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Summary 

Curve squeal is a strong tonal noise that may arise when a railway vehicle 

negotiates a curve. The wheel/rail contact model is the central part of prediction 

models, describing the frictional instability occurring in the contact during squeal. 

A previously developed time-domain squeal model considers the wheel and rail 

dynamics, and the wheel/rail contact is solved using Kalker’s nonlinear transient 

CONTACT algorithm with Coulomb friction. In this paper, contact models with 

different degree of simplification are compared to CONTACT within the 

previously developed squeal model in order to determine a suitable contact 

algorithm for an engineering curve squeal model. Kalker’s steady-state FASTSIM 

is evaluated, and, without further modification, shows unsatisfying results. An 

alternative transient single-point contact algorithm named SPOINT is formulated 

with the friction model derived from CONTACT. Compared to the original model 

results, the SPOINT implementation results are promising and similar to results 

from CONTACT. 

1 Introduction 

Squeal noise is a strong tonal noise that may occur when a railway vehicle 

negotiates a relatively tight curve (R<200m [1]). The curve radius at which squeal 

is expected to occur depends on the vehicle bogie wheelbase. The wheelbase and 

curve radius define the angle of attack, which is considered the main kinematic 

parameter as it defines the amount of lateral creepage that occurs between wheel 

and rail [2]. 

The wheel and rail excitation force originates from the frictional instability 

occurring in the wheel/rail contact. This instability is caused by the slip velocity 

dependent falling friction characteristic of the wheel/rail contact and/or the 

vertical/lateral dynamic coupling of the wheel and rail (modes coupling) [3]. It is 
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still not clear to what extent each of these factors contributes to the development 

of squeal, but cases where squeal is obtained either from simulations or 

experiments is reported for each cause (c.f. [3, 4, 5]) separately. Additionally, it is 

not yet fully understood which parameters affect the occurrence of curve squeal. 

It is clear that the main part of any squeal model is the wheel/rail contact 

model. From the many available rolling contact models, Kalker’s nonlinear 

transient CONTACT [6] and his linear steady-state FASTSIM [6, 13] algorithms 

are widely used. The recent time-domain squeal model developed by Pieringer [3], 

where CONTACT with Coulomb friction is used and the wheel and rail dynamics 

are included by means of Green’s functions, is one of the most detailed models 

able to simulate curve squeal. However, CONTACT is computationally expensive 

and not viable in everyday engineering practice. Other time-domain squeal 

models, mainly using simplified contact algorithms, were developed e.g. by 

Fingberg [7], Périard [8], Huang et al. [9] and Heckl [10]. However, in those 

models falling friction curves are used, and the influence of different causes of 

curve squeal cannot be identified, nor can be the influence of different rolling 

contact algorithms. 

The intention of this paper is to investigate, within Pieringer’s squeal model 

[3], the suitability of different simplified rolling contact algorithms for use in a 

computationally efficient engineering model for curve squeal. At this point all 

contact algorithms apply the Coulomb friction model, or a model derived from it. 

2 Wheel and rail dynamics 

The squeal model [3] consists of three main submodels: wheel dynamics, rail 

dynamics, and the contact model that couples the wheel and rail. In [3], Pieringer 

includes the wheel and rail dynamics by means of Green’s functions gij
 obtained 

from the wheel and rail receptances using the inverse Fourier transform. The 

wheel and rail receptances are obtained from discrete models by modal 

superposition. 

2.1 Wheel model 

The wheel model is a finite element model based on axi-symmetric elements [3]. 

The modeled wheel is a 780 mm C20 metro steel wheel with a Young’s modulus 

E = 207  GPa, Poisson ratio n = 0.3  and density r = 7860  kg/m
3
. Only the 

lateral, vertical and vertical/lateral coupling dynamics are included in the model. 

The vertical/lateral coupling arises due to the asymmetry of the wheel cross 

section. 

 

2.2 Rail model 

The rail is described with a waveguide finite element model [3]. A continuously 

supported BV50 type rail is considered with the same material parameters as the 

wheel. The rail pad is also considered with the parameters: Young’s modulus 

EP = 4.8 MPa, Poisson ratio nP = 0.45  and density rP =10  kg/m
3
. 



3 

The main difference between the wheel and rail Green’s functions is that the 

rail’s functions are moving Green’s functions. This means that the rail Green’s 

functions describe the response of the rail when the excitation point is traveling 

along the rail [3]. 

 

2.3 Dynamics response and convolution 

The dynamic response of the wheel and rail is obtained by convoluting the contact 

forces and the Green’s function of the respective body. A discrete version of the 

Green’s functions and convolution is used in the algorithms (c.f. [3]): 

 xi tk( ) = Fj t( )gij tk - t( )
j=2

3

å
t=0

tk

å = Fj tk( )gij 0( )
j=2

3

å + Fj t( )gij tk - t( )
j=2

3

å
t=0

tk-1

å ,  (2.1) 

where gij 0( )  is the first value of the Green’s function, which gives the local 

instantaneous deformation of the body due to the excitation force in the current 

time step. The gij 0( )  term can be treated as the dynamic flexibility coefficient, 

which accounts for the dynamic effects of the system [11]. The second sum on the 

right-hand side of equation (2.1) gives the dynamic response due to forces acting 

in previous time steps. The indices i, j =1,2,3 refer to the longitudinal, lateral 

and vertical directions of the contact coordinate system. 

3 Contact models 

Every rolling contact model consists of two main submodels: a normal and a 

tangential contact model. The contact model couples the wheel and rail dynamics, 

and the tangential contact model is crucial for simulating the frictional instability 

occurring in curve squeal. 

 

3.1 CONTACT 

Kalker’s CONTACT [6] consists of the non-Hertzian normal contact algorithm 

NORM and the transient tangential contact algorithm TANG. The first values of 

the wheel and rail Green’s functions are neglected, which significantly simplifies 

the algorithm. Both NORM and TANG algorithms are based on the elastic 

half-space assumption and the Boussinesq-Cerruti equations. While NORM 

determines the elements in contact, TANG determines the stick and slip regions of 

the contact area. The wheel and rail dynamic contributions are included in the 

per-element rigid shift: 

 WI1 = g x - yIgw( )Dx, WI 2 = gy + xIgw( )Dx+ x2

R -x2

R,ti -1( ) - x2

W -x2

W,ti -1( ),  (3.1) 

where g x , g y
 and gw  are the longitudinal, lateral and spin creepages, Dx  is 

the discretization element length, and xI , yI( )  the element center coordinates in 

the contact coordinate system. The dynamics of the wheel and rail are included by 

means of the current time step responses x2

W  and x2

R , and the previous time step 

responses x2

W,ti -1 and x2

R,ti -1 . 
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Both NORM and TANG are iterative active set algorithms [6]. The non-linear 

system of equations in TANG is solved using the Newton-Raphson method. 

 

3.2 FASTSIM 

Kalker’s steady-state FASTSIM [6, 13] is based on the simplified theory where 

the deformation at a point of the contact area depends only on the load at that 

point. The normal contact problem is solved using the Hertz contact theory. 

The effective, per-element, rigid slip is modified to include the dynamic 

response of the wheel and rail: 
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where Lx , Ly
 and Lw  are the flexibility parameters computed from the 

semi-axes ratio a b of the contact ellipse and the creepage coefficients Cij .  

The creepage coefficients are tabulated in [6]. 

 

3.3 SPOINT 

The single-point normal and tangential contact problems are solved 

simultaneously. The wheel and rail dynamics terms, that contain the first values of 

the Green’s functions, are included in the contact point gross slip velocity: 
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where u1  and u2 are the contact deformations in the current time step, u1

ti -1  and 

u2

ti -1  the contact deformations in the previous time step, and V the rolling 

velocity. The system of equations defining the single-point contact is: 

 F
t
+m s( )F
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= 0, t =1,2,  (3.4) 

where s= s1

2 + s2

2  is the absolute slip velocity, d3C  a constant depending on 

the ratio a b, R0  the effective radius of curvature, and x3  is the combined 

wheel/rail vertical dynamics contribution. The contact deformation is computed as 

ut = KFt , with K being the contact compliance obtained from the vertical contact 

stiffness linearized around the vertical preload. According to [12], the lateral 

contact stiffness is 20% higher than the vertical stiffness. The contact plane 

compliance is then K = K3 1.2 with K3  being the vertical contact compliance. 

The resulting system of equations is solved using the Newton-Raphson 

method. In its current formulation, SPOINT is unable to account for spin 

creepage. 
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3.3.1 Friction model 

When using a single-point contact, it is essential that the friction model is 

formulated in a stringent way in relation to the “multi-point” contact where 

Coulomb friction is applied. Therefore, for each value of the friction coefficient, 

CONTACT results are obtained for slowly linearly varying lateral creepage 

( g y =g y

lim t tend
, g y

lim = -0.05 , tend = 2s) and no wheel/rail dynamics included. 

Due to the slow change of creepage, a steady-state solution is assumed for each 

time step. The friction curve (traction coefficient) is determined as 

s=gyV, m s( ) = F2 F3 . In that way the friction model for SPOINT is obtained as 

shown in Fig.1. 

 

 
Fig. 1. Comparison of the friction model used in SPOINT and Coulomb friction for two 

values of the friction coefficient 0.3 and 0.5. RF – regularized friction; C – Coulomb. 

 

The friction model has the form of a regularized friction (RF). With increasing 

Coulomb friction in CONTACT the transition region of the RF (i.e. the region 

before the curve converges to a constant value) is extended. 

The results underline the importance to distinguish between local and global 

friction models. The local friction model applies to a single contact element (or 

particle in contact), while the global friction model applies to the complete 

contact. The discretization of the contact and the elastic half-space in CONTACT, 

as a third body between the wheel and rail, soften the friction curve for small slip 

velocities. By using the CONTACT steady-state solution as input for the friction 

model in SPOINT, this effect is accounted for in the simplified approach. The 

results also highlight the question how an appropriate friction model for real cases 

should be formulated at all. 

4 Results 

The occurrence of stick-slip oscillations, signifying curve squeal, can be 

determined from the time histories of the lateral contact force obtained from 

simulations with the squeal model. Simulations were performed for a vehicle 
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velocity of V=50 km/h and the time step length follows from the kinematic 

relationship Dt = Dx V  ( Dx = 0.5  mm). The amplitude of the lateral force 

oscillations is quantified with the lateral force level LF2  based on the root mean 

square (RMS) value of the lateral force as: 

 LF2 = 20logF2,rms, F2,rms =
1

n
F2 a( ) - F2( )

a1

a1+n

ò
2

da ,  (4.1) 

where n=1000 is the number of time samples considered, F2
 the mean value of 

the force in the considered time interval, and α is the discrete time step number.  

 

4.1 FASTSIM 

The steady-state FASTSIM, in its original formulation, seems not to be 

appropriate to simulate curve squeal. Results were not physical in all analyzed 

cases. Obviously, FASTSIM is not suitable for solving the rolling contact problem 

when the wheel and rail dynamics are included directly in the rigid slip, c.f. 

equation (3.2). However, the application of a transient algorithm based on 

FASTSIM (see e.g. [14]) could solve this problem. The inclusion of the contact 

area deformation history or previous time step tractions distribution enhances the 

simulation behavior and physical results can be obtained. However, these 

additional terms alter the original FASTSIM algorithm changing its properties and 

further investigations might be needed. 

 

4.2 SPOINT 

In Fig. 2 the CONTACT and SPOINT dynamic simulation results are shown in 

terms of the lateral force levels. Simulations were performed for different 

combinations of friction coefficient and lateral creepage values. Except for high 

friction values, very good agreement is found between CONTACT and SPOINT 

results. 

 

 
Fig. 2. CONTACT and SPOINT dynamic simulations results presented in terms of RMS 

values. The case 5 is denoted with C5. 
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Fig. 3. Lateral force time histories of case 5 ( g y = -0.01, m = 0.4) obtained with 

CONTACT and SPOINT. 

 

In Fig. 3 and Fig. 4, the time histories of a single simulation and the details of 

the occurring stick-slip lateral force oscillations are shown respectively. Very 

good agreement is found in the stick-slip oscillation details. Deviations between 

CONTACT and SPOINT results can be due to spatial and time discretization and 

the uncertainties regarding the contact longitudinal and lateral stiffnesses, which 

are a required input parameter in SPOINT. 

 

 
Fig. 4. Details of the lateral contact force oscillations due to stick-slip occurring in the 

contact for case 5. 

5 Conclusion 

Two alternative contact formulations were compared to the results of CONTACT, 

as used in [3], with respect to simulations of squealing. The contact deformation 

history, neglected in steady state FASTSIM, was shown to be crucial to obtain 

reasonable results from FASTSIM. The single-point contact showed very good 

agreement with CONTACT. This however demands that the global friction model 

is derived from CONTACT. However, in practice it might be easier to obtain such 

global friction models (e.g. from traction curves) than the local friction model for 

CONTACT. 
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