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[1] Traveling ionospheric disturbances (TIDs) appear as medium-scale TIDs at
midlatitudes and as polar cap patches at high latitudes. Both can have a negative impact on
Global Navigation Satellite Systems (GNSS) measurements, although the amplitude is of
tenths of a total electron content unit (TECU), 1 TECU = 1016 el m�2. Due to their spatial
extension, they affect GNSS measurements using receivers separated with distances up to
~1000 km. We present statistical measures of the ionospheric spatial variability as functions
of time in solar cycle, annual season, and time of day for different geographical locations in
Europe. In order to perform this spatial characterization of the ionosphere, we have used
archived GPS data from a 13 year period, 1999–2011, covering a complete solar cycle. We
find that the ionospheric spatial variability is larger for the northern areas than for the
southern areas. This is especially pronounced at solar maximum. For the more northern
areas, the ionospheric variability is greater during nighttime than during daytime, while for
central Europe, the variability is larger during daytime. At solar maximum, the variability is
larger during the months October and November and smaller in June and July.
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1. Introduction

[2] A medium-scale traveling ionospheric disturbance
(MS-TID) is the signature in the ionosphere of the passage
of atmospheric gravity waves, the ions being forced along
the field lines by the neutral air winds driven by the pressure
wave [e.g., Hocke and Schlegel, 1996]. The generation pro-
cess is related with meteorological phenomena like neutral
winds and the solar terminator [Somsikov, 1995].
[3] A statistical study regarding the occurrence and sea-

sonal variations of MS-TIDs at low and middle latitudes
by Kotake et al. [2006] leads to the following picture: The
MS-TIDs activity is highest at daytime during the winter
season, when the gradient of the neutral temperature near the
mesopause is so low, that the atmospheric gravity waves
can propagate. This gradient is steep in the summer season,
preventing wave propagation. The nighttime activity of the
MS-TIDs is also higher during winter. In general, the produc-
tion of TIDs at midlatitudes increases with the solar activity.
Geomagnetic storms can lead to the production of so-called
large-scale TIDs due to heating in the thermosphere at high
latitudes by the Joule effect [e.g., Jacobson et al., 1995]. This
leads to an energy transfer toward lower latitudes in the form
of thermospheric waves interacting with ionospheric ions.
[4] At high latitudes, the TIDs are also called polar cap

patches due to their location of production in the polar cap

and auroral oval. Crowley [1996] defined polar cap patches
as plasma structures with a horizontal extent of at least
100 km and a plasma density of at least twice the density of
the surrounding background plasma. Such enhancements
of the ionospheric plasma density were proposed to be
produced at the dayside at auroral and subauroral latitudes
[e.g., Weber et al., 1984]. In general, the patches are
observed to convect antisunward to higher latitudes in the
polar region [e.g., Carlson et al., 2002, 2004] and can reach
the nightside auroral oval [e.g., Lockwood and Carlson,
1992]. As the geomagnetic field lines connected to high
latitudes reach farther out in the space than field lines at
midlatitudes, the polar ionosphere is strongly impacted by
geomagnetic perturbations due to increased solar activity
[e.g., Moen et al., 2007]. The number and lifetime of polar
cap patches are expected to increase during time periods with
increased solar activity [Schunk and Sojka, 1987].
[5] It was first observed by Foster [1984], using the

Chatinka incoherent scatter radar, that the polar cap plasma
exhibits seasonal variations. This has been modeled by
Schunk and Sojka [1987]. The outcome of these studies is
that the plasma densities drawn into the polar cap are much
larger and have longer lifetime in winter than in summer.
The decreased lifetime in summer was explained by the mainte-
nance of background densities due to solar EUV radiation and
the increased recombination rates resulting from increased
ion temperatures and differences in the thermosphere comp-
osition. The seasonal effect on the polar cap patches in the
high-latitude nightside ionosphere has been confirmed by ob-
servations and modeling efforts [e.g.,Wood and Pryse, 2010].
[6] Free electrons play an important role in affecting Global

Navigation Satellite Systems (GNSS) measurements when
the signal propagates through the ionosphere [e.g., Hoffman-
Wellenhof et al., 1994]. The total integrated electron density
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along a propagation path could be on the order of hundreds of
total electron content unit (TECU), 1 TECU = 1016 el m�2. In
high-precision GNSS usage, this effect is compensated by
using observations at different frequencies. However, several
GNSS applications are sensitive to atmospheric spatial varia-
tions. Relative GNSS measurements, for example, network
Real-Time Kinematic (RTK), are very sensitive to such effects
[Emardson et al., 2010]. Thus, despite thatMS-TIDs amplitudes
are typically less than 1 TECU [Hernandez-Pajares et al.,
2006], they can have a negative impact on results obtained
from relative GNSS measurements. Due to their spatial exten-
sion, they affect GNSS measurements using receivers sepa-
rated with distances up to ~1000 km, thus including typical
sizes of RTK networks.
[7] Based on historical GPS data, it is possible to characterize

the variability of the ionosphere. In this study, we have used

13 years of GPS data from European networks to cover a
complete solar cycle. The geographical location covers both
high and middle latitudes. In this paper we have chosen
to focus on spatial scales from 500 km and downward.
Characterization is performed by using observations of the
ionospheric delay from three GNSS sites forming a triangle
in order to interpolate the ionospheric delay for the site in
the middle of the triangle. By then comparing the interpolated
time series with those actually measured, the small-scale spatial
variability of the ionosphere may be characterized.

2. Methodology

[8] GNSS data are commonly used for estimation of total ele-
ctron content (TEC) parameters [e.g., Mannucci et al., 1998].
Here we derive measures of the ionospheric spatial variability
using ionospheric delay measurements from GNSS. From
slant ionospheric delays observed at three sites forming a
triangle, we interpolate the expected ionospheric delay for
the site in the middle of the triangle. These interpolated values
are then compared to those observed. Their difference contains
information about the small-scale variability of the electron
content distribution, while larger scales are removed.
[9] We calculate the slant ionospheric delays by forming the

L4 combination of the phase observations at the two GPS
frequencies L1 and L2, φ1 and φ2, respectively, multiplied
with the respective wavelength, λ. This expression contains
information of the ionosphere, I, as well as potential
nonionospheric variations from multipath and measurement
noise, μ, receiver interfrequency L1-L2 bias, τr, satellite inter-
frequency L1-L2 bias, τs, and phase ambiguities, n, i.e.,

Θ ≡ λ1φ1 � λ2φ2 ¼ I þ nþ τs þ τr þ μ (1)

[10] In our characterization, we only use receivers where
the L1-L2 bias variation is considered to be relatively small

Figure 1. Geographical locations of the sites used for the
characterization of the ionosphere. From the three outer sites
in each triangle, we interpolate the vertical TEC in the middle
site. The difference between this value and the measured
value at the middle site contains information about the
small-scale variability of the TEC distribution. PTBB
(Braunschweig) was used replacing Potsdam during the
period 30 March 2009 to 15 February 2011.
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Figure 2. Data on solar activity from 1995 to 2012. The
different curves show monthly mean sunspot number (red),
daily solar flux (blue), and bihourly vertical TEC for latitude
60° north and longitude 15° east (green). Sunspot number
data are from http://sidc.oma.be/sunspot-data/, solar flux
data are from http://www.ngdc.noaa.gov/nndc/struts/form?
t=102827&s=4&d=8,22,9, and vertical TEC data are from
ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex/. The ver-
tical lines identify the time period used in this study.
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at constant receiver temperatures [Rieck et al., 2003]. The
satellite L1-L2 biases are, in general, considered to be
constant over several hours. The phase ambiguity offsets
are, by definition, constant over satellite passes. Hence, by
forming the mean of (1) over a satellite passage and remov-
ing it, we have an expression for the slant ionospheric delay
variations additionally containing only the contribution from
multipath and measurement noise.
[11] We use this L4 combination from the three surround-

ing sites in the triangle to interpolate an expected L4 value
at the inner site. The interpolation is performed through
bilinear interpolation in latitude and longitude. This is essen-
tially the same as fitting a plane surface to the values of
the surrounding triangle and using that information to deter-
mine the value of the inner site. We compute the difference
between the interpolated and measured L4 values. These
resulting differences are then mapped to zenith in order to
be comparable with each other. This procedure is performed
for all observed satellites. We use all these computed differ-
ences from the observations to form hourly root-mean-square
(RMS) values of the differences. The obtained values are
converted to TEC units. The expected contribution from
multipath and measurement noise is removed using a model
presented in Emardson et al. [2010] and a typical elevation
distribution for southern Sweden [Jarlemark et al., 2010].
Hence, we now have a measure that contains mainly the
vertical TEC small-scale spatial variations. This parameter
is relatively similar to the single-difference TID observation
defined by Memarzadeh [2009].
[12] The distance between the reference stations in the tri-

angles in Figure 1 varies around a mean value of ~300 km.
This described method to determine the spatial variability
in the ionosphere acts as a spatial high-pass filter on the true
vertical TEC variations. Given the sizes of the triangles, the
filtered result contains spatial variability with wavelengths
below 500 km. One could argue that removing a temporal
mean value over satellite passes as described above could
also remove TEC variability and thus produce too small
values for the spatial variability. However, the temporal
correlation of the spatially filtered TEC variations is roughly
20 min [Emardson et al., 2011] for these sizes of networks.

This time constant is likely related to the TID travel time over
the network. Hence, the average of Θ over time scales longer
than 1 h contains basically no TEC contribution. We therefore
claim that no significant component of the TEC variability is
removed in our processing.
[13] We refer to Appendix A for a more detailed description

of the methodology we have used.

3. Data Set

[14] In order to characterize the variability of the ionosphere,
we have used 13 years of GPS data from five geographical
areas in Europe. These areas span from central Europe in the
south to Svalbard in the north. Figure 1 shows the geo-
graphical locations of the sites we use in this study, thus
identifying the five geographical regions that we later refer
to in this paper. The data set spans from 1 January 1999 to
31 December 2011. This period covers at least one complete
solar cycle. Historically, these have a length of about 11 years.
However, variations in length exist, and the behavior of
the latest solar cycle indicates that it may have been longer
than average. Solar maximum was identified around 2001
and solar minimum around 2008. Figure 2 shows the solar
activity for the identified period based on three different
measurement techniques.

4. Results

[15] We have calculated hourly RMS values of TEC varia-
tions. This has been performed over five geographical
regions in Europe over a 13 year period. Figure 3 shows an
example of TEC variations for one of the regions, namely,
middle Sweden, during two separate weeks with high respec-
tive low ionospheric variability.
[16] In order to analyze long-term variations during a com-

plete solar cycle, we have derived monthly RMS values of the
TEC variability for each region. Figure 4 shows the monthly
TEC variability as a function of time for the different regions.
The variability is much higher during solar maximum than
during solar minimum, especially for northern Europe. The
variability is also, in general, larger for the northern regions.

Figure 3. TEC variations for middle Sweden, during 1 week
in 2002 and 1 week in 2008.
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Figure 4. TEC variability as a function of time. In the figure,
the variability is shown with one value per month.
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The variability at Svalbard is very high as the short-period
data are available for that region. During solar maximum, a
strong seasonal variation can be seen. The variability tend to
peak during the winter months for all regions, i.e., the vari-
ability is largest in the months of October–February and
smallest from May to August. For the more northern regions,
the variability at the winter periods can be 3 times those of
the summer periods. During solar minimum, no seasonal
variation is evident.
[17] For a shorter time period, the year 2001, we performed

a more detailed study of the statistical distribution of the
ionospheric variability. Figure 5 shows the ionospheric vari-
ability as a function of time. The four panels in the figure
show the RMS, median, 95th percentile, and 99th percentile,
respectively. Hence, the first panel in the figure contains
the same information shown for the year 2001 in Figure 4.
We can see an expected increase for the 95th and 99th
percentiles compared to the RMS variations, while much of

the structures in the first panel for the RMS are apparent in
the third and fourth panels for the 95th and 99th percentiles.
The analysis is based on the 1 h generated data as described
above, where variations have been already averaged. This
means that on a higher sampling basis, which is often used
when processing GNSS data, the variability is expected to
occasionally reach even higher values than those shown in
Figure 5 (fourth panel).
[18] In order to analyze daily variations of the TEC vari-

ability, we have grouped the data from each year by the hour
of the day. Figure 6 shows the TEC variability as a function
of the time of the day for the five geographical areas.
[19] During solar maximum, the patterns are very differ-

ent for northern and central Europe. For northern Europe,
the variability is at its maximum during nighttime and
lower at daytime, while for central Europe, the variability
is at its highest at noon. During solar minimum, the diurnal
signatures for northern Europe are not that significant.
During this period, we can also see local maxima at noon
also for this region. As we could see in Figure 4, the vari-
ability is much larger in the northern regions than in the
more southern regions during solar maximum. The results
for the north and middle Sweden areas are very similar over
the entire 13 year study period. The daily pattern in the
results from Svalbard is different from the other regions.
This may be due to the location very far north and thus
limited difference between day and night conditions. We
cannot, however, exclude that the Svalbard results are
affected by instrumentation issues. The data set we used
contained, for example, more frequent gaps than those from
the other regions.
[20] Figure 7 shows the statistical distribution of the

ionospheric variability as a function of the local time of
the day. The four panels in the figure show the RMS,
median, 95th percentile, and 99th percentile, respectively.
Similarly to Figure 5, much of the structures appear in
all panels.

0

0.5

1

1.5

2

2.5

3

3.5

2001

rms

0

0.5

1

1.5

2

2.5

3

3.5

2001

median

0

0.5

1

1.5

2

2.5

3

3.5

2001

95th
percentile

0

0.5

1

1.5

2

2.5

3

3.5

2001

99th
percentile

North Sweden
Mid Sweden
South Sweden
Central Europe

Io
no

sp
he

ric
 V

ar
ia

bi
lit

y 
(T

E
C

U
)

Figure 5. Ionospheric variability as a function of time. (first
panel) RMS. (second panel) Median. (third panel) Ninety-fifth
percentile. (fourth panel) Ninety-ninth percentile. In the figure,
the variability is shown with one value per month.
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Figure 6. Ionospheric variability as a function of the local
time of the day.
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Figure 7. Ionospheric variability as a function of the
local time of the day. (first panel) RMS. (second panel)
Median. (third panel) Ninety-fifth percentile. (fourth panel)
Ninety-ninth percentile. The figure is based on data from
2001 only.
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5. Conclusions

[21] We have presented statistical measures of the iono-
spheric spatial variability as functions of time in solar cycle,
annual season, and time of day. The analysis has been performed
for five different geographical locations in Europe studying
spatial scales below 500 km, thus capturing MS-TIDs and
polar cap patches which are normally of scales below 1000 km.
[22] In general, the results show that the variability increases

with increasing latitude. We presume that polar cap patches
dominate in the three most northern regions, while MS-TIDs
dominate in central Europe. Hence, the polar cap patches lead
to higher ionospheric variability than the MS-TIDs. The
different daily behavior of TEC variability at high and middle
latitudes is due to the fact that at high latitudes, variations
caused by geomagnetic effects dominate, while at middle
latitudes, insolation effects are more pronounced. This is
seen both from the nighttime maximum for high latitudes
(dominated by the magnetotail configuration) and the peak at
noon for midlatitudes.
[23] Polar cap patches are more intense during solar maxi-

mum than during solar minimum [Schunk and Sojka, 1987].
We see that the seasonal dependence is also much larger
during solar maximum than during solar minimum. This is
in agreement with the expected occurrence probability of
both MS-TIDs and polar cap patches, which have a reduced
lifetime during summer. Furthermore, our observations show
that the seasonal dependence is much larger for the polar cap
patches than for the MS-TIDs.
[24] The observed daily characteristics of the ionospheric

variability can be explained by the known activity pattern
of midlatitude MS-TIDs and high-latitude polar cap patches.
In central Europe, MS-TIDs dominate. Due to insolation,
these have a maximum probability of occurrence during
daytime, and thus, the variability is higher at that time. In con-
trast to that, for northern Europe, polar cap patches are the
dominating phenomena. These effects lead to high nighttime
variability during solar maximum. However, the occurrence
of polar cap patches depends much more on geomagnetic
and solar activity conditions than the MS-TIDs. Therefore,
the variability is much larger at the northern regions during
solar maximum (1999–2006). The peak at noon, usually
caused by MS-TIDs, appears also at these regions during solar
minimum (2007–2010). One can conclude that the effect of
MS-TIDs is visible at high latitudes only during solar mini-
mum, while they are dominated by the effect of the polar
cap patches during solar maximum.

Appendix A

[25] We derive measures of the ionospheric spatial vari-
ability σΔI. This measure is based on the deviation between
interpolated and true ionospheric electron contents, ΔI, at
a center of a triangle. We find ΔI by forming the L4
combination of the received signal phase and removing
nonionospheric contributions.
[26] We model the signal received by a single GNSS

receiver. The phase observed by a receiver at frequency (A)
and a frequency (B) can be described by (A1) and (A2), res-
pectively, where φ is the measured phase in fraction of cycles,
λ is the signal wavelength, ρ is the true geometrical distance

between the receiver and the satellite, N is the integer number
of cycles referred to as the ambiguity parameter, and f is the
signal frequency. δt s and δtr represent the satellite and receiver
clock errors, respectively; ℓt is the signal delay in the lower part
of the atmosphere, referred to as the troposphere; ℓi is the sig-
nal delay in the ionosphere part of the atmosphere; and μ is the
signal multipath and receiver measurement error. Thus

φA ¼ 1

λA
ρþ NA þ f A δt sA þ δtrA

� �þ 1

λA
ℓAi þ

1

λA
ℓt þ μA (A1)

φB ¼ 1

λB
ρþ NB þ f B δt sB þ δtrB

� �þ 1

λB
ℓBi þ

1

λB
ℓt þ μB (A2)

[27] We can form the combination of (A1) and (A2), using
c0 as the speed of light, as

λAφA � λBφB ¼ λAi � λBi þ λANA � λBNB þ c0ðδt sA � δt sB
þδtrA � δtrBÞ þ λAμA � λBμB (A3)

[28] This combination removes all frequency-independent
effects such as geometrical distances and signal delay in the
troposphere. A fraction of the ionospheric effect on the two
frequencies is left, however. Hence, this combination can
be used to derive information about the ionosphere, the total
electron content along the line of sight.
[29] By forming the L4 combination of the signals received

at the two GPS frequencies L1 and L2, we obtain a measure
of the slant ionospheric delay. This estimate, however, con-
tains also potential nonionospheric variations. Equation (A3)
can be written as

Θs
p ≡ κ λAφ1 � λBφ2

� � ¼ I s þ nþ τs þ τr þ μ (A4)

[30] In equation (A4), Is is the slant TEC, and κ is the scaling
factor between L4measurements and TEC. Hence, this derived
L4 combination, Θp

s, contains information of the ionosphere
as well as variations from multipath and measurement noise,
μ, receiver interfrequency L1-L2 bias, τr, satellite interfrequency
L1-L2 bias, τs, and phase ambiguities, n.
[31] In our analysis, we only use receivers where the L1-L2

bias variation is considered to be relatively small at constant
receiver temperatures [Rieck et al., 2003]. The satellite L1-L2
biases are, in general, considered to be constant over several
hours. The phase ambiguity offsets are, by definition, constant
over satellite passes. Hence, by forming the time average a{ }
ofΘp

s over a satellite passage, we can form a new variable with
the mean value removed, containing only contributions from
the ionosphere, I, and multipath andmeasurement noise, μ, i.e.,

Θs ¼ Θs
p � a Θs

p

n o
(A5)

where

a Θs
p

n o
¼ a Is þ nþ τs þ τr þ μf g ¼ I sm þ nþ τs þ τr þ μm

(A6)

[32] Characterization is performed by using observations
of the slant ionospheric delay from the three sites in a GPS
network forming a triangle in order to interpolate the
expected ionospheric delay for a site in the middle of the
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triangle. Hence, for each site in a triangle, we form the L4
(L1-L2) combination for a specific satellite observation.
We use the L4 combination from the three surrounding sites
in the triangle to interpolate an expected L4 value at the
inner site. The interpolation is performed through bilinear
interpolation in the north and east components of plane
coordinates. This is essentially the same as fitting a plane
surface to the values of the surrounding triangle and using
that information to determine the value of the inner site.
We compute the difference between the interpolated and
measured L4 values. Thus

ΔΘs ¼ Θs � Θs
i (A7)

where

Θs
i ¼ ∑

3

n¼1
anΘs

n; ∑
3

n¼1
an ¼ 1 (A8)

[33] an are the weights uniquely given by the bilinearity of
the interpolation, and n refers to the three surrounding sites.
[34] We now map the L4 deviations to zenith

ΔΘ ¼ 1

mi εð ÞΔΘ
s (A9)

where mi is the mapping function

mi εð Þ ¼ Rþ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ hð Þ2 � R2 cos2ε

q (A10)

ε is the elevation angle of the observation; R is the radius
of the Earth; and h is the height of the ionosphere, here at
400 km, represented as a thin shell. The interpolation opera-
tion and the mapping to zenith result in a ΔΘ containing the
sought ionospheric electron content deviation ΔI.
[35] We now use all available ΔΘ values from all visible

satellites during 1 h to form hourly root-mean-square (RMS)
values. We use only cycle-slip-free satellite passes that are
longer than 1 h and with the satellite observation above 20°

in elevation. The duration of the passes we use is typically a
couple of hours. Thus

σΔΘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
ΔΘ2

N

s
(A11)

[36] This RMS value contains contributions from the iono-
sphere, I, and multipath and measurement noise, μ. Since we
can assume these contributions to be uncorrelated, we can write

σ2ΔI ¼ σ2ΔΘ � σ2Δμ (A12)

[37] We now want to remove the expected contribution
from multipath and measurement noise. We use a model
presented in Emardson et al. [2010] for frequency, ω, i.e.,

σμ;ω εð Þ ¼ Cμ;ω

sin ε
(A13)

with Cμ,1 = 1.2 mm and Cμ,2 = 1.5mm. To find the multipath
contribution, we start with the L4 variance as the sum of L1
and L2 variances, rescale to zenith using the mapping func-
tion in (A10) and converted to TEC by multiplying with κ.
For a representative set of K elevation angles, εk [Jarlemark
et al., 2010], we get

σ2Δμ ¼ Cnet� 1K ∑
k

κ2 σ2μ;1 εkð Þ þ σ2μ;2 εkð Þ� �
mi

2 εkð Þ (A14)

[38] Cnet = 1+ 3/9 account for the four stations in the interpo-
lation (A7) and (A8) with uncorrelated multipath contributions.
The central station has weight 1, while we have assumed that
the three surrounding stations have weights a1= a2= a3=1/3.
[39] Using these values, we obtain

σΔμ ¼ 0:036 TECU (A15)

[40] Hence, from (A12), we obtain the sought ionospheric
spatial variability σΔI.
[41] For all five networks studied, the distances between the

reference sites are approximately 300 km. We have scaled the
results to networks with a mean reference station distance of
300 km using a scaling that is linear with distance, i.e.,

σΔI ;a ¼ da
db

σΔI ;b (A16)

where σΔΙ,a and σΔΙ,b are TEC variabilities from networks
with mean distances da and db, respectively. This linear
scaling is based on studies where we use different sizes of
triangles for interpolation [Emardson et al., 2011].
[42] In order to quantify the spatial filtering effect of our

method to obtain TEC variability measures, we performed
simulations. We propagated simulated time series of TEC
variations through the interpolation scheme described above,
separately for the different geographical networks. The TEC
variations were of different spatial scales. We found that our
method to determine the spatial variability in the ionosphere
acts as a spatial high-pass filter on the true electron density
variations. Figure A1 shows the spectral response as a func-
tion of wavelength for this filter. The wavelengths of the
simulated ionospheric variations are normalized to the mean
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Figure A1. The effective filter magnitude as a function of
wavelength. The wavelengths of the simulated ionospheric var-
iations are normalized to the mean reference station distance.
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reference station distance. The presented curve represents the
mean over all the networks and propagation directions. The
cutoff frequency is approximately 1.5 which, for our sizes
of networks, i.e., some 300 km between the reference
stations, is just below 500 km. Hence, the results presented
in this paper describe the electron density variability
containing wavelengths below 500 km.
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