more focus on the influence of the donor moiety, while in Chapter 6 will we 

more discuss about the function of -conjugated spacers. Finally, a discussion of side chain 

engineering will be included in Chapter 7. 

 Also, designing and synthesizing new building blocks is revolutionary to boost the 

photovoltaic performance of conjugated polymers and make them go through the 

benchmark for future commercialization of polymer solar cells and more, which has been 

evidenced by the research effort of design and synthesis of novel conjugated donor 

materials in boosting the rapid progress of BHJ OPVs. However, to identify novel 

promising building blocks as well as to make their synthesis efficient and cost-effective 

need a lot of research efforts. 

3.5 Synthesis of Conjugated Polymers 
Over the past few decades, particularly in recent years, there has been significant progress 

in the synthesis of conjugated polymers.70 The synthesis of conjugated polymers lies 

essentially in efficient carbon–carbon single bond formation between two unsaturated 

carbons in the unsaturated units (e.g., aryl–aryl coupling). Besides electrochemical and 

chemical oxidative polymerizations, transition-metal-catalyzed cross-coupling reactions 

provide a particularly powerful tool for Csp2–Csp2 and Csp–Csp2 bond formation. 

Especially palladium-catalyzed cross-coupling reactions are often used for conjugated 

polymer synthesis, including the Heck,71 Negishi,72 Stille,73 and Suzuki74 coupling 

reactions. In 2010, Richard F. Heck, Ei-ichi Negishi and Akira Suzuki were awarded 

jointly the Nobel Prize in Chemistry for their work on palladium-catalyzed cross couplings 

in organic synthesis.  
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Figure 3.5  Typical catalytic cycle of a Pd-catalyzed cross-coupling reaction. 

 Palladium-catalyzed cross-coupling polycondensation can be quite different from the 

condensation polymerization of non-conjugated polymers,75 due to a unique reaction 

mechanism that involves a transition-metal catalyst system in a catalytic cycle (Figure 

3.5).  

 In this work, either Suzuki27a or Stille27b-e polycondensation has been employed to 

synthesize the conjugated donor polymers studied.  

3.5.1 Suzuki Polycondensation 
The Suzuki reaction (or Suzuki coupling, or Suzuki–Miyaura reaction)74 is a palladium-

catalyzed cross-coupling reaction between an organoboron and a halide or pseudo-halide. 

The organoboron species can be an organoboronic acid or its ester, which needs to be 

activated for the reaction, usually in the presence of a base.27a,76 This reaction is cheaper 

and less toxic than the Stille reaction. The Suzuki reaction can be used to perform step-

growth polymerization catalyzed by Pd(PPh3)4 or similar complexes.77  

 As illustrated in Figure 3.6 (slightly different from Figure 3.5, due to the presence of a 

base to activate the organoboron compound), the mechanism of the Suzuki reaction 

involves the oxidative addition of an organic halide or pseudo-halide to give a 

palladium(II) intermediate, which undergoes transmetalation with the base-activated 

organoboron compound to give an organopalladium intermediate. This complex then 
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undergoes reductive elimination, giving the coupled product and regenerating the 

palladium(0) catalyst. Depending on the leaving groups, the oxidative addition step can be 

the rate-determining step of the catalytic cycle.  

 
Figure 3.6  Reaction mechanism of the Suzuki reaction. 

3.5.2 Stille Polycondensation 
The Stille reaction (or Stille coupling, or Kosugi–Migita–Stille coupling)73,78 is a chemical 

reaction that couples an organostannane with an organic halide or pseudo-halide catalyzed 

by palladium. The catalytic cycle of the Stille reaction is similar to that of the Suzuki 

reaction (vide supra, Section 3.5.1), except for the absence of a base in the Stille 

reaction.27b-d This allows the Stille reaction to have an exceptional tolerance for functional 

groups, which for example could be base-sensitive. It has also been shown that step-

growth polymerization employing the Stille reaction with an electron-donating distannyl 

monomer and an electron-accepting dihalide monomer can yield high molar masses.79 A 

major disadvantage with employing the Stille reaction is the involvement of highly toxic 

organostannane compounds,80 which might pose a problem for future up-scaling of the 

synthetic process.  

 Following the unique catalytic cycle of palladium-catalyzed cross-coupling reactions as 

shown in Figure 3.5, the mechanism of the Stille reaction involves the oxidative addition 

of an organic halide or pseudo-halide to give a palladium(II) intermediate, which 
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undergoes transmetalation with the organostannane to give an organopalladium 

intermediate. This complex then undergoes reductive elimination, giving the coupled 

product and regenerating the palladium(0) catalyst. The transmetalation step is supposed to 

be the rate-determining step. 

3.5.3 Degree of Polymerization Control for Synthesis of Conjugated 

Polymers 
It has been widely recognized that for polymer solar cells, the photovoltaic properties, in 

particular the photocurrent, can be very dependent on the chain length (i.e., Xn or Mn) of 

the donor polymers,36i,37t,57,81 which can influence the microstructure of blend films and 

resulting optical and electrical properties, as also found in many related 

applications.36i,37t,57,81-82 Therefore, obtaining a high molar mass, as well as an acceptable 

dispersity, on the basis of sufficient solubility for solution processing,83 is one regular 

requirement of critical importance for conjugated polymers to perform efficiently.  

 In a polycondensation reaction using a step-growth mechanism, there is so-called 

Carothers Equation:75,84 

 =  (3-1) 

where Xn is the number-average degree of polymerization, f is the average degree of 

functionality, and p is the extent of reaction.75,84 It can be rearranged to give the degree of 

polymerization in step-growth polymerization as follows:  

 =  (3-2) 

 In step-growth polymerization, by controlling functionality (f ) as well as the extent of 

reaction (p) in the system, one can control the degree of polymerization Xn to some limit 

(i.e., Xn = 1/(1 – pf/2)). This mechanism has been reported for many condensation 

polymerizations75,85 including Suzuki polycondensation catalyzed by Pd(PPh3)4 or similar 

complexes.77  

 Recently, many studies also suggest that a chain-growth-like mechanism can be 

developed for many transition-metal-catalyzed polymerizations (including Suzuki 

polycondensation) via catalyst-transfer polycondensation, which involves intramolecular 
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catalyst transfer during polymerization,77b,86 making it more feasible to control the molar 

mass, dispersity and end groups of -conjugated polymers,86e but the current monomer 

scope still remains largely limited to electron-donating monomers.86f  

 It can be concluded that obtaining high molar masses that ensure good conjugation 

lengths generally requires high purity and equimolar feed ratios of the monomers used, 

introduction of a sufficient amount of solubilizing side chains to the polymer backbone and 

use of an appropriate polymerization condition (e.g. solvent, catalyst system, temperature, 

etc.).86c,87 

3.6 Polymer Characterization 

3.6.1 Gel Permeation Chromatography 
Gel permeation chromatography (GPC) is a type of size exclusion chromatography (SEC), 

which separates analytes on the basis of size. GPC is often used for the analysis of 

polymers to provide information about molar masses and dispersity, which are important 

properties of a polymer affecting the performance of polymer solar cells to some extent. It 

allows for the determination of Mn, Mw, M and so on (Section 3.1), with calibration 

relative to uniform polymer standards (e.g. polystyrene) or with universal calibration.  

3.6.2 UV–Vis Spectroscopy 
As discussed in Section 2.3.1, the optical gap (Eg

opt) is defined by the lowest optical 

transition upon photon absorption, that is, the energy threshold for photons to be absorbed. 

For organic photovoltaics to perform well, photoactive materials that can harvest the most 

important part of the solar radiation spectrum (Figure 2.1, Section 2.1.1) (typically ranging 

from ~315–1400 nm, with photon energy of about 0.9–4 eV) are desired to maximize the 

solar cell efficiency, preferably with an optical gap between 1–2 eV.4,38a Hence UV–vis 

spectroscopy is a useful and important measurement of the optical absorption properties to 

investigate and understand the performance of a conjugated polymer in solar cells. Eg
opt is 

usually deduced from the absorption edge (onset) of the UV–vis spectrum. By using Beer–

Lambert law, one can also measure the absorptivity (or extinction coefficient) of a material 

or a blend, which is an important parameter (i.e. absorption strength) in determining the 

optical absorption efficiency apart from the absorption window. 
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3.6.3 Cyclic Voltammetry 
One way to assess the HOMO and LUMO energy levels of a conjugated polymer is 

electrochemical analysis by estimation of the respective ionization energy and electron 

affinity from the redox potentials. The most widely used electrochemical technique by 

OPV researchers is cyclic voltammetry.88 This analytical method provides information of 

the redox processes of the investigated material as well as insight into their reversibility.  

 When an electrochemical analysis experiment is performed, the Faradic current (i.e., 

the current from the redox reaction) as well as the capacitive charging current which 

originates from the formed electric double layer at the working electrode is measured. The 

Faradic current decays more slowly than the capacitive current, which theoretically would 

make cyclic voltammetry ideal to evaluate the HOMO and LUMO positions. Usually the 

scan rate employed during cyclic voltammetry experiments is too fast for the capacitive 

charging current to decay sufficiently, making the redox waves recorded during the scans 

to be scan rate dependent.  

 As is known, electrochemical doping is complex and involves several simultaneous 

and/or consecutive chemical and physical processes like swelling of the polymer, charge 

transfer between the electrode and the polymer, insertion of compensating ions into the 

polymer bulk, conformational changes of the polymer chain and change of conductivity.88a 

The reverse reaction of the doping process cannot be equated to the de-doping reaction for 

the polymer, as conformational reorganization and variations of the energy levels are 

promoted by adding or removing an electron. Consequently, the electrochemical redox 

waves are often broad and asymmetric, and the onset potentials (the potentials for the 

initial injection of holes and electrons to the HOMO and LUMO, respectively) are thus 

generally used to estimate the electrochemical band gap.88a,89 However, the onset of 

oxidation or reduction can vary with the scan rate, as polymers exhibit relatively slow 

electron transport properties.88b,89 There may be inconsistencies such as how to define the 

onset position as well as how measurements relate to the vacuum level as found in 

literature.88a,b,89 Also, there are uncertainties from such as the transport processes at the 

working electrode, the amount of energy contributed by solvation of electrochemical 

species, the complex interplay between Faradic current and capacitive current, the 

differences in conjugation length forming redox centers of varying potentials and 
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aggregation of polymer chains on the working electrode.  

3.6.4 Square-Wave Voltammetry 
Square-wave voltammetry (SWV)69a,90 is a pulse voltammetric technique where a square 

wave is superimposed upon a staircase. The idea behind the employment of pulse 

voltammetry is to alleviate the time dependence, in which the current is sampled at certain 

times after applying the potential to the working electrode. In SWV, the current is recorded 

at the end of each pulse, a forward current being recorded at the end of the first pulse and a 

reverse current being recorded at the end of the second pulse. By taking the difference in 

the forward and reverse currents a difference current, in theory it would minimize the 

contribution to the current signal from the capacitive or charging current and suppress 

background signals.91 SWV is commonly used in trace analysis because of its high 

sensitivity. 

 Therefore, in our studies, SWV27a-d,69a,90 was used to determine the oxidation and 

reduction potentials of the polymers more often than the traditional cyclic voltammetry,88c,d 

as SWV is more sensitive and more convenient to define the oxidation and reduction 

potentials based on the much clearer peaks in the voltammograms. 

3.7 Computational Modelling 

3.7.1 Computationally Driven Material Design 
Computationally driven material design has been attracting interest to accelerate the search 

for optimal conjugated photovoltaic materials.92 Computational modelling can provide a 

lot of useful physical insights about the whole process of the factors that affect 

photovoltaic device operation and properties that are crucial in material design as well, 

such as light absorption, chain conformations, electronic structures and so on,. Indeed, an 

improved understanding has been gained by incorporation of theoretical studies. In 

literature, many quantum-mechanical simulations on conjugated polymer systems have 

focused on the donor–acceptor polymer concept and physical insights extensively, but a 

comprehensive study of structural fine-tuning in relation to energy level modulation for 

future judicious design of conjugated donor polymers appears to be lacking, which can be 

useful for materials chemists in rational material design. Such work is needed to accelerate 

the search for chemical methodologies for example to control the frontier molecular orbital 
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energy levels and band gap in a judicious way and to meet the particular requirements of 

different device architectures (including tandem and ternary solar cells) on the donor 

components, such as a prominent photocurrent or photovoltage combined with a high 

efficiency, to further improve the overall performance of organic photovoltaics.66  

3.7.2 Density Functional Theory 
Density functional theory (DFT) is a quantum-mechanical modelling method among the 

most popular and versatile ones available in condensed-matter physics, computational 

physics, and computational chemistry, to investigate the electronic structure of many-body 

systems, in particular atoms, molecules, and the condensed phases, using functionals (i.e., 

functions of another function) of the electron density. By expanding the theory and method 

in presence of time dimension, the so-called time-dependent density functional theory 

(TD-DFT) can be used to investigate the excited-state properties of many-body systems 

like excitation energies, oscillator strengths, and optical absorption spectra. In this thesis, 

DFT and TD-DFT have been the modelling methods of choice applied throughout the 

whole project focusing on the electronic properties of organic molecules and conjugated 

polymers.  

3.7.3 General Computation Considerations 
Throughout this thesis, DFT calculations using the Gaussian 09 suite of programs93 were 

performed to investigate the electronic structure of conjugated polymers by employing the 

B3LYP94 hybrid density functional. The basis sets used for the calculations are the split 

valence 6-31G(d) basis set95 for all the atoms except Te atoms for which effective core 

potential (ECP) corrected lanl2dz basis set96 is employed. SCF tolerance is set so that the 

maximum remaining force on an atom in the system is less than 4.5 × 10 4 au and the 

maximum structural change of one coordinate is less than 1.8 × 10 3 au. In general, all of 

the optimized molecular structures are in a stable local minimum of the ground state 

potential energy surface, as ensured by analytical second derivatives of the Hessian matrix 

calculated at the same level of theory. TD-DFT calculations97 were performed to assess the 

excited-state vertical transition energies and oscillator strengths based on the optimized 

molecular geometries at the same level of theory.  

 It has to be noted that the results from calculations should be used rigorously and 

should be compared to experimental data as much as possible, due to the existing 
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limitations by the accuracy at different levels of theory and cost-effectiveness of these 

computational modelling methods in simulating the real world of organic/polymer 

optoelectronic materials and devices. In general, the accuracy and cost-effectiveness of any 

computation need be balanced on the basis that it can reasonably describe the trends of the 

properties investigated to give a systematic evaluation.  

 Hybrid functional B3LYP has been widely used to compute organic molecules 

successfully. It takes account of some dynamic correlation by mixing in the exact 

exchange from Hartree–Fock, which is important in order to describe long-range 

interactions like conjugation well.98 It is worth mentioning that since the calculations 

reported in this study are performed within the same framework, we are able to provide a 

systematic evaluation of the intrinsic properties (e.g. electronic properties) of the organic 

molecules and polymers, by reasonable comparison of their respective trends. Our 

combined experimental and computational studies27b,c as well as many other studies92g,99 

show that the methods used here can be suitable for this purpose. In addition, some 

experimental data are also included in our discussion where available to compare with the 

trends of the calculated properties.  
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4 Energy Level Modulation 

4.1 Introduction 
This chapter describes developing energy level modulation chemical strategies detailed in 

Paper I and II. The basics of energy gap and energy levels and their effect on the 

photovoltaic properties have been discussed in Sections 2.3.1 and 2.3.2. Here we use TQ1 

(PTQ) as a model polymer to show how energy levels and band gap of conjugated 

polymers can be modulated and how such modulation can influence the resulting 

optoelectronic and photovoltaic properties. In particular, potential chemical methodologies 

for rational material design may be developed. 

 TQ1 (PTQ) is an alternating copolymer consisting of thiophene and quinoxaline. In the 

quinoxaline unit, two meta-octyloxyphenyl side groups are attached. This polymer was 

originally reported in 2003 by Yamamoto,100 the backbone of which was already 

intensively studied back from 1995 by the same group,101 but was never tested in solar 

cells until 2010 by our group.67a Very encouragingly, TQ1 showed PCE up to 6% in 

conjunction with PC71BM,67a which can be further pushed to 7% by morphology control of 

the photoactive layer with an appropriate processing additive in 2013.67b The demonstrated 

high performance along with its efficient synthesis has drawn great interest due to a high 

perspective for mass production of polymer solar cells.67b,102 The success of TQ1 also 

further demonstrated the high potential of quinoxaline as the acceptor unit in conjugated 

polymer design.27a,35a,69a Very recently, more efficient polymer solar cells with 

quinoxaline-based conjugated polymers have been reported,36e,37q,67 making them among 

the state-of-the-art promising candidates in conjunction with an efficient synthesis, which 

are very attractive for the future mass production of polymer solar cells.  

 The TQ1 polymer has an optical gap of 1.70–1.75 eV (with an electrochemical band 

gap of 2.08–2.37 eV derived from SWV) and a LUMO-level offset of >0.8 eV with respect 

to PC71BM (based on SWV, corresponding to >0.6 eV as evaluated by DFT). The optical 

and electronic properties of TQ1 suggest that the energetics of the polymer are suboptimal 

and that there may be still big room for improving the photovoltaic performance and for 

structural optimization.4,38a Modification on the chemical structure has been one focus of 

studies in recent years, to further understand the structure–property–performance 
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relationships of conjugated donor materials and to further explore possibilities of 

improving the photovoltaic performance, such as modifications in chemical structures with 

fine-tuned molecular orbital energies, favorable side-chain architectures, and sufficient 

molar masses.27b,103  
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Scheme 4.1  Synthetic route to polymers TQ1, PTQF2, PSeQ and PSeQF2. 

4.2 Energy Level Modulation by Synergistically Combining Fluorine 

Substitution and Selenium Substitution 
The synthetic route used in this study is outlined in Scheme 4.1. In this work, from our 

DFT and experimental study, we demonstrated an effective chemical approach to modulate 

the frontier molecular orbital energy levels by synergistically combining fluorine 
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substitution and selenium substitution. This allows one to reduce the LUMO-level offset of 

the donor polymers to the acceptor materials while keeping the optical gap almost 

unchanged, accompanied by a deepening of the HOMO level. This approach may be 

suitable for the molecular design of new materials for the front subcell active layer in 

efficient tandem cells where a high photovoltage is very desirable.  
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Figure 4.1  Energy level modulation by synergistically combining F- and Se- substitutions. 

4.2.1 Fluorine Substitution 
Introduction of electron-withdrawing fluorine atoms into the polymer backbone is an 

effective chemical method to tune the energy levels of donor–acceptor polymers, by 

deepening the HOMO and LUMO levels simultaneously.104 Meanwhile, as the smallest 

electron-withdrawing substituent in size, introduction of fluorine atoms can modulate the 

energy levels without disturbing the planar molecular structure of the conjugated backbone, 

as demonstrated by many highly-performing conjugated polymers, which is very essential 

and desirable for molecular design of donor materials. This approach has been employed to 

develop many new conjugated polymers that show efficiency exceeding 6%.15d-

f,16,36e,37b,n,63b,67c,d,68d,105 The record efficiency to date is registered with fluorinated 

conjugated polymers.15c-e,16  

 However, the fluorine substitution of the two protons on the quinoxaline ring in the 

TQ1 repeating unit decreased the PCE to 1.6% for the TF2Q polymer (TQ-F, or 

PTQF2)103a even though a high VOC of 0.99 V was obtained. When only one fluorine atom 

was introduced, the resulting TFQ polymer (FTQ)106 was able to obtain a VOC as high as 

0.95 V with a PCE of 4%, close to that of the TQ polymer (TQ1, or PTQ). This 
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comparison suggests that the extent of fluorine substitution needs to be optimized. Very 

recently, it is also shown that the position of fluorine substitution can also influence the 

resulting photovoltaic performance.15e,105d  

4.2.2 Selenium Substitution 
The success of thiophene-based polymers has driven chemists to investigate the effect of 

substituting sulfur with other chalcogen analogues such as oxygen and selenium. The 

incorporation of selenophene into conjugated polymers has attracted increasing attention, 

which typically gives significant red-shifted UV–vis absorption as compared with its 

thiophene analogues, resulting in a narrowed optical gap.107 Selenium substitution of sulfur 

on fused-thiophene units is also one direction of the attempts.81h,108 Other selenium–sulfur 

exchange has also been attempted in the literature but is still less effective than the 

previous two in improving the photovoltaic performance, such as the replacement of 

benzo[c][1,2,5]thiadiazole with benzo[c][1,2,5]selenadiazole.109 

 The promising conjugated polymer PTQ also encouraged our focus on its selenium 

substitution on the thiophene moiety. Polymer synthesis of PSeQ is as straightforward as 

of PTQ (Scheme 4.1), even though the raw material cost may not be comparable. 

Comparable molar masses and good solubility were obtained. As a result, a red-shifted 

absorption is observed upon selenium substitution (Figure 4.1), giving an optical gap of 

1.65 eV for PSeQ, as deduced from the film absorption edge, which is beneficial for a 

broader solar spectral coverage. This corresponds to a narrowing of around 0.1 eV in the 

band gap by substituting sulfur with selenium, as accompanied by a rise in the HOMO 

level and a lowering in the LUMO level to some extents, in agreement with literature.107 

Similar absorption coefficient is also recorded between PSeQ and PTQ, both from 

experimental optical absorption measurement and from TD-DFT calculations. A 

minimization of the large LUMO-level offset with respect to the fullerene acceptor is also 

preferable. All of these properties should favor the photocurrent generation. An estimate of 

the CT state energy gave very similarvalues, suggesting a comparable photovoltage may 

be obtainable. In summary, the resulting selenophene-based polymer is expected to be a 

promising candidate as an electron donor unless the fill factor in the corresponding BHJ 

photovoltaic devices would be reduced. 

 In fact, unexpectedly and disappointedly, a PCE of around 2% was registered with a 
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VOC of ~0.76 eV, JSC of ~5.0 mA/cm2 and FF of 46%, which are concomitantly lower than 

the photovoltaic characteristics of devices based on PTQ. Based on our above discussion, 

it implies other parameters may be responsible for lower photovoltaic performance instead 

of the resulting optical and electronic properties of the polymer. Indeed, AFM studies 

show that the suboptimal morphology may be one reason for the poorer performance of 

PSeQ in the same device configuration, as also supported by the lower EQE over a wide 

wavelength range.  

4.2.3 Synergistic Effect of Fluorine and Selenium Substitutions 
The inferior performance upon chemical modification of PTQ either with difluorination on 

the acceptor unit or with selenium–sulfur exchange for the donor moiety was unexpected 

yet confirmed, although further studies may be needed to explore the potential of these 

polymers. However, we also tried to combine these two different modifications in one 

macromolecule of PTQ. The large LUMO-level offset of PTQ with respect to PC71BM 

allows and encourages us to further lower the LUMO level of the polymer. By 

combination of fluorination and selenophene-thiophene exchange from PTQ to PSeQF2, a 

lowering of around 0.2 eV in the LUMO level was observed, while a similar optical gap is 

retained (~1.75 eV). Similar to the unfluorinated PSeQ, favorable optical and electronic 

properties are observed for PSeQF2, along with a rise in the estimated ECT by >0.2 eV as 

compared to PTQ, which would be expected to result in an enhanced photovoltage.  

 The effect of fluorine substitution on the energy levels of PTQ and PSeQ were 

confirmed by both SWV and DFT in reducing both HOMO and LUMO levels. The band 

gap narrowing effect of selenium substitution was confirmed by DFT (showing an increase 

in the HOMO level along with a decrease in the LUMO level) and UV–vis absorption 

spectroscopy, as well as by SWV. It has to be mentioned that the similar LUMO levels 

deduced from SWV for PTQF2 and PSeQF2 may fall into the error margin of 

electrochemical measurements, which do not follow the same trend as seen by DFT 

calculations. Moreover, the combination of fluorine substitution and selenium substitution 

to modify PTQ significantly decreased the LUMO level by around 0.2 eV, but still gave a 

sufficient offset (~0.6 eV) to that of PC71BM (based on the reduction onsets),27a,110 which 

is beneficial for charge transfer and dissociation at the polymer/fullerene interfaces. 

 We demonstrated that as a result of the synergic effect of fluorine substitution and 
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selenium substitution on the energy level modulation while keeping the optical gap almost 

unchanged, the resulting fluorinated selenophene–quinoxaline alternating polymer, 

PSeQF2, achieved a high VOC of 1.0 V while maintaining a high PCE ~4% that is 

comparable to PTQ (very sensitive to processing conditions with typical PCE of 3.1% or 

higher),103a,111 which is a significant improvement compared to PSeQ or PTQF2. Here, the 

VOC was increased by 0.1 V for PSeQF2 compared to PTQ, which can be attributed to the 

increased charge-transfer state energy arising from the deepening of the HOMO level 

through the energy level modulation. Very recently, donor polymers that combine a high 

PCE above 6% with a high VOC over 0.95 V have been reported,15c,35b,112 but to the best of 

our knowledge, there are only a very few donor polymers with VOC over 1.0 V that show 

PCE exceeding 3% when combined with PC61BM or PC71BM.35b-e In addition, PSeQF2 

and PTQ, consistent with their optical absorption profiles, resulted in similar JSC and EQE, 

higher than PSeQ or PTQF2.103a Notably, the increased JSC for PSeQF2 compared to 

PSeQ can be explained by the improved EQE over a wide spectral range. This can be 

partially attributed to the more favorable morphology for the PSeQF2:PC71BM blend as 

evidenced by AFM on the active layer surface. The larger phase separation between the 

PSeQ donor and the PC71BM acceptor in the active layer could lead to inefficient exciton 

dissociation and/or charge transport, which limits the photocurrent generation and 

JSC.23b,113  

 Hence, it can be concluded that we have demonstrated an effective chemical strategy 

through energy level modulation by synergistically introducing fluorine and selenium 

substitutions into conjugated polymers, which can lower the HOMO energy level while 

keeping the optical gap almost unchanged for achieving a high VOC.27b This combination of 

modifications on existing promising donor polymers (especially thiophene-based 

conjugated polymers) may make them more suitable for use as donor components for the 

front subcell active layer in efficient tandem cells where a high photovoltage is very 

desirable, by the optimization of fluorine substitution together with selenium substitution. 

This new strategy further broadens the methodology of tuning the HOMO and LUMO 

energy levels of molecules and polymers, and opens one possibility for minimizing the 

LUMO-level offset of the donor polymers (especially thiophene-based conjugated 

polymers) to the acceptor materials. 
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4.3 Computational Modelling Tool in Search for Chemical 

Methodologies  
In our previous work, based on a combined experimental and DFT study, we successfully 

demonstrated an effective chemical strategy through energy level modulation by 

introducing fluorine and selenium substitutions into conjugated polymers, which can lower 

the HOMO energy level while keeping the optical gap almost unchanged for achieving a 

high VOC.27b In fact, such chemical methodologies are very desired by the materials 

chemists for a rational material design in the OPV or related field. Hence, we turn to 

computational modelling as a tool to expand our exploration of chemical methodologies 

for a rational material design, especially to meet the particular requirements of different 

device architectures (including tandem and ternary solar cells) on the donor 

components, such as a prominent photocurrent or photovoltage combined with a high 

efficiency, to further maximize the overall performance of OPVs.  

 In this work, we present a systematic comparative DFT study for energy level 

modulation while keeping EHOMO, ELUMO or Eg almost unchanged through engineered 

backbone structural fine-tuning for future judicious design of conjugated donor polymers. 

This appears to be the first report of systematic comparative studies to search for chemical 

methodologies of energy level modulation by theoretical calculations for designing 

conjugated materials with desirable photovoltaic characteristics through engineered 

backbone manipulations.  

 Based on the motif of donor–acceptor polymers, around 50 comparable polymers were 

constructed and investigated, derived from an easily accessible thiophene–quinoxaline 

alternating polymer donor showing power conversion efficiency up to 7%. We discussed 

and elucidated the heteroatom effects of combining fluorine, nitrogen and chalcogen 

substitutions onto the donor/acceptor units as well as the effect of extending -conjugation 

in the donor moiety based on DFT calculations validated with experimental data where 

available. We found the trends in the energy levels and band gaps of these polymers 

correlate well to their corresponding structural modifications. Finally, we demonstrated 

three important ways of band gap and energy level tuning by showing potential chemical 

methodologies that can be applicable to further modify and optimize existing conjugated 

polymer backbones in different contexts.  
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Figure 4.2  Modelling in search for chemical methodologies for energy level modulation while 

keeping EHOMO, ELUMO or Eg almost unchanged through engineered backbone structural fine-tuning. 
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Figure 4.3  Building units as donor/acceptor moieties with structural fine-tuning in this study. 

4.3.1 Electronic Effect of Incorporating Fluorine and Nitrogen Atoms into 

the Acceptor Units 
By varying the extent of fluorine substitutions and incorporation of imine nitrogen, five 

basic acceptor units bearing the same side chains (i.e. di(meta-alkoxyphenyl)) are studied 

(Figure 4.3). As shown in Figure 4.4, the LUMO levels of these units calculated by DFT 

follow the order Q > FQ > F2Q > PP > FPP, which agrees with the effect of fluorine 

substitution on the energy levels in reducing both HOMO and LUMO levels. The HOMO 

levels follow the same trend as observed for the LUMO level, but the difference of the 
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deepening is almost halved. As a result, the HOMO–LUMO gaps of these acceptor units 

also follow the same trend (Q > FQ > F2Q > PP > FPP).  

 
Figure 4.4  Effect of incorporation of F-substituents and imine nitrogen on energy levels. 

 When donor–acceptor polymers are constructed based on these quinoxalines or 

pyridopyrazines as the acceptor unit with thiophene as the donor unit, DFT shows that the 

trend of the LUMO levels with various acceptor units is retained (Figure 4.4). By 

checking the frontier orbitals of these donor–acceptor structures (Figure 3.4), we find that 

their LUMOs are the bonding linear combination from the LUMOs of the respective 

segments (except LUMO+1 for tellurophene). Note that the resulting frontier molecular 

orbitals do not necessarily originate from the frontier molecular orbitals of the respective 

segments. Therefore, the structural changes (i.e. by incorporating electron-withdrawing 

fluorine or imine nitrogen) on the acceptor units will contribute to the LUMOs of the 

donor–acceptor polymers in the same way as to the LUMOs of the separated acceptor units, 

thereby retaining the trend of the LUMO levels with various acceptor units (Q > FQ > F2Q > 

PP > FPP).114 The HOMOs of these donor–acceptor polymers arise from the antibonding 

linear combination from the highest occupied orbitals of the corresponding acceptor units 

with the right symmetry (HOMO 3) and the HOMOs of the corresponding donor units 

(except HOMO 1 for tellurophene) (Figure 3.4). As a result, a similar trend is followed, 

except that the difluorination still maintains a deeper HOMO level than the others. The 

HOMO 3 energies of these acceptor units follow the same trends of their HOMOs. As a 

consequence, the lower these HOMO 3 energies of the acceptor units are, the lower 

HOMO levels the donor–acceptor polymers would have, following the same trend as the 

HOMO levels of the separated acceptor units. However, in the cases with the inclusion of 
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fluorine substituents on the acceptor units, there is an additional lowering of the HOMO 

due to through-space intramolecular stabilizing interactions between fluorine substituents 

and the neighboring donor unit in the donor–acceptor structures. We believe that the 

involvement of fluorine in the antibonding linear combination of the separated segments 

and interaction of the lone pair of fluorine with -orbital of thiophene in the constructed 

donor–acceptor polymers (Figure 4.5) can stabilize the system that is not possible for the 

hydrogen or imine nitrogen atoms on the acceptor units, which is doubled for TF2Q 

compared to TFQ. This extra stabilization tends to increase the HOMO–LUMO gaps, 

which can counterpoise the opposite trend as seen on the separated acceptor units upon 

fluorination, resulting in variation of the trends of the HOMO levels and the HOMO–

LUMO gaps, when these acceptor units are combined with different donor units.115 Here 

for example, TF2Q has a slightly larger HOMO–LUMO gap than both TFQ and TQ, with 

TFQ very slightly lower than TQ. It is found that the chosen calculation methods in this 

study are indeed suitable for the investigated systems, by comparing these calculated 

results with the available electrochemical measurements of the synthesized polymers at 

hand (Figure 4.4).103a 

 
Figure 4.5  Top view of molecular geometry and HOMO of TF2Q (isovalue surface 0.005 au). 

 
Figure 4.6  Heteroatom effect of chalcogen substitutions to the donor moiety on energy levels. 
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4.3.2 Heteroatom Effect of Chalcogen Substitutions into the Donor Units 
Here we will discuss the electronic difference by using different chalcogenophenes 

(Figure 4.3) as donor units in the donor–acceptor polymers.  

 The HOMO–LUMO energy gaps of these five-membered rings decrease with atomic 

numbers (Figure 4.6). The LUMO levels follow the same trend with the HOMO–LUMO 

energy gaps (decreasing with atomic numbers). The HOMO levels, however, follow a 

different trend, that is, sulfur < selenium < oxygen < tellurium. All of these trends agree 

well with previously reported experimental observations.116 The LUMOs of these five-

membered heterocycles can be attributed to the antibonding linear combination of the pz 

orbital of the corresponding heteroatoms with the *-orbital of the carbon framework of 

the rings except tellurophene. For tellurophene, the molecular orbitals have a different 

order where the lowest *-orbital is the LUMO and the antibonding linear combination of 

the pz and * orbitals gives the LUMO+1, due to the smaller electronegativity of tellurium. 

Here we note that the order of the molecular orbitals of these chalcogenophene units has 

been observed experimentally before.116b The HOMOs can be assigned to the 1a2 -orbital 

of these chalcogenophene units except tellurophene (2b1 -orbital, due to the smaller 

electronegativity of tellurium116a) (Figure 3.4). The 1a2 -orbital does not mix with the 

heteroatom pz orbital for symmetry reasons and therefore should have similar energy 

regardless of different chalcogen atoms.116a All these factors discussed here will contribute 

together to their HOMO–LUMO gaps (Figure 4.6). Interestingly, we find that these trends 

can be retained separately in most cases when constructed as donor–acceptor polymers, as 

seen in combination with quinoxaline (Figure 4.6) or fluorinated pyridopyrazine units. It is 

also noteworthy that comparison of the calculated results with the available 

electrochemical measurements of polymers27b (Figure 4.6) can further confirm the 

reasonable choice of calculation methods in this study. 

4.3.3 Effect of Extended Conjugation and Fused Units in the Donor Moiety 
Several fused thiophene-based units investigated here include thieno[3,2-b]thiophene 

(TT),117 benzo[1,2-b:4,5-b']dithiophene (BDT),15c,d,16a,36e,105b naphtho[1,2-b:5,6-

b']dithiophene (NDT),118 and dithieno[3,2-b:2',3'-d]pyran (DTP).17c,36i For comparison, 

2,2'-bithiophene (DT) as well as thiophene (T)67a,b,119 is also included (Figure 4.3).  
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Figure 4.7  Effect of extended conjugation in the donor moiety on energy levels. 

 First, a band gap narrowing is observed from BDT > DT > DTP when constructed as 

donor–acceptor polymers, as shown in combination with quinoxaline (Figure 4.7). This 

trend agrees well with the trend of these separated units, given their comparable 

conjugation path lengths. NDT-based donor–acceptor polymers show the largest HOMO–

LUMO energy gaps given the largest conjugation path length within comparison. However, 

it may not be straightforward to further compare the HOMO–LUMO energy gaps of these 

separated donor units with the other donor units (T and TT). Indeed, for these single units, 

the conjugated path lengths of these donor units vary, from two double bonds for T, to 

three for TT, to four for DT, DTP and BDT, to five for NDT. Finally, by performing 

additional calculations with increased numbers of repeating units to obtain a comparable 

conjugation path length for indirect comparison, it can be concluded that the HOMO–

LUMO energy gaps are narrowed generally following the order NDT > BDT > T > TT  

DT > DTP. Furthermore, the resulting LUMO levels of donor–acceptor polymers based on 

these units are close to each other. 

4.3.4 Implications and Guidance for Material Design 
It is interesting to analyze how structural modifications can affect the electronic properties 

of the resulting molecules. Some first empirical rules may be drawn to provide insights to 

further modify and optimize other related semiconductors.  

 Firstly, one can modulate the energy levels while keeping the band gap almost 

unchanged through structural modifications. For this purpose, optimization of fluorine 

substitutions in conjunction with sulfur-selenium exchange may be considered.27b 

Lowering the LUMO level while keeping an identical band gap, along with a deepening in 

T DT DTP TT BDT NDT

-6
-5

-4
-3

-2
-1

0
4

5
6

7

-0.21

-1.24 -1.09 -0.72 -1.08 -1.16

-6.33
-5.48

-5.08
-5.85

-5.47 -5.67

6.13

4.23 3.98
5.13

4.39 4.50

Energy (eV)

LUMO (DFT)  HOMO (DFT)L-H gap (eV) (DFT)

Q TQ DTQ DTPQ TTQ BDTQ NDTQ

-6
-5

-4
-3

-2
2

3
4

-1.90
-2.33 -2.46 -2.43 -2.44 -2.48 -2.43

-5.64
-5.12

-4.85 -4.65
-4.99 -5.05 -5.10

3.74
2.78 2.38 2.22 2.54 2.57 2.67

Energy (eV)
LUMO (DFT) HOMO (DFT)L-H gap (eV) (DFT)



Energy Level Modulation 

-41- 

the HOMO level, may allow for a higher VOC along with a comparable JSC to result in a 

higher PCE. It may be applicable for designing the front subcell donor component in 

tandem solar cells where a high photovoltage is always highly desired, or for conjugated 

donor polymers in single-junction solar cells, to maximize the overall photovoltaic 

performance. By grouping the computed models with similar band gaps (Figure 4.8), one 

can see more clearly what kinds of chemical methodologies can be applicable for such 

energy level modulation. For example, single fluorination is usually an effective to lower 

the LUMO level without obviously changing the band gap of the polymer (e.g. from TQ to 

TFQ, or from SeQ to SeFQ). By taking optical gaps (slightly different from HOMO–

LUMO gaps)39 into account, we have previously shown that synergistically incorporating 

selenium and fluorine may in reality minimize the LUMO-level offset while keeping the 

optical gap almost unchanged.27b  

 
Figure 4.8  Energy diagram of the different polymers grouped by similar band gaps. 

 Secondly, one can also tune the band gaps while maintaining an identical HOMO level 

modulated by chemical methods. Reducing the band gap while keeping a comparable 

HOMO level may allow for a similar photovoltage with a broader spectral coverage for 

PC
61 B

M
 

 FuQ
FuF

2 Q
TF

2 Q
 FuFQ
TQ TFQ
 SeQ
FuPP
SeFQ
SeF

2 Q
TPP
 TeQ
TeFQ
TeF

2 Q
SePP
FuFPP
TFPP
 TePP
SeFPP
TeFPP
 -6

-5
-4

-3
-2

2
3

-3.00

-2.20
-2.37

-2.52

-2.30
-2.33
-2.43

-2.41
-2.51
-2.50
-2.59
-2.62

-2.42
-2.52
-2.62
-2.66
-2.72
-2.81

-2.67
-2.86
-2.87

-5.57

-5.02
-5.25
-5.34

-5.07
-5.12
-5.20

-5.05
-5.11
-5.13
-5.24
-5.25

-4.97
-5.04
-5.14
-5.22
-5.26
-5.33

-5.13
-5.28

-5.19

2.56

2.82
2.88
2.82

2.77
2.78
2.77 2.64

2.60
2.63
2.65
2.63

2.55
2.52
2.52

2.56
2.54
2.52

2.46
2.43

2.32

Energy (eV)

LUMO (DFT) HOMO (DFT)L-H gap (eV) (DFT)



Energy Level Modulation 

-42- 

photocurrent generation. As a result, improvement in PCE will be possible. By grouping 

the evaluated models with identical HOMO levels, potential chemical approaches to 

narrow the band gap of conjugated polymers while keeping a comparable HOMO level can 

be found (e.g., from TQ to SeFQ to FuPP to TeF2Q to TePP, Figure 4.9).  

  
Figure 4.9  Energy diagram of the different 

polymers grouped by similar HOMO levels. 

Figure 4.10  Energy diagram of the different 

polymers grouped into similar LUMO levels. 

 Last but not least, one can also tune the band gaps while retaining a comparable LUMO 

level mediated by chemical methods. A simple strategy already shown can be extending -

conjugation in the donor moiety by oligomerization or fusing to combine with a carefully 

chosen acceptor unit, without introducing extra different heteroatoms into the backbone. 

Alternatively, by grouping the computed models with similar LUMO levels, one can also 

find additional possible chemical methods. Consequently, one may achieve an optimal 

band gap for maximizing the PCE as a compromise of the VOC and JSC changes, i.e. 

reducing the band gap at the same LUMO level increases the HOMO level and 

consequently may increase JSC but decrease VOC. Unlike the previous two ways of energy 

level modulation, this unpredictable method is actually the most commonly used today 

when a new acceptor unit is developed. Therefore, our result will provide some valuable 

insights in better designing conjugated polymers. Above all, these three ways of energy 

level modulation can be applied in different contexts, dependent on the material structure 

and the energy level matching with the acceptor materials used,17a,b,41 but the trend with 

structural modifications may be very insightful in designing new materials.  
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5 Engineering Donor Units in Isoindigo-Based Conjugated 

Polymers 

In this chapter the influence of different electron-donating units in the donor–acceptor 

polymers will be discussed, in particular the influence of electron-donating units 

incorporated in isoindigo-based conjugated polymers. The exploration of new conjugated 

donor polymers that combine a high power conversion efficiency and a high open-circuit 

voltage is highly desirable in realizing efficient tandem solar cells, and the potential of 

isoindigo for organic solar cells has motivated us to further explore this possibility.  

 
Figure 5.1  Effect of incorporating different electron-donating thiophene-based units on the 

photovoltaic properties of isoindigo-based conjugated polymers. 

 Our recent studies demonstrated the potential of isoindigo as an efficient acceptor unit 

in donor–acceptor polymers for BHJ solar cells.52,68a,69b,120 Among these, PTI-1, consisting 

of alternating thiophene and isoindigo units, with an optical gap of 1.6 eV, shows a PCE of 

3.0% with a VOC of 0.89 V, JSC of 5.4 mA/cm2 and FF of 63% when combined with 

PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) as the acceptor in BHJ devices.69b 

Extending the conjugation length of the donor unit in PTI-1 from thiophene to a 

terthiophene derivative resulted in a more efficient donor polymer, P3TI, with a reduced 

optical gap (1.5 eV). P3TI shows a PCE of 6.3% in the same device configuration, with a 

VOC, JSC and FF of 0.70 V, 13.1 mA/cm2 and 69%, respectively.68a Notably, even though a 

high PCE was achieved for P3TI, the VOC was not prominent, while for PTI-1, even though 

a VOC up to 0.9 V was obtained, the PCE was moderate. The initial success of isoindigo-
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based polymers for organic solar cells52,68a,69b,120-121 motivated us to further explore the 

possibility of improving the photovoltaic performance in these systems, especially by 

combining a high PCE and a high VOC into one single isoindigo-based polymer, as well as 

to investigate their structure–property relationships. A series of novel donor–acceptor 

conjugated alternating copolymers based on the isoindigo acceptor moiety (PMIM, PT-

MIM, PBDTO-MIM and PBDTA-MIM, Figure 5.1) were therefore designed, 

synthesized and characterized, in order to explore the potential of isoindigo for efficient 

donor materials with high photovoltages in solar cells.  

 We have systematically investigated the influence of the different electron-donating 

units on the structural, optical, electrochemical and photovoltaic properties. Mobility 

measurements, morphological studies and quantum-chemical calculations including DFT 

and TD-DFT were carried out to find out the insights into the differences. We find that the 

PCEs of the resulting PSCs can be improved by over 3-fold through a rational structural 

modification of the donor moiety, which highlights the importance of carefully choosing 

appropriate chemical structure to design efficient donor–acceptor polymers for solar cells. 

Among these polymers, PBDA-MIM exhibits a PCE of 5.4%, which is the highest value 

obtained for isoindigo-based polymers for conventional BHJ PSCs combined with 

PC61BM as the acceptor to date. This further emphasizes the use of isoindigo as an 

effective acceptor unit for designing active donor materials and demonstrates the potential 

of this class of polymers as donor candidates for bottom cells in tandem devices, which 

combine low optical gaps (1.5–1.7 eV), promising efficiencies and desirable open-circuit 

voltages (at least 0.8 V) into isoindigo-based polymers with PC61BM as the acceptor.  

5.1 Material Design, Synthesis and Structural Characterization 
Previous work on isoindigo polymers has shown that extending the conjugation in the 

donor moieties from a single thiophene (PTI-1)69b to terthiophene (P3TI)68a resulted in a 

decreased VOC by ~0.2 V, even though the PCE was more than doubled. In this study, the 

bithiophene unit was employed to have an intermediate -conjugation length in the donor 

moiety, resulting in donor–acceptor polymer PMIM. The introduction of methyl groups on 

the bithiophene unit would be expected to give a slightly twisted backbone, which should 

increase the band gap and thus the VOC.122 Meanwhile, a beneficial intermolecular stacking 

might still occur by adopting conformations where the two methyl substituents on the 
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adjacent thiophene units are away from each other,123 favoring a linear backbone in the 

solid state.124 For comparison, a thiophene ring was inserted in between the two 

alkylthiophene units to have the same polymer backbone as P3TI (the best-performing 

isoindigo-based polymer reported so far)68a, resulting in PT-MIM. To further extend the -

conjugation length of the donor unit, benzo[1,2-b:4,5-b']dithiophene (BDT) was also 

incorporated. Recently, BDT has been widely used as an effective electron-donating 

building block thanks to its desirable properties such as structural rigidity, planarity and 

favorable interchain –  stacking, along with the presence of additional substitution sites 

for the incorporation of side chains.36e,h,37b,63b,105a-c,107a,125 Here the BDT unit with two 2-

ethylhexyloxy side chains was used to replace the middle thiophene in the terthiophene 

unit in PT-MIM, resulting in PBDTO-MIM. Notably, similar polymers with identical 

backbones (PBDT-TIT and PBDT-OIO) showed promising device performance with a 

VOC up to 0.79 V, JSC of 7.87 mA/cm2, FF of 68% and a PCE of 4.22%.52 Furthermore, it is 

known that removal of oxygen from the side chains of the donor unit can reduce the 

electron density, to allow for a deeper HOMO energy level, which in principle should 

enhance the VOC of the resulting PSCs.126 Hence the alkoxy side chains on the BDT unit 

were replaced with branched alkyl chains, resulting in PBDTA-MIM.  

 The synthesis of the monomers is outlined in Scheme 5.1. All the polymers were 

synthesized via Stille coupling reaction79 from the corresponding monomers as shown in 

Scheme 5.1. After the reaction mixture was precipitated into methanol, the polymers were 

collected and washed via Soxhlet extraction with methanol, acetone, ether, hexane, 

dichloromethane and chloroform successively. The chloroform fraction was precipitated 

into methanol, and the final products were collected by filtration and dried under vacuum. 

PMIM had a Mn of 20.1 kDa with a M of 2.1 (Xn = 22.3). It should be mentioned that a 

hot chlorobenzene fraction after chloroform extraction gave a comparable yield of PMIM, 

with a much higher Mn of 62.8 kDa ( M = 1.9, Xn = 69.7), which is not considered for 

comparison in this work because it was not processable from common organic solvents at 

the concentrations needed for devices preparation. Going from PMIM to PT-MIM 

resulted in a slightly lower Mn of 13.4 kDa for PT-MIM ( M = 1.8, Xn = 13.6), indicating 

a decreased solubility. By replacing the unsubstituted thiophene with a BDT unit with 

alkoxy or alkyl branched side chains, a dramatic improvement in terms of solubility and 

molar masses of the polymers occurred (PBDTO-MIM: Mn = 63.5 kDa, M = 3.0, Xn = 
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47.2; PBDTA-MIM: Mn = 69.3 kDa, M = 4.0, Xn = 47.7).127  

 
Scheme 5.1  Synthesis of polymers (PMIM, PT-MIM, PBDTO-MIM and PBDTA-MIM). 
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Table 5.1  The LUMO and HOMO for the four polymers and their molecular geometries from side 

view (Isovalue Surface 0.02 au) evaluated by DFT at the B3LYP/6-31G(d) level 

 PMIM PBDTO-MIM 

Side View 
 

 

LUMO 
  

HOMO 
  

 PT-MIM PBDTA-MIM 

Side View   

LUMO 
  

HOMO 
  

5.2 Electronic Structures and Optoelectronic Properties 
The optimized molecular geometries of the models and their calculated frontier orbitals are 

depicted in Table 5.1. Without insertion of additional donor units, PMIM gives the most 

twisted (ca. 50°) optimized molecular geometry as can be seen from Table 5.1. The other 

three polymers can have a more coplanar conformation than PMIM. The torsion angles 

between the flanking methylthiophene and inserted donor units are more or less the same, 

around 20°. For PT-MIM, it is also possible to give a flat angle of 3 similar to the BDT-

based polymers, given the rigidity and symmetry of the inserted units. As the side chains 

on the flanking thiophene are very short (just methyl groups for the synthesized PT-MIM), 

they do not force the terthiophene units to adopt conformations that place the side chains 

away from each other.122 The high planarity of the backbones in these three conjugation-

extended polymeric systems, which was also shown for PBDT-TIT in our recent modeling 

work,92h could favor the –  stacking interactions that occur among the polymer backbones 

in the solid state, which could in turn enhance the charge mobility (see below mobility 

measurements in Table 5.2).122  
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Table 5.2  Photovoltaic parameters of the BHJ PSCs and corresponding charge mobilities 

Polymer: PC61BM

ratio (w/w) 
Solvent 

DIO

(% 

v/v) 

TAnn. 

(°C) 
a 

JSC 

(mA 

cm 2) 

VOC

(V) 

FF

(%) 

PCE b 

(%) 

h c 

(cm2 V 1 

s 1) 

PMIM (1:1) CF 2 90 6.24 0.73 36 1.64 (1.5) 7.4 × 10 5 

PT-MIM (1:1) CF 1 -- 10.41 0.71 43 3.14 (3.1) 1.0 × 10 4 

PBDTO-MIM 

(1:1.5) 

CF:DCB 

(1:1) 
3 110 10.09 0.73 59 4.36 (3.9) 1.5 × 10 4 

PBDTA-MIM 

(1:1.5) 

CF:DCB 

(1:1) 
3 -- 10.20 0.80 65 5.36 (5.1) 2.7 × 10 4 

a) Annealing time: 10 min; b) Power conversion efficiencies of the best devices, with average values based on over 

six devices given in parentheses; c) Hole mobility estimated by space charge limited current (SCLC) method. 

 
Figure 5.2  Energy levels estimated from DFT-B3LYP/6-31G(d) and from SWV and optical gaps.  

 We also extended the DFT calculation for PMIM to three repeating units to have a 

similar conjugation path length to the BDT-based oligomers. The DFT-computed HOMO 

and LUMO energy levels are 5.06 eV and 2.86 eV, respectively. Indeed, this will result 

in slightly different orders of the values, but we can further confirm that the LUMO levels 

are governed by the acceptor units and that PMIM has the lowest HOMO level and the 

largest LUMO–HOMO energy gap among the four isoindigo-based polymers in the gas 

phase. Energy levels deduced from the onsets of the first oxidation and reduction potentials 
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were included in Figure 5.2 for comparison. The trend of LUMO levels from these onsets 

is consistent with the calculated trend, which is PBDTO-MIM < PBDTA-MIM < PT-

MIM  PMIM. The measured HOMO levels and band gaps follow the trends from DFT 

calculations except for PBDTA-MIM due to the aforementioned reasons.  

5.3 Photovoltaic Performance 
Table 5.2 summarizes the photovoltaic responses of optimized PSCs using a conventional 

device configuration (glass/ITO/PEDOT:PSS/polymer:PC61BM/LiF/Al). Representative J–

V plots are shown in Figure 5.1. The best-performing BHJ solar cells were obtained again 

when processed with DIO as the solvent additive. It is worth noting that the PCEs for 

PBDTO-MIM and PBDTA-MIM together with our previously reported PBDT-TIT and 

PBDT-OIO52 follow the order: PBDT-OIO (1.26%) < PBDT-TIT (4.22%) < PBDTO-

MIM (4.36%) < PBDTA-MIM (5.36%). This indicates that the introduction of methyl 

groups on the flanking thiophenes is indeed a simple and effective alternative synthetic 

strategy without sacrificing the photovoltaic performance or suffering the synthetic 

difficulty for example to make PBDT-TIT.52 This strategy also allows one to design and 

synthesize new isoindigo-based polymers that combine many other different donor 

moieties in order to further explore possibilities of improving the photovoltaic 

performance without having to stay with the low-yielding synthesis of the dibromide 

monomer (i.e. N,N'-disubstituted-6,6'-bis(5-bromothiophen-2-yl)isoindigo). 

 The insertion of the thiophene into the backbone, going from PMIM to PT-MIM, 

resulted in a decreased VOC due to the raised HOMO level, but an almost doubled PCE was 

achieved coupled with a greatly increased JSC due to the increased hole mobility. In 

addition, the replacement of a thiophene ring with a BDT moiety increased the VOC and FF 

without losses in JSC, leading to an enhanced PCE. More importantly, when alkoxy side 

chains on the BDT unit were replaced with analogous alkyl chains, the VOC was further 

improved due to the deepening in the HOMO level, and the FF was further improved as 

well probably thanks to a modified morphological D:A blend arrangement. As a result, 

PBDTA-MIM, blended with PC61BM, stands out as the best-performing photoactive 

material among these polymers, with a VOC of 0.80 V, JSC of 10.20 mA/cm2, FF of 65% 

and a PCE of 5.36%. This synergistically demonstrates the potential of isoindigo-based 

polymers as suitable donor candidates for use in front subcells of efficient tandem devices.  
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6 Engineering -Bridges in Quinoxaline-Based Polymers 

In this chapter we focus on a discussion on the function and influence of -conjugated 

bridges in conjugated polymers, in particular acting as -conjugated spacers between 

benzodithiophene donor and fluorinated quinoxaline acceptor moieties in the main chain.  

6.1 Highlights 
 In this work, two new easily accessible conjugated polymers (PBDTFQ-T and 

PBDTFQ-TT, Figure 6.1) based on benzodithiophene donor and fluorinated quinoxaline 

acceptor moieties with thiophene or thieno[3,2-b]thiophene as -conjugated bridges were 

designed and synthesized to explore the relationships between the molecular structures, 

optoelectronic properties and photovoltaic performances. We demonstrated that doctor-

blading technique can be used to fabricate efficient photovoltaic devices in air based on 

these two new polymers, which represents an important step for future mass production of 

PSCs, with minimized material losses and low-cost processes. Through the control of 

different parameters, it was possible to achieve PCE up to ~5.6% with VOC exceeding 0.82 

V and JSC reaching 11 mA/cm2. 

 
Figure 6.1  Replacing thiophene with thieno[3,2-b]thiophene as -conjugated spacers in electron 

donor polymers eases the solution processing for high-performance organic photovoltaic cells. 

 The synthesis of polymers is outlined in Scheme 6.1. The characterized properties are 

summarized in Table 6.1. Here, the replacement of thiophene with thieno[3,2-b]thiophene 

as spacer resulted in a narrowing of the optical gap of the polymer, which favors a higher 



Engineering -Bridges in Quinoxaline-Based Polymers 

-51- 

photocurrent generation in photovoltaic devices. Moreover, the use of thieno[3,2-

b]thiophene as spacer resulted in a more linear and planar polymer chain (as confirmed by 

DFT calculations), which facilitates the polymer chains to pack well in the solid state and 

to have a higher hole mobility as compared to the thiophene analogue. As the result, a 1:1 

blend of PBDTFQ-TT and PC61BM showed up to ~5.6% PCE in a device fabricated by 

blade coating without the need to add any solvent additive (Table 6.2). On the other hand, 

the use of thiophene as spacer imparted the polymer (PBDTFQ-T) with higher molar 

masses due to the better solubility of the monomer and the polymer, which enhanced the 

light absorption and the photocurrent generation in devices. In the meantime, devices 

fabricated from a blend of PBDTFQ-T and PC61BM (1:1 ratio) processed with DCB 

showed improved fill factor and photocurrent though appropriate control of active layer 

morphology using solvent additive (3% DIO) which resulted in comparable device 

efficiency to what was obtained by the thieno[3,2-b]thiophene based polymer. Finally, we 

would like to emphasize that the use of thieno[3,2-b]thiophene as -conjugated bridges in 

donor–acceptor structures is a facile method for obtaining highly performing polymers in 

BHJ solar cells without the need of any additional processing solvent additives. 

Table 6.1  Molar masses, optical and electrochemical properties of PBDTFQ-T and PBDTFQ-TT. 

a) The values in parentheses are those determined in chloroform solution. b) The values in parentheses are those 

obtained from DFT calculations at the B3LYP/6-31G(d) level. c) Eg
opt = 1240 / on. d) Eg = ELUMO – EHOMO. 

 

Polymer 

Mn Mw Film (solution) a  SWV (DFT) b 

[kDa] [kDa] 
max 

[nm] 
on 

[nm] 

Eg
opt c 

[eV] 

 EHOMO 

[eV] 

ELUMO 

[eV] 

Eg d 

[eV] 

PBDTFQ-

T 
101 270 

622 

(605) 

700 

(668) 

1.77 

(1.85) 

 6.00 

( 4.90) 

3.63 

( 2.59) 

2.37 

(2.31) 

PBDTFQ-

TT 
15 42 

596 

(598) 

725 

(714) 

1.71 

(1.74) 

 5.90 

( 4.85) 

3.52 

( 2.68) 

2.38 

(2.17) 
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Scheme 6.1  Synthetic route to PBDTFQ-T and PBDFQ-TT. 

Table 6.2  Photovoltaic parameters of polymer:PC61BM BHJ OPV devices. The results reported are 

averaged over 10 cells, while the values in parentheses represent the best device parameters 

Polymer:PC61BM 

ratio (w/w) 

Thickness 

(nm) 

DIO 

(% v/v) 

JSC 

(mA/cm2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 

PBDTFQ-T (1:1.5) 141 3 9.29 0.81 68 5.12 

PBDTFQ-T (1.5:1) 151 3 8.64 0.85 67 4.91 

PBDTFQ-T (1:1) 162 - 5.46 0.87 46 2.18 

PBDTFQ-T (1:1) 168 3 
9.18 

( 9.63) 

0.84 

(0.84) 

67 

(70) 

5.30 

(5.68) 

PBDTFQ-TT (1:1.5) 127 - 9.27 0.81 62 4.62 

PBDTFQ-TT (1.5:1) 142 - 10.48 0.83 58 5.05 

PBDTFQ-TT (1:1) 149 - 
10.87 

( 11.18) 

0.82 

(0.82) 

59 

(61) 

5.29 

(5.60) 

PBDTFQ-TT (1:1) 150 3 9.53 0.75 45 3.19 
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6.2 Chain Conformations and Optoelectronic Properties 
For computational simplification, the alkoxy side chains on the quinoxaline acceptor unit 

were replaced with methoxy groups, the branched alkyl side chains on the BDT unit were 

replaced with methyl groups, and the backbones were simplified to two repeating units.  

 In order to obtain more accurate results, we first needed to determine the conformations 

of the structure units of the two polymers. As the BDT unit is a centrosymmetric fused unit, 

we assume a trans conformation between the BDT unit and the bridging group (i.e. 

thiophene or thieno[3,2-b]thiophene), to minimize the steric hindrance as well as the 

potential energy of the whole systems.105f More attention was given to analyze the 

conformation between the quinoxaline unit and the bridging group. Notably, even if 

different conformations (i.e. syn-conformation defects) may be adopted between the BDT 

unit and the bridging group, they still result in the same conclusions which can be made in 

our below computational analysis of the conformation between the quinoxaline unit and 

the bridging group (i.e. thiophene or thieno[3,2-b]thiophene). As shown in Figure 6.2, 

there are three possible conformers to be resolved for each -bridge flanking FQ ( -A- ) 

segment. We performed DFT calculations for these possible conformations by using the 

two-repeating-unit model, because there are two joints in the -A-  segment for the BDT 

units to bond with. The potential energies of the three conformers of the -A-  segments 

decrease in the order 121>112>111 (Figure 6.2) for both the different spacers. 

 
Figure 6.2  Possible conformers of -bridge flanking FQ ( -A- ) segments. 

 However, in the optimized geometries of the corresponding dimers, additional factors 

could determine the lower conformation energy, other than that of the -A-  segment, such 
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as the presence of bulky side chains. For example, the lowering of the potential energy 

through the minimization of the steric hindrance between the bulky side chains on the BDT 

unit and on the FQ one may prevail. In fact, for polymer PBDTFQ-T, the distance 

between the benzyl carbon on the BDT unit and the closest oxygen atom on the adjacent 

quinoxaline units, L2, is 4.0 Å for the dimer with -A-  conformations 111 or 112, while it 

is 9.5 Å for the dimer with the -A-  conformation 121 (Table 6.3). We therefore 

postulate that, for polymer PBDTFQ-T, the conformation 121 of the -A-  segment is 

favored because it allows a minimum steric hindrance in the presence of adjacent bulky 

side chains. Such conformation preference may already occur in the polymerization of 

PBDTFQ-T. On the other hand, in the case of the dimers with thieno[3,2-b]thiophene 

bridge, the steric hindrance of lateral alkyl chains is strongly reduced: the distance between 

the benzyl carbon atom on the BDT unit and the closest oxygen atom on the adjacent 

quinoxaline units, L2, is in any case comparable (9.4 Å). As a consequence, thanks to the 

rigidity and centrosymmetry of the thieno[3,2-b]thiophene unit, the three possible 

conformations of the dimers are all linear and have similar spatial orientation of the side 

chains. Then for polymer PBDTFQ-TT is favored the conformation where the -A-  unit 

has the lowest potential energy, which is conformation 111. It has to be mentioned that for 

PBDTFQ-TT, other possible conformations between the quinoxaline unit and the -bridge 

may exist, as well as between the BDT unit and the -bridge, but the polymer backbone 

linearity would be maintained. The linear backbone of PBDTFQ-TT, compared to the 

curved backbone of PBDTFQ-T, presumably favors inter-chain stacking/packing and 

leads to improved charge mobility.128  

 The optimized molecular geometries of the two-repeating-unit models (PBDTFQ-

T_121 and PBDTFQ-TT_111) and their frontier molecular orbitals are shown in Figure 

6.3. The computed HOMO and LUMO energy levels for PBDTFQ-T_121 are 4.90 eV 

and 2.59 eV respectively, with an energy gap of 2.31 eV, while for PBDTFQ-TT_111 

the HOMO and LUMO levels are 4.85 eV and 2.68 eV, respectively, with an energy 

gap of 2.17 eV (Table 6.1). The HOMO levels agree with the ionization energies 

estimated by SWV, with a slight increase in energy when passing from the thiophene to the 

thieno[3,2-b]thiophene based polymer. On the other hand, the decrease in the LUMO 

energy, computed by DFT, when going from thiophene to thieno[3,2-b]thiophene cases, 

was not observed by SWV. The band gap narrowing when going from the thiophene to the 
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thieno[3,2-b]thiophene based polymers observed by DFT calculations is in agreement with 

the optical gap deduced from the UV–vis absorption spectra. This band gap difference can 

be explained through the increased charge-transfer-like interactions of the PBDTFQ-TT 

polymer compared to PBDTFQ-T. This is confirmed by the shortening of the bond length 

between the -bridge and the FQ unit in the -A-  segment when passing from the 

optimized structure PBDTFQ-T_121 to the PBDTFQ-TT_111 one.  

Table 6.3  The C-C-C-C torsion angles (deg), the C-C-C angles (CaCbCc) (deg) between the 

closest BDT units, the bond lengths (Å) between FQ and -bridges, and the distances (Å) between 

the benzyl carbon on BDT and the closest oxygen atom on the adjacent FQ units of the polymers. 

 
 1 2 3 4 5 6 7  L1 L2 

PBDTFQ-T_121 161 173 173 160 11 12 159 150 1.461 9.52 

PBDTFQ-TT_111 171 172 169 171 5 3 170 177 1.458 9.43 

 
 PBDTFQ-T_121 PBDTFQ-TT_111 

Side View 
  

LUMO 

 
 

HOMO 

 
 

Figure 6.3  Illustrations of the frontier orbitals of the polymers and their molecular geometries from 

side view (isovalue surface 0.02 au) evaluated by DFT at the B3LYP/6-31G(d) level. 
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 Different -bridge units significantly affect the molecular architecture. As can be seen 

from Table 6.3, both polymers have an optimized structure with in-plane backbones, with 

a slightly more planar geometry for the model of PBDTFQ-TT than that of PBDTFQ-T. 

For example, as shown in Table 6.3, the torsion angles ( 5 and 6) between the quinoxaline 

and BDT units along the backbone are ca. 2.6–4.7° for PBDTFQ-TT vs. ca. 11.4–12.4° 

for PBDTFQ-T. Moreover, for PBDTFQ-TT a linear backbone conformation can be 

adopted while PBDTFQ-T shows a backbone curvature. For instance, the angles ( ) 

between the two closest BDT units along the backbone are ca. 173.5° and ca. 147.3° for 

PBDTFQ-TT and PBDTFQ-T, respectively (Table 6.3). This may result in a significant 

difference in interchain stacking and charge mobility, as confirmed by the broader 

absorption band with a red-shifted onset for PBDTFQ-TT compared to PBDTFQ-T and 

by the mobility measurements under the same conditions (1.1×10 4 cm2/(V·s) for 

PBDTFQ-T vs. 3.7×10 4 cm2/(V·s) for PBDTFQ-TT).129 

In conclusion, we have synthesized two easily accessible conjugated polymers (PBDTFQ-

T and PBDTFQ-TT) consisting of benzodithiophene donor and fluorinated quinoxaline 

acceptor units spaced with either thiophene or thieno[3,2-b]thiophene -bridges, 

respectively. The influence of thiophene or thieno[3,2-b]thiophene as -bridge on the 

resulting solubility, molar masses, backbone conformations, optical and electronic 

properties were investigated. A first comparison between the electrical and photovoltaic 

properties of the two synthesized polymers, blended with PC61BM as the acceptor and 

processed under the same conditions with doctor-blading (without using solvent additives), 

reveals an improved performance of the polymer with the thieno[3,2-b]thiophene as the -

bridge (with a PCE of 5.29% on average and 5.60% at maximum) compared to the 

thiophene -bridged analogue (with an average PCE of 2.18%). This can be ascribed to 

enhanced light absorption, charge mobility and improved blend film nanomorphology, 

despite the lower molar mass. It is worth emphasizing that the facile method for obtaining 

highly performing polymers by simply varying the -spacer in donor–acceptor structures 

and obtaining efficient BHJ solar cells without the need of any additional processing 

solvent additives suggests the importance of a further and deeper investigation on the use 

of thieno[3,2-b]thiophene or similar -bridges inserted in other polymeric structures.  
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7 Side-Chain Engineering in 2,7-Carbazole- and 

Quinoxaline-Based Polymers 

7.1 Introduction 
This chapter features a discussion on the effect of side-chain engineering on photovoltaic 

performance in 2,7-carbazole-130 and quinoxaline-based35a,67a,69a polymers. Alkyl or alkoxy 

side-chains are commonly incorporated onto the backbones of donor–acceptor polymers to 

ensure good solubility to allow solution processing. It was found that the proper placement 

of alkyl or alkoxy groups is important and this can have a pronounced effect on the 

performance of the resulting PSCs.63b,88c,125b,131 To gain more insight into the influence of 

alkyl or alkoxy groups in the photophysical, electrochemical and photovoltaic properties of 

2,7-carbazole-based polymers, we designed and synthesized three polymers (EWC1, 

EWC2, and EWC3) with a common carbazole–thiophene–quinoxaline–thiophene 

backbone but with different side chains. This kind of direct comparison between 2,7-

carbazole-based polymers with branched and straight side chains on the carbazole 

moieties130c-e bearing the same acceptor segments was rarely noted before. The devices 

based on EWC3 showed the best performance with a PCE of 3.7%.  

 
Figure 7.1  Influence of side chains on photovoltaic properties of 2,7-carbazole-based polymers. 

7.2 Material Synthesis and Characterization 
The synthesis of polymers is outlined in Scheme 7.1. All the three polymers were obtained 

by coupling the corresponding carbazole-based and quinoxaline-based monomers via a 

modified Suzuki reaction.132 The obtained molar masses are summarized in Table 7.1. It 

was noted that the GPC spectrum of EWC1 presents two peaks with a low Mn of 14 kDa 
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and large M of 7.3 if it was washed in the Soxhlet extractor only with diethyl ether before 

being extracted with chloroform. By additionally washing with dichloromethane after 

using diethyl ether, EWC1 showed an improved Mn of 34 kDa and narrowed M of 2.9. 

 
Scheme 7.1  Synthetic route to the three carbazole-based polymers. 

7.3 Optical and Electrochemical Properties 
The UV–vis absorption spectra of the polymers in chloroform solution and in the solid 

state are shown in Figure 7.2. All three polymers present two absorption bands. The band 

at longer wavelength can be attributed to the ground-state-to-excited-state transitions with 

intramolecular charge-transfer-like character. The almost identical absorption spectra of 

EWC2 and EWC3, both in solution and in the solid state, respectively, indicate that the 
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octyloxy groups on the quinoxaline segments of EWC3 have no influence in the 

absorption spectra of the resulting polymers. In contrast, the side chains on the carbazole 

units have an obvious effect on the absorption spectra of the resulting polymers, as can be 

seen from the fact that EWC1 ( on = 680 nm, Eg
opt = 1.82 eV) showed a visible red shift 

compared to EWC3 ( on = 644 nm, Eg
opt = 1.92 eV) (Table 7.1). Note that there is only 

very limited red shift for the absorption spectra of all the synthesized polymers when going 

from the solution to the solid state, indicating that the polymers are amorphous and there is 

no obvious aggregation or long-range orderly –  stacking formed in the solid state.  

Table 7.1  Molar masses, optical and electrochemical properties of the polymers. 

polymer 

Mn 

M 
max (nm) on 

(nm) 

film 

Eg
opt 

(eV) 

Eox 

(V) 

Ered 

(V) 

HOMO 

(eV) 

LUMO 

(eV) kDa solution film 

EWC1 34 2.9 405,554 404,558 680 1.82 0.43 1.84 5.56 3.29 

EWC2 9 1.7 386,521 390,533 649 1.91 0.56 1.80 5.69 3.33 

EWC3 23 2.7 385,521 390,536 644 1.92 0.60 1.81 5.73 3.32 

 
Figure 7.2  UV–vis absorption spectra of the polymers (a) in chloroform solution and (b) in films. 

 The three polymers present almost the same reduction potentials (of ca. 1.8 V), but 

different oxidation potentials as determined by SWV (Table 7.1). The high LUMO levels 

of the three polymers can ensure enough driving force for charge transfer in the resulting 

PSCs utilizing PC71BM (LUMO 4.13 eV) as acceptor.41 Based on the above data, it was 

concluded that the side chains on both carbazole and quinoxaline segments have no 

influence on the LUMO levels of the polymers but a clear impact on their HOMO levels. 
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Table 7.2  Summary of photovoltaic parameters of the solar cells from the three polymers 

polymer additive weight ratio 

polymer: PC71BM 

Thickness

(nm) 

VOC 

(V) 

JSC 

(mA cm 2) 

FF PCE  

(%) 

EWC1 none 1:1 60 0.74 3.8 0.58 1.7 

1:2 65 0.75 5.4 0.55 2.2 

1:3 65 0.75 4.7 0.60 2.2 

1:4 60 0.73 4.2 0.60 2.0 

DIO 1:3 65 0.72 4.7 0.55 1.9 

EWC2 none 1:1 80 0.90 6.9 0.44 2.7 

1:2 65 0.85 6.9 0.53 3.1 

1:3 60 0.81 7.1 0.54 3.1 

1:4 95 0.80 7.1 0.51 2.9 

DIO 1:3 70 0.79 4.3 0.54 1.9 

EWC3 none 1:1 85 0.96 5.7 0.37 2.1 

1:2 95 0.92 6.1 0.46 2.6 

1:3 70 0.92 7.7 0.52 3.7 

1:4 85 0.87 7.0 0.48 2.9 

DIO 1:3 70 0.94 2.7 0.57 1.4 

7.4 Photovoltaic Properties 
PSCs were fabricated with a sandwich configuration of glass/ITO/PEDOT:PSS/active 

layer/LiF/Al. The active layers of the solar cells were spin-coated from DCB solutions of 

polymer:PC71BM. The results are listed in Table 7.2. All the three polymers achieved their 

best performances with a polymer:PC71BM ratio of 1:3.  

 EWC3 exhibited the highest PCE of 3.7% with VOC of 0.92 V, JSC of 7.7 mA cm 2 and 

fill factor of 0.52, exhibiting 0.17 V higher VOC values than devices made of EWC1. It is 

striking to find that branched side chains on the carbazole units are beneficial in achieving 

higher VOC in the resulting devices. This result is consistent with the recent reports about 

the effect of side chains based on other polymer backbones and it is believed that branched 

side chains can reduce intermolecular interactions and lead to higher VOC.105a,131c,d This 

observation may be of importance in designing carbazole-based polymers for high-

efficiency PSCs. 
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8 Concluding Remarks 

 The past five years have witnessed a rapid progress of bulk heterojunction organic 

photovoltaics boosted by (i) design and synthesis of novel conjugated donor materials, (ii) 

control and optimization of device fabrication, and (iii) the development of new device 

architectures such as tandem and ternary solar cells. The current challenges for OPVs 

remain to further improve photovoltaic efficiency as well as durability and cost-

effectiveness, to compete with silicon-based solar cells. The work described in this thesis 

deals with the design, synthesis, characterization, and computational modelling of 

conjugated polymers for bulk heterojunction organic photovoltaics. It focused on material 

design of conjugated donor polymers through band gap engineering via rational structural 

modifications such as engineered backbone manipulations and side-chain engineering, as 

well as incorporation of newly developed building blocks. This thesis also established 

structure–property relationships of the polymer systems here studied, and explored 

potential chemical methodologies for future judicious material design. Many conjugated 

polymers were synthesized, by the Stille or Suzuki reactions, which were designed for use 

as donors in polymer:fullerene solar cells, and were partly included in this thesis. 

 Chapter 4 describes energy level modulation with chemical strategies detailed in Paper 

I and II. It is known that material design through band gap and energy level tuning has 

been playing a key role in developing new donor materials for efficient organic solar cells. 

The studies included here will be aimed at a more rational material design with 

controllable photovoltaic characteristics which are desired for the material to be integrated 

into the modern device design. Both experimental and modelling efforts were devoted for 

this purpose and three different ways of energy level modulation were discussed to explore 

chemical methodologies that may be suitable in pushing the efficiency further toward the 

theoretical limit.  

 From Chapter 5 to Chapter 7, we demonstrated the experimental studies in designing 

conjugated donor polymers via structural modifications such as engineered backbone 

manipulations and side-chain engineering. In order to design a conjugated donor polymer 

that can combine as many desired properties as possible into one conjugated backbone, 

appropriate building blocks are needed. Quinoxaline and isoindigo are among the acceptor 
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units that can be used to achieve state-of-the-art performance in conjunction with an 

efficient synthesis, which can be very attractive for the future mass production of polymer 

solar cells. Hence, they were chosen as the acceptor moiety to construct donor–acceptor 

conjugated polymers, to first control the LUMO level of a conjugated polymer, even 

though it may end up with suboptimal band gap engineering due to the complex effect on 

the JSC and the VOC. The influence of different donor units in the donor–acceptor polymers 

based on isoindigo was investigated and discussed in Chapter 5, which is based on Paper 

III. This work emphasizes the use of isoindigo as an effective acceptor unit for designing 

active donor materials and demonstrates the potential of this class of polymers as a front 

subcell donor component in tandem devices, which combine low optical gaps (1.5–1.7 

eV), promising efficiencies and desirable open-circuit voltages (at least 0.8 V) into 

isoindigo-based polymers with PC61BM as the acceptor. Chapter 6 discussed the influence 

of conjugated bridges in the donor polymer design based on fluorinated quinoxaline 

featured in Paper IV, in which it shows replacing thiophene with thieno[3,2-b]thiophene as 

-conjugated spacers in electron donor polymers eases the solution processing for high-

performance organic photovoltaic cells without the need of additional solvent additives. 

Chapter 7 features a discussion on the effect of side-chain engineering on photovoltaic 

performance based on 2,7-carbazole and quinoxaline that originates from work presented 

in Paper V, where it was found that branched side chains on the carbazole units are 

beneficial in achieving higher VOC in the resulting devices. 

 Worth mentioning is that designing and synthesizing new building blocks is 

revolutionary to boost the photovoltaic performance of conjugated polymers and make it 

possible for future commercialization of polymer solar cells in terms of efficiency, lifetime 

and cost-effectiveness. However, to identify novel promising building blocks as well as to 

make their synthesis efficient and cost-effective need a lot of research efforts. More efforts 

will be needed to speed up this process. All of these require a superior understanding of 

material design and device design. 
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