
Operation Behavior Modeling using Relation Identification
and Visualization Algorithms

Kristofer Bengtsson, Bengt Lennartson

Abstract— The behavior of a system can be described by a set
of operations − sometimes called activities or tasks. The process
to specify these operation seems to be a real challenge in various
situations, for example when designing automation systems or keeping
track of the work at an emergency department. In practice, operation
behavior specification is often quite inflexible because every possible
execution route is explicitly defined. In this paper, a modeling method
and a relation identification and visualization algorithm is introduced
that does not explicitly specify operation routes, where instead the
operation behavior is specified using the execution restrictions in
transition conditions for each operation. This enables the possibility to
create multiple projections of the operation relations to enable better
understanding.

I. INTRODUCTION

Developing new products and systems is stimulating yet chal-
lenging. Conflicting agendas and a multiplicity of perspectives
among developers and other stakeholders make the development
process intriguingly complex. This paper studies how to represent
and specify the operation behavior of a system or product, where
operations describe what the final system can do and how it is
done. The process to specify these behavior is a real challenge in
industrial practice.

The logical operation behavior of a system, which describe when
operations start, when they finish, and how they interact with
each other, results from a large number of constraints. Specifying
this behavior requires integrating high-level requirements, such
as cycle time, quality issues, and process limitations, with low-
level constraints, such as mutual exclusion, safety concerns, and
execution details. It is therefore a challenge not only to specify the
behavior, but also to understand and represent it from various levels
and perspectives. Throughout the design process the behavior model
will evolve and transform when new design decisions are made and
the understanding and knowledge are increased.

The most widespread industrial tool for specifying and mod-
eling operations is probably the Gantt chart [1], which is easy
to use and understand and intuitive to work with [2]. However,
since operations are fundamentally logical, planning using Gantt
charts alone can worsen development problems. Today, it is fairly
common for certain operation sequences to be specified early in
the development process to avoid complexity and to fit them into a
Gantt chart. Indirectly, this over specifies all operations, especially
in early development phases when it is important to retain as
much freedom as possible in terms of parallelism, and to increase
flexibility, adaptivity, and optimality. Moreover, early specification
of sequences, in order to avoid complexity, can complicate the
introduction of changes in the product or manufacturing process
later in the development process.

This lack of flexibility is also found in other operation planning
tools, such as PERT charts [3], statecharts [4], sequential function

K. Bengtsson, is with Sequence AB, Göteborg, Sweden, e-mail:
kristofer@sekvensa.se.

B. Lennartson is with the Automation Research Group, Department
of Signals and Systems, Chalmers University of Technology, Göteborg,
Sweden.

charts (SFCs) [5], Petri nets (PNs) [6], and workflow management
tools [7]. All of these attempt to describe operation behavior using
operation sequences in various ways. However, that is an inflexible
and limiting approach [8].

This paper presents a new algorithm for visualizing operation
relations, which is an extension of the work by Bengtsson et. al
[9], [10]. The algorithm requires a set of operations and their
transition conditions, together with entities, resources and vari-
ables. This enables the possibility to create multiple projections
of the operation relations to enable better understanding. This is
accomplished by creating various Sequences of Operations, SOPs,
including a multiplicity of sequences and operation relations. The
key discoveries that accomplishes this, are the state-based operation
relation identification and visualization methods. These methods
makes it possible to use the presented research not only when
designing automation systems, but also other types of situations,
like keeping track of all the patients at an emergency department.

Generating various projections throughout the design process
will give an understanding of the behavior, from initial high-level
planning to the detailed task execution, enabling the possibility to
specify operation behavior in a flexible way.

In the next section, the operation modeling is defined. In Section
III the relation identification methods are introduced and in Section
IV, the two examples are presented.

II. MODELING OPERATION BEHAVIOR

The presented modeling approach is an extension of the work by
Bengtsson et. al [9], [10] and is described in more detail in [8]. The
models can be translated into formal representations, for example
an extended finite automaton (EFA) [11], a generalized automaton
including variables, guards, and actions, and is more elaborated
in these papers. Supremica [12] is a verification, synthesis and
optimization tool that can be used with EFA models, hence, both
formal verification, synthesis and optimization can be applied
directly in the suggested EFA models.

The behavior of an operation model, O, can be represented by
the state model depicted in Fig. 1. The initial location is denoted
Oi, the executing location Oe, and the finished location Of . The
start transition between Oi and Oe has a precondition denoted by
O↑ and a postcondition O↓ on the stop transition between Oe and
Of . An operation can also be restarted but is not discussed in this
paper.

Fig. 1. A model of operation O

An operation can also be defined by a set of sub-operations
describing the detailed behavior of the operation. These operations
are included in a sequences of operations (SOP) structure, which

2013 IEEE International Conference on Automation Science
and Engineering (CASE)

MoDT1.3

978-1-4799-1515-6/13/$31.00 ©2013 IEEE 368

will be discussed later. Before presenting more details of the
operations, let us first discuss entities and resources.

A. Entities and resources
Operations describe the behavior of a system, where the system

is specified by entities and resources. Entities are objects that
need to be transformed by operations to reach a complete state.
Resources are defined as objects that aid in the transformation of
entities. Resources that can perform operations have a set of abilities
defining what type of operation they can perform, where an ability
is defined as an operation model.

An entity or a resource, E, can be represented by a tuple of state
variables, i.e., E = (xE

1 , . . . , x
E
n). A single state variable represents

a specific aspect of E, for example, a door can have a state variable
xdoor
1 , where the domain of xdoor

1 is denoted Xdoor
1 with the values

Xdoor
1 = {opened, closed}, representing the positioning aspect of

the door. A door can also have state variables representing other
aspects, for example, related to its manufacturing or whether it is
locked. Which state variables to use and what values they can take
depend on the intended use of the system model. A state variable
can also be shared among entities and resources when it represents a
shared aspect or interaction. Each operation also has a state variable
representing its location, where the domain of Ok is {Oi

k, O
e
k, O

f
k}.

The state variables for all entities, resources and operations are
included in a state vector x = (x1, . . . , xn) that include the current
value x ∈ X of every entity and resource variable and operation
location. The purpose of a system is to transform the state variables
of the relevant entities such that a goal state is reached. A goal
state can be defined by a predicate Xm : X → B that defines
desired marked values for some of the state variables. Possible
initial state(s) for the analysis is defined by a corresponding initial
predicate Xi.

B. Operation modeling using transition conditions
The pre- and postconditions, i.e., O↑ and O↓, of operation O

constitute the core of the operation. Requirements and constraints
related to the operation are specified using these transition condi-
tions. A condition C(x, x́) : X × X → B is a predicate on the
current value, x, and the next value, x́. For example O

↑
1
≡ x1 =

1∧ x́1 = 0 means that before the transition x1 must be equal to 1,
and after the transition the value must have been updated to 0. If x1

does not include 0 in its domain or another specification hinders a
change from 1 to 0, the condition will evaluate to false. A condition
can also be seen as a function that maps a state vector to a set of
new state vectors. If the function only returns the empty set, the
condition evaluates to false and if the result includes more than one
set, it represents a choice in the operation.

In the algorithm presented next, a condition is represented by
a function programmed in a programming language. It can for
example contain calls to external programs for evaluating the
condition or include knowledge about the past transition order.
However, if the operation models need to be translated to EFA
models, the function is restricted to state variables.

The modeling approach presented here is used to allow the user
to be as free as possible to express currently know design intentions.
However, to be able to work in this way, the model needs to be
visualized to be fully understood. The first step in visualizing the
operations is to identify the relations among them.

III. RELATION IDENTIFICATION

Each operation will start in its initial location and wait for
its precondition to be fulfilled. If there are no preconditions, all

operations will execute unrelated to each other. In practice, a
number of conditions will restrict this behavior. If an operation
includes the state of another operation in a transition condition, for
example, O↑

ℓ ≡ O
f

k , then the two operations are directly related.
For example, it is obvious from studying the two operations that
Ok will always execute before Oℓ. However, most operations will
not be directly related to each other, even though they are related in
some way. Consider, for example, Ok, Oℓ, and Om, where O

↑

ℓ ≡
O

f

k and O↑
m ≡ O

f

ℓ . Then Ok will always precede Om even though
this is not obvious from examining only Om and Ok; these are
indirectly related.

To understand and use the operation model, an algorithm was
presented in [9] that identifies these relations using EFA models
and the tool Supremica [12]. The algorithm can utilize the built
in functionality in Supremica for supervisory synthesis and guard
extraction [13], but faces the challenge of state-space explosion and
somewhat limited condition expressions. Therefore an alternative
algorithm is presented here.

A. Operation relations identification
To analyze and reason about the relations among operations, one

approach is to examine the possible locations of an operation, re-
lated to when other operation conditions are enabled. An operation
Ok will be located in one of its three locations when operation Oℓ

starts. By identifying the states where O
↑

ℓ is enabled, the possible

locations of Ok can be found. A set denoted O
O

↑
ℓ

k is created, which
can be one of the following seven location combinations {Oe

k},
{Of

k}, {Oi
k, O

e
k}, {Oi

k, O
f

k}, {Oe
k, O

f

k}, and {Oi
k, O

e
k, O

f

k}. For

example, if OO
↑
ℓ

k = {Of
k}, then operation Oℓ will only start when

operation Ok is in its final location.
To define the possible relations between operations Ok and Oℓ,

all four location sets, i.e., O
O

↑

ℓ

k , O
O

↓

ℓ

k , O
O

↑

k

ℓ , and O
O

↓

k

ℓ , must be

identified and compared. Observe that OO
↑
ℓ

k is the set of possible
locations of Ok when the start condition O

↑

ℓ of Oℓ is enabled, i.e.
when Oℓ has the possibility to start. The possible combinations of
these state sets can be grouped into the following relation types
(complete definition in [9]):

Definition 1 (Relations between Ok and Oℓ):
• Always in sequence: Ok ≻ Oℓ

• Sometimes in sequence: Ok % Oℓ

• Parallel: Ok‖Oℓ

• Alternative: Ok +Oℓ

• Arbitrary order: Ok ⊕Oℓ

• Hierarchy: Ok ⊏ Oℓ

• Other: Ok fOℓ

�

B. Identifying relations
To identify the relations among the operations, the state-space

must be searched in some way. One approach trying to avoid the
state-space explosion problem is to use the relation identification
Algorithm 1, which is a search-based algorithm that incrementally
updates the relations. The search algorithm will find a number of
execution paths (defined by the noOfRounds variable) from the
initial state to a goal state.

The first thing that happens during each search round is that the
state is set to the initial state. After that, all operations that are
enabled, i.e., whose transition conditions are satisfied in that state,
are identified by evaluating all operations and adding them to the
enabledOps set.

369

Algorithm 1: Find operation relations
Input: O
Result: RelationMatrix

for noOfRounds do
state = init;
enabledOps = getEnabledOps(O, state);

while not goalState(state) or enabledOps not empty do
foreach Os in enabledOps do

foreach Ot in O do
append location of Ot to
stateRelations[Os, Ot];

end
end

rOp = getRandomOp(enabledOps);
newStates = rOp.takeTransition();
newState = getRandomState(newStates) enabledOps =
getEnabledOps(O, newState);

end
end
return convert stateRelations to RelationMatrix;

The search starts with the while loop, which terminates when
either a goal state is found or no operations can be enabled in the
current state (i.e., an invalid path is found). In each iteration of
the while loop, the state relations are updated. The stateRelation
matrix stores the state of the operations related to the start and
stop events of each operation. For each enabled operation (i.e.,
either enabled start or enabled stop transition), the current states
of all other operations are appended to the stateRelation matrix.
After that, a random operation is selected from enabledOps; its
enabled transition is taken and the corresponding actions update the
state. Finally, all operations enabled after the state change are added
to enabledOps and the loop repeats. Finally in the algorithm, the
stateRelation matrix is converted into a RelationMatrix according
to Definition 1.

The pseudo code of Algorithm 1 does not reveal all aspects of
the algorithm. One aspect is how to handle invalid paths, i.e., if no
operations are enabled and the state is not marked. If an invalid
path is found, the relation matrix should not be updated during
that round. Therefore, the implemented algorithm uses a temporary
stateRelation matrix during each iteration, which updates the global
one, if the identified path is valid.

When a single path is identified, only some of the states are
added to the stateRelation matrix. Therefore, new paths need to
be found to identify when an operation is enabled. The number of
rounds needed to identify the relations is highly dependent on the
structure of the model. The algorithm can actually not guarantee
that all possible relations have been found, however, due to the
randomness of the algorithm, a good distribution is possible. The
performance is studied using three test cases.

Performance evaluation: This evaluation was run on a standard
laptop and the code was compiled to java bytecode. No warm-up
phase or other methods to find the “real” execution time was used
since the absolute time is not of focus in this evaluation. Rather, the
interesting comparison is the time differences between the various
test cases used and to find out if the algorithm only takes seconds
or minutes.

The first test case, Case1, is based on a case study conducted
during the DARPA research program Adaptive Vehicle Make [14].

The case study was part of a larger exercise in which a number
of research teams tested the interoperability of the tools developed
during the research project. The exercise involved analyzing the
manufacturability of a small remote-controlled car comprising ap-
proximately one hundred parts. The input to the relation identifi-
cation algorithm came from a language workbench developed by
Intentional Software [15], [16] and the output was generated to be
used in a planning and optimization tool that identified possible
manufacturing methods and resources for operation sequences. The
study includes 50 operations and approximately 70 variables.

The second test case Case2 is a set of completely parallel
operations, i.e. the transition condition always evaluate to true.
The last case, Case3, is a specially designed case to highlight the
limitations of the algorithm. That case is shown in Fig. 2, which is
a SOP including two sequences, where OS1, . . . , OSn have always
in sequence relations and OP1, . . . , OPn have parallel relations
(observe also that OSi‖OPj , i = 1, . . . , n j = 1, . . . , m).

Fig. 2. A SOP with two sequences representing a hard to
solve case

In the first test, 10 000 rounds were run and the execution time
and the identified relations were studied. This was repeated 20
times. Case1 completed 10 000 rounds in 13 seconds for each of
the 20 iterations. But only 50% of the cases identified all relations,
although usually only one or two pairs of operation relations was
not fully identified. When the number of iterations were increased
to 15 000, every iteration found the correct relations in around 20
seconds.

Case2 was tested using 25 and 50 parallel operations. This test
case represents a state space of 325 and 350 respectively. The 25
operations completed 10 000 rounds in 13 seconds, were each
iteration found all relations. All relations was also found when
running 50 parallel operations, but each iteration completed in as
much as 72 seconds.

The last case, Case3, had seven sequential operations (n = 7)
and 6 parallel operations (n = 6). The challenge is that when
any of the parallel operations are executed, the variable v will
be updated to 1, disabling the sequential operations. Hence, the
sequential operations must execute before the parallel operations.
10 000 rounds were executed in 0.7 seconds, but no path was found
that completed all operations, which means that no relations could
be identified. Even when the number of rounds were increased to
300 000, completed in 20 seconds, no paths were found.

When studying the execution time for the individual steps of
the algorithm, most time was spent on updating the state relations.
Each operation has two location sets for every operation (i.e. OO

↑

ℓ

k

and O
O

↓
ℓ

k) resulting in 2n2 location sets, where n is number of
operations. When all operations are parallel, also each operation
event is enabled (until it has fired), resulting in an update of all
the location sets, after each transition . This leads to an exponential
growth of execution time with the number of operations when they
are running unrelated to each other.

Next test checks the number of necessary rounds to find all

370

relations. The number of iterations is unlimited during the test,
but the iteration is terminated if the relations haven’t been updated
for the last 5000 rounds. Case1 completes in 10 000 to 17 000
iterations after finding all relations.

When executing the two sets of parallel operations in Case2,
using the 3000 round limitation, the 25 operations terminates after
average 3011 rounds and the 50 operations after 3019 rounds. Since
the last 3000 rounds were unchanged, the correct relations was
identified after just 11 and 19 rounds respectively. The algorithm
actually finds all relations of the 50 parallel operations in less then
0.2 seconds.

Search heuristics and parallel computing: As can be seen, the
algorithm is efficient to identify operation relations when many
operations are in parallel. However, problems occur in case3 when
the probability to reach the last operation in the sequence is low.
This can be handled with a search heuristic. One implemented
heuristic is applied after 1000 rounds of invalid paths, were instead
of using random search, directly related operations are executed
together. For case3, that means that the complete sequence will
be executed before starting a parallel operation. With this added
functionality, case3 is solved in less then 1 second.

Another approach when an invalid path is found, would be to start
a new local search from the last state, trying to disable events not
leading to a marked state. Then it may even be possible to synthesis
extra guards on the parallel operations, limiting them from starting
before the last operations. But this has not yet been implemented.

Another challenge is the exponential increase in time with the
number of operations when they are highly parallel. Two approaches
to handle this case have been implemented. The first approach is to
use multiple threads that finds relations and than merge the results
together. The second is to avoid updating the relation matrix if the
found relation is already in the matrix.

The algorithm is highly parallelizable since the search is random.
When the number of parallel algorithm instances are doubled, the
execution time is almost cut in half. The current implementation
runs independent algorithm instances in separate threads. After a
number of rounds, the result is sent to a unification algorithm, which
merges the results from the algorithm threads.

When parallel computing is combined with the check to avoid
unnecessary updates, test Case2 with 50 operations and 10 000
iterations completes in less than 10 seconds and the other tests
were all below 3 seconds using 10 threads on a two core computer.

The number of rounds required to find all relations is an impor-
tant property of the search algorithm. However, it is in many cases
not possible to guarantee that all relations have been found. But in
practice it is not a big problem, since the identified relations will
never be less restricted than the true relations. What that means
is that for example if the true relation is a sequential relation,
the algorithm will never find a parallel relations, but it can find
a sequence relations (or more specifically a sometime in sequence
relation) if the true relation is parallel. Observe that id the relation
is a sequential relation between two operations, it will be enough
with only one round to find the relation.

The next step is to study how the algorithm can adopt to various
model structures e.g. many parallel relations or hard to find goal
states. It may be necessary to run multiple iterations and study the
distribution of the result, to predict the accuracy of the results, and
to tune the required iterations for when the model is updated. Also
the possibility to incrementally update the operation relations on a
small change of a single operation condition needs to be be studied.

IV. VISUALIZATION EXAMPLES

When working with complex information, it is often necessary
to represent it from various perspectives to fully understand it. A
quotation from information visualization research states: “A graphic
is no longer ‘drawn’ once and for all: it is ‘constructed’ and
reconstructed (manipulated) until all the relationships which lie
within it have been perceived ... A graphic is never an end in itself:
it is a moment in the process of decision making” [17]. In this
section, two case studies are therefore presented to highlight the
possibility to create multiple projections of operation relations to
enable better understanding.

When the relations have been pairwise identified, these relations
needs to be visualized in some way. Here, a graphical language
called Sequences of operations, SOP, is used. The SOP, SOP is
a model that represents a set of operations, SOPO ⊆ O, their
relations, SOPR, and a set of sequences, SOPS . The SOPO

operations are grouped into a SOP for various reasons, for example,
that they are executed by the same resource, involved in the same
product assembly, or related to a specific safety concern. A single
operation can also be included in multiple SOPs. The main reason
for grouping these operations is to be able to consider the relations
among the included operations, which are defined by relations
SOPR = {< O1, rel, O2 >, < O1, rel, O3 >, . . ., < On, rel,
On−1 > {, where rel is a relation from Definition 1, which
represents the pairwise relation between operations. The final part
of the SOP is the sequences. Sequence s ∈ SOPS is a graph that
connects set sO ⊆ SOPO of operations to visualize their relations,
which is done using arrows, lines, and Boolean expressions.

Algorithms for creating sequences is presented in [9] together
with definition of the graphical notation. In the following section,
two examples of automatically generated SOPs in two applications
are shown. Let us start with an example from a study at an
emergency department.

A. Visualization of SOPs at Emergency departments

The possibility to use operation behavior identification and vi-
sualization in hospitals was studied at an emergency department
(ED) in Sweden, during one week. One of the most obvious
observations during the study, was the challenge for the personal
to get an overview of the patient flow, especially when the ED was
overcrowded with patients. During the peak time of the day, each of
the three medical section in that ED could have 10-15 patients at the
same time, making the work very fragmented. Getting an overview
of all these patients, not only by the personal at each section but
also the coordinators at the ED, is important both for current work
and for improvements. It is also important for the patients to better
understand what is going on and why they are waiting.

In Fig. 3 various projections are shown. The top left SOP repre-
sents the possible route for patient P1 when arriving at 11:40. On
arrival, the patient is registered and assigned an exam operation
and the alternative discharge or admittance. These are matched and
merged with resource abilities. New operations are automatically
added based on the exam transition condition, for example that
triage is needed due to overcrowding, and that the patient needs to
be transported to one of the sections.

The triage.∗ operation is marked red to show that the patient
is waiting for that task and the ∗ define that the task can be
executed by multiple resources, i.e. the task consist of the alternative
between the two operation instances triage.T1 (Triage Team 1) and
triage.T2 (Triage Team 2). This SOP will evolve with the patient,
and operations will be added and removed based on the patient’s

371

Fig. 3. Overview of Yellow section and Patient P1

examination. The SOP below shows the status at 12:20 and at the
bottom at 13:30. The green marked operations have been completed
and their start and stop time is shown below. The patient was placed
in the yellow section, which removes the other possible routes in
the first SOP.

In the 13:30 SOP, the patient is currently being examined by
doctor D1, who has just written a referral to an x-ray examination
and is currently dictating the examination. When the referral was
written two new operations were added, X-ray and check X-ray,
and based on the X-ray requirements, also to X-ray was added.
Since D1 is not currently with the patient, it is possible to start to
X-ray directly.

The SOP at the top right shows the current and coming operations
for D1. To understand why a specific operation is not started, it is
necessary to understand what the various resources are doing. The
SOP will also give the personal guidance on what to do next. But
maybe the most important projection to give an overview is the
SOP in the lower right showing the patient in each room.

It is also possible to identify why an operation is not starting
by studying its transition condition. By visualizing the relations
between the studied operation and the sequences of operations that
satisfies these condition, it is easy to understand what a patient is
actually waiting for.

B. Visualization of SOPs during product and production develop-
ment

The small toy car shown in Fig. 4 is a product assembled in
the production lab at Chalmers University of Technology. The car
consists of four sheet metal plates − a roof, E1, two sides, E2 and
E3, and a floor, E4 − and three Lego modules, E5, E6, and E7,
placed on the floor. The sheet metal plates are welded together by
the five weld entities, EW12, EW13, EW14, EW24, and EW32.

The parts are positioned and welded together, which is specified
by a set of shared state variables. These variables are updated by
six Position and five Weld operations. The relations among these
operations are shown in Fig. 5. The three Lego pieces E5, E6, and
E7 must be mounted on the floor before the roof is positioned and
welded. After that the two sides are positioned and welded, which
completes the car.

Fig. 4. A toy car developed and assembled in the production
lab at Chalmers University of Technology

Fig. 5. Product operation sequences for the toy car example.

The car is assembled by the set of resources shown in Fig. 6.
The assembly involves four robots, R1, R2, R3, and R4, a fixture,
Fix, a conveyor, Conv, and an automatic guided vehicle, AGV .
The two large robots, R1 and R2, can move parts into and out of
the fixture. They each have two tools for handling parts, i.e., one
vacuum lifter for sheet metal plates and one pneumatic gripper for
small Lego objects. The two small robots, R3 and R4, can weld, the
conveyor can transport Lego modules, and the AGV can transport
the sheet metal plates and the assembled car.

Fig. 6. The manufacturing cell in the production lab at
Chalmers University of Technology

The final generated SOP shown in Fig. 7 visualizes the final oper-
ation execution. The SOP shows a sequence projections describing
the sequences per resource. This view indicates what each resource

372

Fig. 7. The default behavior represented by sequences
structured on resources

does in the manufacturing system and how the resources interact.
In the sequence for R1, operation pos14.R1 is expanded and shows
its companion SOP. The first operation in that SOP, pickUp1.R1,
has a dashed line indicating that the operation is a preoperation.
The robot can pick up E1 before the Lego pieces have been put in
place by R2. All of the operations have sub-operations and many
of them also have these types of preoperations (not shown in the
projection).

In this SOP, we can also see that some resources jointly execute
one operation, such as fix4.R1, which is executed by Fix and
R1. This is because some of the sub-operations of fix4.R1

involve closing the clamps in Fix. Observe also that it is not
necessary to repeat the same Boolean expression twice, for example,
moveOutCar.R1 in the bottom sequences, since every sequence is
considered when representing the operation relations. For example,
it is also possible to present moveOutCar.R

↑
1
, weld12.R

f
3
∧

weld24.R
f
3
∧ weld13.R

f
4
∧ weld34.R

f
4

in a separate sequence to
avoid the long expression.

V. CONCLUSION

The problem with current specification practice of operation
behavior arises because the routing behavior is an indirect conse-
quence of the requirements to start executing an operation, which
involve, for example, the state of a resource, product, or another
operation. These operation requirements can result in many types
of routing behavior, which will be almost impossible to describe in
a graphical model. A better approach is therefore presented when
designing operations and the routing behavior.

This paper has illustrated that operation behavior specification
is a highly important activity during the design process. The The
presented algorithm makes it possibility with good performance to
generate multiple projections, which make it possible for a set-based
design approach.

The next important step is to create a good user interface and
intuitive tools. Therefore this research will continue with developing
a tool called Sequence Planner, which already has implemented
most of these methods.

ACKNOWLEDGEMENT

This work was carried out at the Wingquist Laboratory VINN
Excellence Centre within the Area of Advance Production at
Chalmers, supported by the Swedish Governmental Agency for
Innovation Systems (VINNOVA), and within the CAPE research
school, supported by the Knowledge Foundation. This work was
also supported by General Motors and SAAB Automobile. These
supports are gratefully acknowledged.

REFERENCES

[1] J. M. Wilson, “Gantt charts: A centenary appreciation,” European
Journal of Operational Research, vol. 149, no. 2, pp. 430 – 437, 2003.

[2] H. Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, Ninth Edition. J. Wiley & Sons, 2006.
ISBN 0471741876.

[3] R. Levin and C. Kirkpatrick, Planning and Control with PERT/CRM.
McGraw-Hill, 1966.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[5] IEC 61131-3:2003, “Programmable controllers—part 3: Programming
languages,” tech. rep., International Electrotechnical Commission,
2003.

[6] C. Girault and R. Valk, Petri Nets for System Engineering: A Guide
to Modeling, Verification, and Applications. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2001.

[7] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of work-
flow management: From process modeling to workflow automation
infrastructure,” Distributed and Parallel Databases, vol. 3, pp. 119–
153, 1995.

[8] K. Bengtsson, Flexible design of operation behavior using modeling
and visualization. PhD thesis, Department of Signals and Systems,
Chalmers University of Technology, Göteborg, Sweden, 2012.

[9] K. Bengtsson, P. Bergagård, C. Thorstensson, B. Lennartson,
K. Åkesson, C. Yuan, S. Miremadi, and P. Falkman, “"sequence
planning using multiple and coordinated sequences of operations",”
IEEE Transactions on Automation Science and Engineering, vol. 9,
no. 2, pp. 308–319, 2012.

[10] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K. Åkesson, “Sequence planning for integrated prod-
uct, process and automation design,” IEEE Transactions on Automation
Science and Engineering, vol. 7, no. 4, pp. 791–802, 2010.

[11] M. Sköldstam, K. Åkesson, and M. Fabian, “Modelling of discrete
event systems using finite automata with variables,” in Proc. 46th IEEE
Conference on Decision and Control, (New Orleans, USA), Dec 2007.

[12] Supremica, “http://www.supremica.org,”
[13] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic computation

of reduced guards in supervisory control,” IEEE Transactions on
Automation Science and Engineering, vol. 8, pp. 754–765, 2011.

[14] DARPA AVM, “http://www.darpa.mil/our_work/tto/programs/-
adaptive_vehicle_make__(avm).aspx,” 2012.

[15] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,”
SIGPLAN Not., vol. 41, pp. 451–464, Oct. 2006.

[16] Intentional software, “http://intentsoft.com/,” 2012.
[17] R. Spence, Information Visualization - Design for Interaction (2nd

Edition). Pearson Education, 2006. ISBN 0132065509.

373

