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Abstract: This paper presents a supervisory control theory based offline method for1

calculating restart states in a manufacturing control system. Given these precalculated restart2

states, an operator can be given correct instructions for how to resynchronize the control3

system and the manufacturing resources during the online restart process. The proposed4

method enables restart after unforeseen errors. It is assumed that the control system is5

modeled by operations and that possible operation sequences emerge through dependencies6

between the operations. The paper shows how reexecution requirements may be included in7

the calculation to obtain a correct behavior for the restarted system. In addition, it is shown8

how to filter out restart states, that require less effort for the operator during the online restart,9

and how to adapt the nominal production to always enable restart in desired restart states.10

Keywords: Discrete event systems; restart; system recovery11

1. Introduction12

Downtime due to errors is costly in flexible manufacturing systems [1,2]. It is therefore desirable to13

perform a quick and correct recovery in order to resume the nominal production after an error. Among14

others, [3,4] see automatic error recovery as a must in todays manufacturing systems.15

Error recovery in complex systems is a complicated task [5], often divided into three major16

activities [6]: detection of discrepancies between the intended behavior and the actual behavior of a17

system, diagnosis to find the original fault causing the observed error, and recovery of the system to18

continue the nominal production. Recovery is further partitioned into error correction and restart. The19

error correction phase concerns the process to remove underlying faults and repair the resource(s) if20
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required. The restart phase, which is the focus of this paper, then covers the process to resume the21

nominal production.22

A wide variety of possible errors may cause failures in a manufacturing system. For example, a part23

may be missing in a resource, be badly positioned in a fixture, or be not enough processed. Resources24

may stop working due to faulty sensors and/or actuators, such as worn out cutting tools and broken weld25

guns. Typical manufacturing system errors are listed by [7–9], among others.26

Some errors may be foreseen and appropriate corrective actions may then be included in the control27

system, see for example [6,10,11]. Tip-dressing of the electrodes used in weld applications is an example28

of a proactive corrective action to avoid a failure [9].29

In general, however, it is impossible to foresee all errors that may occur and/or include all corrective30

actions in the control system [3]. Thus, restart after unforeseen errors is often not supported correctly or31

as efficiently as it should in relation to the potential cost of the resulting downtime.32

The control system for a manufacturing system is often based on a set of operations that are to be33

executed in order to refine a product [12]. Each operation is typically modeled by three states; an34

executing state that is preceded by a state to model that the operation has not yet started, and succeeded35

by a state to model that the operation is completed. Possible operation sequences emerge through36

dependencies between the operations [12].37

The nominal production may then be viewed as a trajectory between a composed source state where38

none of the operations have started, to a composed target state where a subset of the operations have39

completed. Each control system state on the trajectory will then model that some operations have not40

started, some operations are executing, and that the rest of the operations have completed.41

For the sake of control and supervision, the resources and the product(s) in the manufacturing system42

can be abstracted into a set of physical states. When an operation is executed, the manufacturing system43

will, typically, change between many physical states. Thus, several physical states correspond to each44

control system state. Moreover, during the nominal production, the control system state evolves in45

synchrony with the corresponding physical states.46

An unforeseen error is then a physical state that does not correspond to the current active control47

system state. Moreover, the actions required when correcting the error may force an operator to further48

corrupt the physical state during the error correction phase, such as moving a robot to a home-state.49

Thus, it is reasonable to assume that the control system and the resources are unsynchronized after the50

correction phase [13].51

The aim of the restart phase is then to resynchronize the control system and the resources [9]. This52

may necessitate to update both the active state of the control system and the physical state of the53

manufacturing system.54

As a consequence, the objective in most error recovery methods presented in the literature, is to restart55

the system such that the nominal production may continue from either an earlier, a later, or the current56

control system state with respect to the active control system state at the time of the error [8,14]. This57

state from where the control system is continued is often called a restart state [9]. Recovery in an58

earlier or a later state is often referred to as backward and forward error recovery, respectively. Flexible59

manufacturing systems enable, however, production according to multiple operation sequences [12], so60
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backward and forward error recovery are seldom well defined. Thus, the recovery concept must be61

generalized in order to handle flexible manufacturing systems with multiple operation sequences.62

When recovering the control system from an earlier state, it may be necessary to reexecute some of63

the operations [9,13,15]. However, the existence of a physical product will constrain the reexecution [7,64

9,14,16], certain reexecution requirements must be satisfied. For instance, an operation to fixate a part65

may be reexecuted as long as the succeeding refinement operation has not been started. This is in contrast66

to a glue applying operation that typically cannot be reexecuted.67

Many of the restart methods presented in the literature are tailor made for specific types of68

manufacturing systems. Body-in-white manufacturing systems in the automotive industry is the main69

application for the methods presented in [5,9,15]. The method in [17] focuses on error recovery70

connected to loading, processing, and unloading CNC machines. Error recovery for systems where a71

set of resources are linked with material handling devices and intermediate buffers are described in [7].72

A method that is suitable for, but not limited to, error recovery in batch systems is presented in [18].73

To increase the transparency, it would be beneficial with more general methods less biased towards any74

specific type of system.75

Few of the restart methods presented in the literature give a clear insight for how to systematically76

implement the theoretical ideas into a general control system for an industrial manufacturing system;77

among the exceptions are [4,5,19]. Some methods require a specific control system architecture and are78

hence not generally applicable, see for example [13,15,20].79

Overviews of different techniques used in restart methods are given in [6,9,18]. In [9], some restart80

methods are also classified according to if the main work load is online when an error has been diagnosed,81

or offline before start of production.82

Online methods, such as [4,7,8,16–21], typically gather a majority of the relevant restart information83

at the time of the error and then perform backward or forward error recovery [8]. Some methods, [16,19],84

reschedule the operations in the control system to find a new operation sequence after the error. A method85

that dynamically disables events in the control system when an error is detected is presented in [4]. Most86

industrial control systems are, however, not powerful enough for methods that require heavy calculation87

online, so such approaches contradict the industrial desire to keep the online control system simple [9].88

Methods where the main work is done offline, such as [1,9–11,13,22–25], have an advantage89

compared to online methods, not only due to the need of less powerful hardware online. Beforehand90

calculation enables different restart alternatives to be analyzed already when the production in the91

manufacturing system is planned, such that undesirable situations can be resolved if possible. This92

beforehand analysis is a big advantage for the offline methods.93

Motivated by the existing methods and their limitations, this paper presents an offline method for94

calculating restart states. The proposed method is neither tailor made for, nor limited to a specific type95

of manufacturing system or control system. The overall idea of the proposed method is related to the96

method presented in [5,9], but with some major generalizations, that will be clearly pointed out in the97

remainder of this section.98

As for all offline methods, it is assumed that the restart consists of an offline phase, where the restart99

states are calculated, and an online phase, where these states are used when the manufacturing system100

is to be restarted after an error. As in [13] it is assumed that an error can only occur when one or more101
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of the resources are used. In order to relate control system states on different operation sequences, the102

proposed method introduces the concept of upstream states which generalizes the concept of backward103

error recovery.104

To benefit from existing advances using formal methods, the proposed method is based on the105

supervisory control theory [26]. During an initial formalization part a user-given set of operations, with106

dependencies and reexecution requirements, are automatically translated into automata. The automata107

are automatically extended with transitions to model restart in all upstream states for each control system108

state where it is assumed that an error can occur. The proposed method enables alternative operation109

sequences and restart of multiple resources, and is not limited to straight sequences nor to restart of a110

single resource as in [5].111

Not all upstream states are, however, valid as restart states due to the dependencies and the reexecution112

requirements. Therefore, a supervisor [26] is synthesized for the automata and the valid restart states113

are derived from this supervisor. Any supervisor synthesis algorithm can be used and not just a114

modified monolithic synthesis algorithm as in [5]. Thus, more efficient algorithms such as compositional115

synthesis [27] and/or symbolic synthesis [28] can be used.116

When restarting the control system from a valid restart state the nominal production can start117

immediately, no reduced start-up pace is required as in [5]. Moreover, the restart states are connected118

to the control system states and not to the specific errors that have been detected. Thus, the method can119

handle restart after unforeseen errors.120

With the restart states precalculated, the online restart phase is reduced to four straightforward steps.121

First, the operator selects a restart state from the precalculated ones, which can for example be stored122

in a database connected to the control system. Second, the active state of the control system is updated123

to the selected restart state. Thus, it is assumed that a mechanism for state transition is available in the124

control system. Third, the operator places the manufacturing system in a physical state corresponding to125

the selected restart state; the operator is beneficially guided by instructions for how to reach this physical126

state. Finally, the nominal production can be (re)started by the operator.127

To simplify for an operator during the third step, when placing the manufacturing system in a physical128

state, the calculated restart states may be filtered. This paper shows filtering of restart states based on129

physical states in the manufacturing system that are easily accessible, and the restart states that minimize130

the number of resources to be placed during the restart phase.131

In addition, it is shown how to adapt the nominal production to always enable desirable restart132

states, if there is at least one operation sequence in the system where the desired state is valid. This133

is accomplished by the uncontrollability property of the supervisory control theory [26].134

The paper is organized as follows. Preliminaries are given in Section 2. Section 3 introduces an135

example upon which the results are projected throughout the paper. General online error recovery with136

focus on the restart phase is discussed in Section 4. Section 5 will thereafter present how the calculation137

of restart states is formulated as a synthesis problem, without any reexecution requirements. Filtering of138

restart states is discussed in Section 6. The reexecution requirements are then included in the calculation139

in Section 7. How to adapt the nominal production to always enable desirable restart states is presented140

in Section 8. Section 9 gives some concluding remarks and future ideas.141
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2. Preliminaries142

This section presents conventions and notations used in this paper. First, the modeling formalism is143

presented. Thereafter, this formalism is used to model the operations for a manufacturing system.144

2.1. Automata and the supervisory control theory145

Definition 1 Finite automaton A finite automaton is a 5-tuple: A :=
〈
QA,ΣA, δA, q

0
A, Q

m
A

〉
whereQA is146

the non-empty finite set of states; ΣA is the non-empty finite set of events (the alphabet); δA : QA×ΣA →147

QA is the partial transition function; q0
A ∈ QA is the initial state; and Qm

A ⊆ QA is the set of marked148

states.149

A transition 〈q, e, p〉 ∈ δA is said to be fireable when the active state of the automaton A coincide150

with the source state q. When the transition is fired the active state of the automaton A is updated151

to the target state p. Let δA
(
q, e
)
! denote that an event e is defined from a state q in an automaton152

A. The active event function ΓA : QA → 2ΣA returns the set of events defined from a state q in A,153

ΓA
(
q
)

:=
{
e ∈ ΣA|δA

(
q, e
)
!
}

.154

The set of all finite sequences of events over an alphabet ΣA including the empty sequence, ε, is155

denoted Σ∗A. An element s ∈ Σ∗A is called a string. For two strings t ∈ Σ∗A and u ∈ Σ∗A the concatenation156

tu is also in Σ∗A. The closure of a string s is denoted s∗, such that s∗ =
{
ε, s, ss, . . .

}
. The transition157

function is extended to strings, such that δA
(
q, ε
)

= q, and δA
(
q, es

)
= δA

(
δA
(
q, e
)
, s
)
. A state q ∈ QA158

is then reachable in the automaton A if ∃s ∈ Σ∗A such that δA
(
q0
A, s
)

= q.159

A language, denoted L(A), is the set of strings generated from the initial state q0
A of the automaton160

A. Given an alphabet ΣB, L
(
A
)
ΣB represents the concatenation of all strings in L

(
A
)

with all events in161

ΣB. The marked language, Lm(A) ⊆ L(A), is the set of strings generated from the initial state reaching162

a marked state. The prefix closure of the marked language, denoted Lm(A), is the set of all prefixes163

Lm(A) :=
{
t ∈ L(A)|tu ∈ Lm(A), u ∈ Σ∗A

}
.164

Interaction of two automata is modeled by full synchronous composition [29].165

Definition 2 Full synchronous composition (FSC) The full synchronous composition of two automata166

A and B is defined as C := A||B where QC := QA × QB; ΣC := ΣA ∪ ΣB; q0
C := 〈q0

A, q
0
B〉;167

Qm
C := Qm

A ∩Qm
B ; and δC

(
〈qA, qB〉, e

)
:=


〈δA
(
qA, e

)
, δB
(
qB, e

)
〉 e ∈ ΓA

(
qA
)
∩ ΓB

(
qB
)

〈δA
(
qA, e

)
, qB〉 e ∈ ΓA

(
qA
)
\ ΣB

〈qA, δB
(
qB, e

)
〉 e ∈ ΓB

(
qB
)
\ ΣA

undefined otherwise

168

The supervisory control theory (SCT) [26] is a model-based framework for automatic calculation of169

discrete event controllers. Given a system to be controlled, a plant P , and the intended behavior, a170

specification Sp, a supervisor S may be synthesized, such that the behavior of P ||S always fulfills Sp.171

In terms of languages L
(
P ||S

)
⊆ L

(
P ||Sp

)
and Lm

(
P ||S

)
⊆ Lm

(
P ||Sp

)
. The supervisor is both172

non-blocking and controllable [26].173

Non-blocking: The supervisor S guarantees that at least one marked state may be reached from every174

state in the system P ||S. This liveness property may formally be expressed as: Lm
(
P ||S

)
= L

(
P ||S

)
175
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Controllable: In SCT, a subset of the events Σu
P ⊆ ΣP is said to be uncontrollable. The supervisor176

S is never allowed to disable an uncontrollable event that might be generated by the plant P . With the177

assumption that ΣS ⊆ ΣP , this safety property may formally be expressed as: L
(
P ||S

)
Σu
P ∩ L

(
P
)
⊆178

L
(
P ||S

)
179

Moreover, the supervisor is minimally restrictive, meaning that the plant is given the greatest amount180

of freedom to generate events without violating the specification. To facilitate the modeling, both the181

plant and the specification are often given as a set of automata that communicate through FSC. In the182

following, it is thus assumed that the system is modeled by several plants and specifications.183

The focus of this paper is on calculating how a control system can be restarted. This problem is184

solved through synthesis of a supervisor and succeeding interpretation of the generated supervisor. Thus,185

any synthesis algorithm can be used to calculate the supervisor. In the following, the supervisor for186

P ||Sp is assumed to be given as S = CNB
(
P ||Sp

)
, where CNB represents any synthesis algorithm.187

However, to facilitate the interpretation it is assumed that the supervisor is characterized through guard188

extraction [28].189

In the guard extraction all controllable events are appended with a guard. Each guard is a boolean190

function that maps a state in P ||Sp to either true or false. A transition is said to be enabled by the191

supervisor if the guard for the labeling event is true in the source state of the transition.192

Note that, the algorithm for guard extraction proposed in [28] confronts the state-space explosion193

problem by using a symbolic representation of the full synchronous composition of the plants and the194

specifications. A user enters a set of automata and the supervisor is returned as a set of guards for the195

controllable events. Thus, guard extraction gives a concurrent model of modular automata.196

A controllable event is termed an always enabled event if all transitions that are labeled by the event197

and having source states that are reachable in the supervised system are enabled by the supervisor. In198

contrast, the event is termed a sometimes enabled event if some but not all these transitions are enabled199

by the supervisor.200

Guard extraction and the event terminology are exemplified on the supervisor for the two automata201

P1 and P2 in Figure 1. Marked states are shaded in gray and all events are controllable. The automaton202

P1||P2 is the FSC of P1 and P2. Since the state q25 is blocking it is removed in the supervisor S =203

CNB
(
P1||P2

)
. Thus, in P1||P2 only the two transitions 〈q03, a, q14〉 and 〈q03, b, q14〉 are enabled by the204

supervisor.205

In this example, the single always enabled event is a since one of the two transitions that are labeled206

by a in the FSC is enabled by the supervisor and the source state for the other transition is not reachable207

in the supervised system (the supervisor). The event b is sometimes enabled because only one of the208

two transitions having source states that are reachable in the supervised system and are labeled by b in209

the FSC is also enabled by the supervisor. The guard for b is not satisfied in the state q14. The disabled210

events c and d are neither always nor sometimes enabled.211

Forbidden state combinations will be used in Section 5 to model the (un-)desired behavior. In [30] a212

method based on uncontrollability is presented for how to specify states locally in a set of automata such213

that the combination of these states are never reached in the supervised system. In the following, it is214

assumed that this or a similar method is used to encode given forbidden state combinations into the SCT215

framework.216
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Figure 1. The events a and b are always and sometimes enabled events, respectively.

q0 q1 q2

q3 q4 q5

q03 q14 q25

q03 q14

a,b b
a,c

b b,d

a,b b,d
a,c

a,b
P1

P2

P1||P2

S

2.2. Model of the system217

In this paper, the control system for a manufacturing system is based on a set of operations, denoted Ω.218

These operations model the processes and tasks that are to be executed in order to refine a product. The219

basic assumption is that all operations are executed in parallel. This parallel execution of the operations220

can be restricted by dependencies.221

The manufacturing system contains a set of resources, denotedR. It is the resources that (physically)222

realize the operations. The resources required to realize an operation k ∈ Ω is denoted Rk, such that223

Rk ⊆ R.224

To better understand how the different dependencies affect the relations between the operations,225

it is beneficial to visualize subsets of operations from Ω in different projections [31]. Examples of226

such projections are the operations related to the main product flow or the operations realized by a227

specific resource. Throughout this paper, the graphical language Sequences of Operations introduced228

in [12] is used for the visualization of operations. Each visualization is referred to as a sequence of229

operations (SOP).230

An operation k ∈ Ω may formally be modeled by an automaton, a so called operation automaton.231

Definition 3 Operation automaton The automaton for an operation k is denoted Ak where QAk :=232 {
ik, ek, ck

}
; ΣAk :=

{
k↑, k↓

}
; δAk :=

{
〈ik, k↑, ek〉, 〈ek, k↓, ck〉

}
; q0

Ak
:= ik; and Qm

Ak
:=
{
ik, ck

}
.233

The automaton Ak is illustrated in Figure 2. The three states denote that the operation is initial (not234

started), executing, and completed, respectively. The two events in ΣAk are called operation events.235

Figure 2. An operation k modeled by an automaton Ak.

ik ckekk↑ k↓

Given the automaton for a single operation, the FSC of all automata for the operations in Ω can be236

defined. Note that, from a practical point of view an explicit representation of the complete state-space237

during synthesis is to be avoided.238

Definition 4 FSC of operation automata The FSC of all automata for the operations in Ω is defined as:239

AΩ := ||k∈Ω Ak.240

The operation progress for a system may then be given through the states in AΩ.241

Definition 5 Operation progress For each state q ∈ QAΩ
, three disjoint sets for the operation progress,242

the set of operations in their respective initial, executing, and completed state, denoted Ωi
q, Ωe

q, and Ωc
q,243
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are defined as:244 
Ωi
q :=

{
k ∈ Ω|ik ∈ q

}
Ωe
q :=

{
k ∈ Ω|ek ∈ q

}
Ωc
q :=

{
k ∈ Ω|ck ∈ q

}245

The relation between an executing operation and the history of operation progress is captured by the246

definition of upstream states for an operation.247

Definition 6 Upstream states for an operation Let Qek
AΩ

:=
{
q ∈ QAΩ

|k ∈ Ωe
q

}
be the set of states in248

AΩ where the operation k executes. For a state p ∈ Qek
AΩ

, a state u ∈ QAΩ
is upstream of operation k if249

∃s ∈ Σ∗AΩ
such that δAΩ

(
u, s
)

= p, and Ωe
u ∩ Ωc

p = ∅, and k ∈ Ωi
u.250

It follows from Definition 3 that each operation automaton contains a straight sequence of operation251

events and because the two states p and u must be connected through a string of operation events, all252

operations that are initial in the state p are initial in the upstream state u. With the same argument, the253

operations that are executing in p can either be initial or executing in u except for the operation k that254

is required to be initial in u. Moreover, the empty intersection in Definition 6 adds a requirement on the255

completed operations in p, they cannot be executing and must therefore be initial or completed in u.256

3. Illustrating example257

Throughout this paper, the proposed method for calculating restart states is illustrated by the example258

introduced below.259

Example 1 A manufacturing system comprises three resources, R =
{
R1, R2, R3

}
, and its control260

system is modeled by seven operations, Ω =
{
A,B,C,D,E, F,G

}
. The dependencies between the261

operations are visualized in different projections in the SOPs in Figures 3 and 4. The three SOPs in262

Figure 4 show which resources that realize the different operations.263

Figure 3. Dependencies between the operations in Example 1.

A

B
C

D E F
Bc

G

In the language Sequences of Operations, the dependencies between operations may be visualized264

both with expressions and graphical notations [12]. An arrow visualizes a precedence dependency. As265

an example, operation E cannot start before operation D is completed. The expression Bc is also a266

visualization of a precedence dependency, that operation F cannot start before operationB is completed.267

The double bar visualizes that the two branches, starting with operations D and B, may execute in268

parallel, when operation A is completed. An alternative dependency is visualized by a single bar, thus269

only one of the operations C and G may execute. The double dashed bars (see Figure 4) visualize270

arbitrary order dependencies (mutual exclusion). All operations in each branch shall execute, but no271

branches execute in parallel.272
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Arbitrary order dependency is used to model resource allocation. Each resource can realize one273

operation at a time. Resource allocation and deallocation takes place in the first and in the last operation,274

respectively, in each branch. As an example, resource R1 is allocated when the operations A, C, and275

E start and is thereafter deallocated when the operations B, C, and E complete. Thus, resource R1 is276

allocated in the state where A is completed and B is initial.277

Figure 4. Arbitrary order dependencies for resource allocation in Example 1.

A

B
C E

R1

D

E

F

R2

A G

R3

4. Error recovery in a manufacturing system278

This section presents error recovery in a manufacturing system. It is shown how restart states are279

used online after an error has been detected and corrected, and the system is to be restarted. The offline280

calculation of restart states is described in Section 5.281

4.1. The nominal production282

Let the control system for a manufacturing system be modeled by a set of operations Ω. The nominal283

production, i.e. production according to the original production plan, can then be represented by strings284

of operation events, see Figure 5 where si ∈ Σ∗AΩ
. In the absence of errors, the production is given as an285

element in
{
s1s3, s1s4s5, s2s5

}
, between an initial state, denoted u, where none of the operations have286

started to a completed state, denoted z, where a (user-defined) subset of the operations have completed.287

Let x denote an error state and v and w denote restart states. The event σ is a general placement event.288

Error states, restart states, and placement events are explained later in this section.289

Figure 5. The production described by strings.

u

v

w

x
z

s1

s2

s3s4

s5s6

s7

σ

σ

4.2. Control system states and physical states290

A control system state is a state q ∈ QAΩ
and is thus a composition of operation states. Similarly291

to an automaton, at all times during the production, a single control system state is active in the control292

system. When the operations are executed, the active state of the control system is updated.293
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For the sake of control and supervision, the resources and the product(s) in the manufacturing system294

are abstracted into a set of physical states. A physical state is thus capturing the current position of295

products and which of the resources that are idling, but disregards if for example a fan in a control-cabinet296

is on or off and the age of the resources.297

Typically, many physical states correspond to each control system state. During the nominal298

production, the control system state evolves in synchrony with the corresponding physical states. The299

connection between control system states and physical states (pi) is illustrated in Figure 6 and is further300

discussed in the remainder of this subsection. The dashed transitions and the physical state pe will be301

explained later in this section.302

For clarity of presentation, the connection between control system states and physical states is first303

discussed with respect to the hypothetical case that the control system is modeled by a single operation304

and is thereafter discussed with respect to the realistic case where the control system is modeled by305

multiple operations.306

In the hypothetical case that the control system is modeled by a single operation k, the states of the307

control system coincide with the states of k. Initially the control system state is i. No product refinement308

has started and all resources in the manufacturing system are idling. Thus, the manufacturing system309

is modeled by the single physical state. Therefore, for this hypothetical case, p0 to p4 denote the same310

physical state in Figure 6. When the operation k is started, the active state of the control system is311

updated to e. During execution of the operation, the manufacturing system will change between many312

physical states. The states p5 to p9 illustrate such physical states corresponding to the current control313

system state. When the operation k is complete, the active state of the control system is updated to c.314

Since the product refinement is complete, the manufacturing system is once again modeled by a single315

physical state. Thus, p10 to p12 denote the same physical state.316

Figure 6. Mapping between states for an operation k, bottom, and physical states, top. σk is
a placement event for k.

i cek↑ k↓

σk

p0
p1

p2

p3

p4

p5

p6
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p8
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p10

p11

p12

pe

σk

k↑ k↓
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In the realistic case where the control system is modeled by multiple operations, the operation k in317

Figure 6 illustrates one of the operations in the control system. For this case, the illustrated states i, e,318

and c are operation states in k and not control system states. A subset of the operations in Ω are executed319

before and after the execution of operation k, respectively. Thus, the manufacturing system will change320

between several physical states when these other operations are executed, whilst k is initial and complete.321

In Figure 6, this is illustrated by the several physical states corresponding to the states i and c.322

4.3. Detection, diagnosis, and correction of errors323

The online error recovery starts when an error is detected through some diagnostic procedure and the324

system is stopped. As in [13] it is assumed in this paper that the error can only occur when one or more325

of the resources are realizing operations. Thus, at least one operation in Ω is in its executing state. It is326

therefore assumed that the error may be linked to one error operation that uses the faulty resource(s) for327

its execution.328

An error may then be seen as a physical state of the manufacturing system that does not correspond329

to the executing state for the error operation. In Figure 6 such a non-corresponding physical state is330

denoted pe. A control system state containing the executing state for the error operation is referred to as331

an error state. An error state is denoted by an x in Figure 5.332

After the detection and the diagnosis phases, the manufacturing system is to be corrected. As pointed333

out in [9], errors that cannot be foreseen often require manual intervention during the correction phase.334

It may sometimes be advantageous to place a faulty resource in a state that facilitates correction. Thus,335

it is reasonable to assume that the physical state after the correction phase does not correspond to the336

control system state in the stopped manufacturing system. Thus, the control system and physical system337

are unsynchronized [9].338

Mechanisms to detect, identify, and correct errors are outside the scope of this paper. In the following339

discussion, it is therefore assumed that such mechanisms exist in the manufacturing system. Detection340

and diagnosis are among others discussed by [32] and [33].341

4.4. The restart phase342

After the correction phase, the manufacturing system is to be restarted in order to continue the nominal343

production. Since neither the error nor the physical state after the error are known beforehand [9], the344

aim of the restart phase is to place the manufacturing system into a physical state and update the control345

system to a control system state from where the production may continue and eventually complete. Such346

a control system state is referred to as a restart state.347

As a consequence of an error, the intended execution may not have been performed. Thus, it may be348

desirable to reexecute, at least, the error operation. Therefore, only restart in states upstream of the error349

operation is discussed in this paper.350

As already mentioned, the online restart phase consists of four steps. First, the operator selects a351

restart state from the set of precalculated restart states for the error operation. Second, the active state of352

the control system is updated to the selected restart state. Third, the operator places the manufacturing353
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system in a physical state corresponding to the selected restart state. Thereafter, the nominal production354

may be (re)started by the operator.355

This paper follows the terminology in [9] and terms the processes in the second and the third steps356

placement. Thus, placement implies that the active state of the control system is updated from an error357

state to a restart state and that the manufacturing system is placed in a physical state corresponding to358

this restart state, see Figure 6. Throughout this paper, placement is graphically represented by dashed359

transitions labeled by σ, or σk when the placement is connected to a specific (error) operation k. This360

connection between placement and error operations is thoroughly explained in the next section. In361

general, as will also be seen in the next section, an operation will have several restart states, where each362

state has a corresponding physical state. This multiplicity is reflected in the two placement transitions363

for the physical states in Figure 6.364

For the general error state x in Figure 5, placement in two types of restart states may be possible;365

restart states that are reachable and unreachable from the initial state using strings of operation events,366

denoted v and w, respectively. Regardless of the type, a restart state is always upstream from the error367

operation and enables the nominal production to continue and eventually reach z.368

Finally, let the letters and strings in Figure 5 constitute states and events for an automaton A where369

q0
A = u and Qm

A =
{

z
}

. The set of possible production sequences in the production plan may then be370

given as the marked language Lm(A).371

Note that, in the special case of a straight production sequence, without parallelism and alternatives,372

there exist no strings s6 and s7 and the strings s2 and s3 coincide with s1s4 and s4s5, respectively. The373

production plan is then given as s1s4

(
σs4

)∗
s5, and is the single type of production plan that is possible374

in [5]. Thus, the proposed method is more general and is not limited to straight production sequences.375

5. To calculate restart states376

This section presents how to offline calculate restart states for the given set of operations Ω respecting377

their dependencies and reexecution requirements. As indicated in Section 4.3, it is assumed that an error378

can only occur if at least one operation is executing. All control states containing at least one executing379

state are therefore considered as potential error states, and analogously, the executing operations in380

these states are potential error operations. Moreover, from Section 4.4, to make up for the possible381

unperformed refinement due to an error only the upstream states of an error operation are to be evaluated382

as restart states.383

Respecting these two intentions, the overall idea in the proposed method is to model restart in384

upstream states from potential error states by transitions in an automata model of the control system,385

so called placement transitions. However, due to the dependencies and the reexecution requirements,386

not all upstream states can be used as restart states. Therefore, a supervisor [26] is synthesized for the387

automata and the valid restart states for each potential error state can then be derived as the target states388

for the placement transitions that are enabled by the supervisor. These valid restart states can thereafter389

be used online as described in the preceding section.390

It is fruitful to see the automata model of the control system as a composition of three submodels.391

First, a nominal model that describes the nominal production in the manufacturing system. Second,392
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a placement model that models the restart. Finally, a reexecution model that describes reexecution393

requirements on the operations. For clarity, synthesis is first discussed without the reexecution model.394

The reexecution model is thereafter included in the supervisor synthesis in Section 7.395

It is quite common in graph based restart methods to include additional error states and/or396

augmentations for recovery procedures, see for example [3,8,15,25,34]. Augmentations will most likely397

increase the state-space of the models. As indicated in Figure 6 and explained in this section, the398

automata used in this method have no explicit error states. The purpose of the models for the offline399

analysis is only to capture how the control system states may be updated and not why, thus no additional400

states are necessary.401

5.1. The nominal model402

The nominal model consists of two automata that are synchronized, AΩ and Anom. From Definition403

4, AΩ = ||k∈Ω Ak. The automaton Anom models the dependencies between the operations. Since404

each dependency will be modeled by a single specification automaton, Anom is the full synchronous405

composition of all these automata. The proposed method supports three types of dependencies:406

precedence, alternative, and arbitrary order. In addition, a user can also specify which operations that407

are forced to complete in order for the product refinement to be complete.408

Figures 3 and 4 show the three types of dependencies graphically in the language Sequences of409

Operations. The operations in these SOPs will be used throughout this section to illustrate how the410

different types of dependencies are modeled by automata. Moreover, the automata can be generated411

automatically given the dependencies between the operations.412

As will be seen, the dependencies are modeled by forbidden state combinations, introduced at the413

end of Section 2.1. Using forbidden state combinations guarantees that only the placement transitions414

having target states that are valid with respect to all dependencies are enabled by the supervisor. If this415

aspect was not respected, the supervisor could allow restart states, through the placement transitions,416

from where additional restart is the only possible outcome; this is of course to be avoided.417

5.1.1. Precedence dependency418

The precedence dependency between the two operations D and E, see Figure 3, where419

D is to be executed before E, may be modeled by four forbidden state combinations as:420 {
(eE, iD), (eE, eD), (cE, iD), (cE, eD)

}
. When D is initial or executing, E has to be initial. E may421

leave its initial state, only when D has completed.422

5.1.2. Alternative dependency423

The alternative dependency between the two operations C and G, see Figure 3, may be modeled424

by four forbidden state combinations as:
{

(eC , eG), (eC , cG), (cC , eG), (cC , cG)
}

. When one of the425

operations starts to execute, the other must remain initial.426

An alternative between a set of operations O ⊆ Ω, is then modeled by an alternative dependency427

between each pair in the set O. In total (|O| binomial 2) pairs are required.428
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5.1.3. Arbitrary order dependency429

The arbitrary order dependency between the two operation sets
{
A,B

}
and

{
C
}

, see430

the leftmost SOP in Figure 4, may be modeled by seven forbidden state combinations as:431 {
(iA, eB, eC), (iA, cB, eC), (eA, iB, eC), (eA, eB, eC), (eA, cB, eC), (cA, iB, eC), (cA, eB, eC)

}
. The com-432

binations require that bothA andB have to be initial or completed whenC is executing, and the opposite,433

that C has to be initial or completed when A and B are not both initial or completed. Note that, the434

combinations add no dependency between A and B.435

Arbitrary order dependencies between multiple operation sets, as in the SOP for R1 in Figure 4, is436

modeled by an arbitrary order dependency between each pair of the operation sets.437

5.1.4. Forced to complete438

In the generic operation automaton, Definition 3, both the initial and the completed states are marked.439

The supervisor is non-blocking, thus by removing the marking from the initial state, the operation is440

forced to eventually reach its completed state in the synthesized supervisor.441

To force one of the operations in an alternative to complete, this removing of marking does not442

work. Instead the forcing can be modeled through a specification automaton. Figure 7 illustrates such443

an automaton for the case when one of the operations C or G, in Example 1, is forced to complete.444

The effect of the automaton is that no states comprising both iC and iG will be marked, thus one of the445

operations must complete.446

Figure 7. Specification for forcing one of the operations C or G to complete.

q0 q1C↑,G↑

5.2. Nominal model for Example 1447

The four SOPs in Figures 3 and 4 constitute the dependencies for the system in Example 1. Table 1448

shows how the dependencies are modeled by forbidden state combinations. Rows 1-7, 8, and 9-12 model449

precedence, alternative, and arbitrary order dependencies, respectively.450

To capture that the operations {A,B,D,E, F} are forced to complete, the marking is removed from451

the initial state in the corresponding five automata. As indicated, to capture that one of the operations C452

or G are forced to complete, the specification automaton in Figure 7 is added to Anom.453

5.3. The placement model454

The placement model is the nominal model extended with additional transitions, so called placement455

transitions. The construction of these placement transitions builds on the definition of upstream states,456

Definition 6. The intention with each placement transition is to reset to their initial states a potential457

error operation plus a subset of non-initial operations in the potential error state. The active state of the458

control system is thereby updated to an upstream state with respect to this potential error operation.459
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Table 1. Forbidden state combinations to model the dependencies for Example 1.

1 (eB, iA), (eB, eA), (cB, iA), (cB, eA)

2 (eD, iA), (eD, eA), (cD, iA), (cD, eA)

3 (eC , iB), (eC , eB), (cC , iB), (cC , eB)

4 (eG, iB), (eG, eB), (cG, iB), (cG, eB)

5 (eF , iB), (eF , eB), (cF , iB), (cF , eB)

6 (eE, iD), (eE, eD), (cE, iD), (cE, eD)

7 (eF , iE), (eF , eE), (cF , iE), (cF , eE)

8 (eC , eG), (eC , cG), (cC , eG), (cC , cG)

9 (iA, eB, eC), (iA, cB, eC), (eA, iB, eC), (eA, eB, eC),

(eA, cB, eC), (cA, iB, eC), (cA, eB, eC)

10 (iA, eB, eE), (iA, cB, eE), (eA, iB, eE), (eA, eB, eE),

(eA, cB, eE), (cA, iB, eE), (cA, eB, eE)

11 (eC , eE)

12 (eA, eG)

To calculate all restart states that are valid with respect to the dependencies and the reexecution460

requirements, the placement model must contain the placement transitions such that all potential error461

operations in all potential error states are connected with all possible upstream states. With such a model,462

synthesis can be performed to derive the valid restart states as the target states to the placement transitions463

that are enabled by the supervisor.464

The set of possible upstream states for each (potential error) operation k ∈ Ω is correlated to the set465

of non-initial operations that can be reset to initial together with k. Let this set be denotedO ⊆ Ω \
{
k
}

.466

For each pair
(
k,O

)
, a unique controllable event, a so called placement event, denoted σk:O is created.467

The reset to initial for k and the operations inO is then accomplished by adding placement transitions468

labeled by σk:O to the corresponding operation automata. As pointed out in Section 4, it is assumed that469

the potential error operation is in its executing state when an error occurs. Thus, the reset to initial of k470

is therefore modeled by a transition 〈ek, σk:O, ik〉 that is added to the transition function δAk .471

In order for the operations in O to be upstream after the reset to initial, they have to be non-initial472

in the potential error state. The reset of each operation k′ ∈ O is therefore modeled by two transitions473

〈ek′ , σk:O, ik′〉 and 〈ck′ , σk:O, ik′〉 that are added to the transition function δAk′ .474

In the global automaton seen by a synthesis algorithm these locally added placement transitions will475

synchronize, due to the FSC, and result in a set of placement transitions. All transitions in this set will476

have the same target state, the upstream state that is to be evaluated as restart state for the potential error477

operation k.478

In the following, let Aσk and AσΩ denote the automata Ak and AΩ extended with placement transitions.479

The set of placement events defined for an operation k is denoted Σσ
Aσk

, where Σσ
Aσk
⊂ ΣAσk

, and the set480

of all defined placement events is denoted Σσ
AσΩ

, where Σσ
AσΩ
⊂ ΣAσΩ

, such that σk:O ∈ Σσ
Aσk
⊆ Σσ

AσΩ
. If481

all placement events are constructed, |Σσ
AσΩ
| = |Ω| × 2|Ω|−1. Given Ω, the placement transitions can be482

constructed automatically and added to the operation automata.483
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Finally, the modeling of placement transitions is illustrated with the operations B and D from484

Example 1. There is no dependency between B and D. Let ADB = AD||AB. For clarity, only the485

placement transitions for D are considered.486

Since 2{B,D}\{D} = {∅, {B}}, the placement events for D are Σσ
AσD

= {σD, σD:B}. Where σD models487

reset of just D and σD:B models reset of both D and B. Note the simplification in the indexes, if O is488

the empty set then it is removed and if it is non-empty then is written as a sequence of the elements. The489

automaton AσDB is shown in Figure 8. The state indexes are left out.490

Figure 8. Parallel execution of operations B and D. Placement transitions for D are dashed.
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σD σD
σD:B

σD:B

Operation D executes in the three states in the middle row of the automaton in Figure 8. Reset of just491

D is allowed in all three executing states, the transitions labeled by σD. Reset of both D and B is only492

allowed when B has started. Thus, the transitions labeled by σD:B can be fired from the two rightmost493

executing states for D.494

5.4. Synthesis of restart states495

Given the nominal model extended with placement transitions, the restart states that are valid with496

respect to the dependencies are calculated through synthesis of a supervisor. Synthesis may be seen as a497

sieve that filters out the restart states that break at least one dependency.498

Let the supervisor be denoted Ars, such that Ars = CNB (AσΩ||Anom). It is possible that the499

dependencies modeled by Anom are too strict so that no supervisor exists [26]. In the following500

discussion, it is therefore assumed that Ars exists.501

An operation k ∈ Ω is coupled to its restart states by placement transitions, where each transition is502

labeled by a placement event σk:O. Guard extraction [28] is used to find the transitions that are enabled503

by the supervisor. The target states of the placement transitions that are labeled by always and sometimes504

enabled events are the restart states that are valid with respect to the dependencies.505

A transition that is labeled by an always enabled placement event can always be fired when the active506

state of the automaton AσΩ||Anom coincides with the source state for the transition. A transition that is507

labeled by a sometimes enabled placement event can, on the other hand, only be fired when the active508

state of AσΩ||Anom coincides with the source state for the transition and the guard for the event is satisfied509

in this state.510

The modified synthesis algorithm presented in [5] does not preserve the state dependent behavior for511

the placement events. Instead, all sometimes enabled placement events are always disabled. The method512
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presented in this paper appends the state dependency to the placement event through the extracted guard,513

and thereby retains the flexibility to restart even in these cases.514

5.5. Restart states for Example 1 only based on dependencies515

Let Aex = CNB
(
AΩ||Anom

)
and Ars = CNB

(
AσΩ||Anom

)
then |QAex | = 42 and |QArs | = 44, thus516

the introduction of placement transitions introduces more states in the system. Inspection of Ars shows517

that one of the two new states is used as a restart state. The state has 12 incoming placement transitions.518

Note that, this type of restart state is denoted by a w in Figure 5. Moreover, ΣArs contains 90 always and519

sometimes enabled placement events.520

Since the specification automaton in Figure 7 contains operation events, it has to be extended with521

placement transitions, as shown in Figure 9, to enable that the concerned operations can be restarted. In522

Figure 9, Σσ
AσC

and Σσ
AσG

denote the placement events defined for C and G, respectively. Σσ denotes all523

placement events where C or G are among the operations to be reset, that is Σσ =
{
σk:O|C ∈ O ∨G ∈524

O
}

.525

Figure 9. Specification in Figure 7 extended with placement transitions.

q0 q1C↑,G↑

Σσ
AσC

,Σσ
AσG

,Σσ

6. To filter out simplifying restart states526

Synthesis of the nominal model extended with placement transitions will result in all restart states527

that are valid in the control system. Despite the fact that a control system state is a valid restart state, it528

can be hard, and thereby time consuming, for an operator to place the manufacturing in a corresponding529

physical state. Therefore, this section presents two offline approaches for how to filter out restart states,530

from this set of valid restart states, where the process to place the manufacturing in a corresponding531

physical state requires less effort from the operator.532

In the first approach, the number of resources to be moved during the restart phase is kept at a533

minimum. In the second approach, all resources that are affected by the restart are placed in physical534

state corresponding to home-states.535

6.1. To only affect resources of the error operation536

To simplify for an operator online, the method in [5] aims to calculate the restart states such that only537

the resources used to realize the error operations are to be affected in the placement.538

It is straightforward to filter out these states. The single requirement is that, all operations that are539

reset in a placement transition must only be realized by resources also realizing the error operation. For540

a general placement event σk:O, it is then required that O = {k′|Rk′ ⊆ Rk}.541
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6.2. Restart from home-states542

A resource is considered to be in a home-state when none of the various operation sequences that543

it can realize are executing. Due to this non-execution, it is assumed that the resource is idling in the544

corresponding physical states. It is also assumed that it is rather straightforward for an operator to place545

the resource in such an idling configuration.546

To simplify for an operator, it may therefore be reasonable to filter out the restart states that restart547

the resources from home-states. Let the control system states corresponding to the home-states for each548

resource r ∈ R be given as Qr
AσΩ
⊆ QAσΩ

.549

Let qe ∈ QAσΩ
and qrs ∈ QAσΩ

denote an error state and its restart state for a general placement550

transition 〈qe, σk:O, q
rs〉 ∈ δAσΩ . Moreover, let Rk:O := Rk ∪

(⋃
k′∈ORk′

)
denote the set of resources551

affected by the placement. Thus, these are the resources that are to be moved to home-states during the552

placement, if they are not already in a home-state.553

The state qrs is a home-state for the resources inRk:O if qrs ∈ Qr
AσΩ
∀r ∈ Rk:O. From Section 5.3, the554

operation k and the operations in O are reset to initial with the placement transition, thus ik ∈ qrs and555

ik′ ∈ qrs ∀k′ ∈ O. Then, in order to satisfy the home-state condition for the restart state qrs, knowing that556

the operations in {k} ∪̇O are reset to initial, the placement transition should only be fired from the states557

qe where the remaining operations, Ω \ ({k} ∪̇O), are in operation states such that qrs is a home-state558

for the resources inRk:O.559

This requirement on the error state may be modeled by an extra home-state condition for when each560

placement transition can be fired. Given the connection between the operations and the home-states for561

the resources, it is possible to derive these home-state conditions automatically.562

6.3. Home-states in Example 1563

In Example 1, it is assumed that a resource is in a home-state if none of the branches in the564

corresponding arbitrary order SOP is active, see Figure 4. Thus, as an example, the home-states for565

resource R1 correspond to the control system states QR1
AσΩ

=
{
q|
((
iA ∈ q ∧ iB ∈ q

)
∨
(
cA ∈ q ∧ cB ∈566

q
))
∧
(
iC ∈ q ∨ cC ∈ q

)
∧
(
iE ∈ q ∨ cE ∈ q

)}
.567

Given this definition of a home-state, the home-state condition for the transition labeled by the568

placement event σE:CD is discussed for demonstration. The resources to be restarted from home-states569

are deduced from Figure 4, this gives RE:CD = {R1, R2}. The operations E, C, and D will be reset to570

initial by the placement transition. Thus, conditions have to be added for the remaining operations that571

affect these two resources, that is the operations A, B, and F . Neither E, C, nor D are included in the572

leftmost branch of the SOP for R1. Thus, A and B have to be both initial or both completed. In the SOP573

for R2, F is included in the same branch as E and D, thus F has to be initial since both E and F are574

reset to initial.575

Formally this home-state condition can now be expressed as: To place the resources R1 and R2 in576

home-states, the placement transitions labeled by σE:CD can only be fired from the states q such that577

δAσΩ
(
q, σE:CD

)
! and

((
iA ∈ q ∧ iB ∈ q

)
∨
(
cA ∈ q ∧ cB ∈ q

))
∧ iF ∈ q.578

7. To add reexecution requirements579
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The reexecution requirements constrain how many times and under what circumstances an operation580

in Ω may be reexecuted. This section demonstrates some examples of such reexecution requirements581

and how each requirement can be modeled by a specification automaton in order to be included in the582

supervisor synthesis. By instantiating each reexecution requirement from a type library, it is possible to583

generate each specification automatically. Reexecution requirements other than those presented in this584

section can, of course, also be included, as long as the requirement can be modeled by automata.585

As defined in Section 5, the full synchronous composition of all specification automata modeling586

reexecution requirements is called the reexecution model and is denoted Are. The reexecution587

requirements do not drive the system, thus all states are marked in the reexecution model, that is588

Qm
Are

= QAre . In the following, Ars = CNB
(
AσΩ||Anom||Are

)
.589

As part of the demonstration, three reexecution requirements are placed on the system in Example590

1. A filtered subset of the corresponding always and sometimes enabled placement events are given in591

Table 2.592

The placement events in Table 2 are filtered according to the two approaches presented in Section593

6. The placement events that only affect the resources used to realize the error operation, Section 6.1,594

are shaded in dark gray. The events that model placement of the resources in home-states, Section 6.2,595

have no shade. The placement events that follow both approaches are shaded in gray. Always enabled,596

sometimes enabled, and disabled placement events are marked by ∀, ∃, and −, respectively. Column597

n shows the filtered placement events that are enabled by the supervisor when there are no reexecution598

requirements on the system in Example 1, Section 5.5.599

7.1. Number of reexecutions600

The upper limit for how many times an operation may execute is often connected to the type of601

process modeled by the operation. Fixation and transport of a product are examples of operations that602

may typically be reexecuted. Glue applying processes, on the other hand, can typically not be reexecuted.603

Without any reexecution requirement, each operation may execute an arbitrary number of times. A604

specification for how to constrain operation B to enable zero reexecutions is shown to the left in Figure605

10. B is then said to be non-reexecutable. A specification for how to constrain an operation K to enable606

at most two reexecutions is given to the right in Figure 10.607

Figure 10. Specifications that operation B cannot be reexecuted and that operation K can
be reexecuted at most two times.

q0 q1 q0 q1 q2 q3B↑ K↑ K↑ K↑

Column B in Table 2 shows the always enabled placement events for the system in Example 1 when608

operation B is non-reexecutable. As expected, only events that do not reset operation B are enabled.609

7.2. Constrained reexecution610
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Table 2. In white: placement in home-states, in dark gray: placement that only affect
resources in error operation, and in gray: placement in home-states that only affect resources
in error operation.

n B D F S n B D F S
1 σA ∀ ∀ ∀ ∀ ∀ 25 σE:B ∃ - ∃ ∀ ∃
2 σB ∀ - ∀ ∀ ∀ 26 σE:BC ∀ - ∀ - ∀
3 σB:A ∃ - ∃ ∃ ∃ 27 σE:BCD ∀ - - - ∀
4 σB:AD ∀ - ∃ ∀ ∀ 28 σE:BD ∃ - ∃ ∀ ∃
5 σC ∀ ∀ ∀ ∀ - 29 σE:C ∀ ∀ ∀ - -
6 σC:AB ∃ - ∃ - ∃ 30 σE:CD ∀ ∀ - - -
7 σC:ABD ∀ - - - ∀ 31 σE:D ∀ ∀ ∃ ∀ ∀
8 σC:ABDE ∀ - - - ∀ 32 σE:DG ∀ ∀ - - -
9 σC:ABDEF ∀ - - - ∀ 33 σF ∀ ∀ ∀ ∀ ∀

10 σC:B ∃ - ∃ - ∃ 34 σF :ABCDE ∀ - - - ∀
11 σC:D ∀ ∀ - - - 35 σF :ABDE ∃ - ∃ ∀ ∃
12 σC:DE ∀ ∀ - - - 36 σF :ABDEG ∀ - - - ∀
13 σC:DEF ∀ ∀ - - - 37 σF :CDE ∀ ∀ - - -
14 σD ∀ ∀ ∃ ∀ ∀ 38 σF :DE ∀ ∀ ∃ ∀ ∀
15 σD:A ∀ ∀ ∃ ∀ ∀ 39 σF :DEG ∀ ∀ - - -
16 σD:AB ∃ - ∃ ∀ ∃ 40 σG ∀ ∀ ∀ ∀ -
17 σD:ABC ∀ - - - ∀ 41 σG:AB ∃ - ∃ - ∃
18 σD:ABG ∀ - - - ∀ 42 σG:ABD ∀ - - - ∀
19 σD:C ∀ ∀ - - - 43 σG:ABDE ∀ - - - ∀
20 σD:G ∀ ∀ - - - 44 σG:ABDEF ∀ - - - ∀
21 σE ∀ ∀ ∀ ∀ ∀ 45 σG:D ∀ ∀ - - -
22 σE:ABCD ∀ - - - ∀ 46 σG:DE ∀ ∀ - - -
23 σE:ABD ∃ - ∃ ∀ ∃ 47 σG:DEF ∀ ∀ - - -
24 σE:ABDG ∀ - - - ∀

Constrained reexecution of an operation is often connected to the processing level of a product. For611

example, predecessor operations to an assembly operation can usually not be reexecuted if the assembly612

has started.613

The specification in Figure 11 models a requirement where reexecution of operation D should be614

prevented when one of the operations C or G has started. If D is the first operation to execute, then the615

active state of the automaton is updated from q0 to q3. In q3 neither C nor G has started, thus D may616

be reexecuted arbitrarily many times. Once C or G starts to execute, the active state of the automaton is617

updated from q3 to q2. D may not be reexecuted in q2. If C or G is the first operation to execute, then618

the active state of the automaton is updated from q0 to q1. From the reexecution requirement, start of C619

or G prevents D to be reexecuted. Therefore, only a single (the nominal) start of D is enabled from q1.620

Column D in Table 2 shows always and sometimes enabled placement events when the specification621

in Figure 11 is added to the system in Example 1. Restart of the system according to the placement events622
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Figure 11. Specification that operation D cannot be reexecuted if operation C or G has
started.

q0 q1

q2q3D↑
D↑ C↑,G↑ C↑,G↑

C↑,G↑
C↑,G↑

D↑

that affect the operations D, and C and/or G will reset D to initial. Once C or G has started, D may not623

be reexecuted. The completed state is the single marked state in D, thus in order to be non-blocking, the624

supervisor has to disable these placement events. Thus, all placement events that affect D, and C and/or625

G are marked as disabled in column D in Table 2.626

The placement events that affect D but not C or G are marked as sometimes enabled in Column D.627

The extracted guards for these events require that neither C nor G has started. Thus, the transitions that628

are labeled by these events can only be fired when q3 is the active state of the automaton in Figure 11.629

7.3. Set of reexecuted operations630

Another type of reexecution requirement is to demand that resetting an operation requires that a set631

of other operations should also be reset. For example, reseting an operation to fill a vessel could require632

that an operation to clean the vessel must also be reset.633

A requirement that all operations in O′ ⊂ Ω are to be reset when an operation k′ ∈
(
Ω \ O′

)
is reset634

may be modeled by a specification that disables the placement events that reset k′ without resetting all635

of the operations in O′.636

Thus, if k′ is reset by a placement transition labeled by an event σk:O, that is k′ ∈
({
k
}
∪̇O
)
, then the637

specification should block this event if O′ 6⊆
({
k
}
∪̇O
)
, since otherwise the requirement is not satisfied.638

Column S in Table 2 shows always and sometimes enabled placement events when there is a639

requirement that operation B has to be reset if operations C or G are reset. As expected, Column S640

is a copy of Column n where all placement events that affect C or G but do not reset B, are removed.641

7.4. Requirements on branches in alternatives642

The proposed method supports reexecution requirements to constrain which alternative branches that643

are enabled in the restarted system. A constraint that the first started branch always has to be chosen644

during restart may be modeled by a specification as in Figure 12.645

Let the two operations C and G in the alternative in Example 1 be used for demonstration. Figure 12646

shows a specification that models that the first selected branch is always chosen in the restarted system.647

If C is the first operation to start then the active state of the automaton is updated from q0 to q1. Only C648

is allowed to reexecute in state q1. Similarly for G in state q2.649
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Figure 12. Specification for the alternative operations C and G.

q0q1 q2C↑C↑ G↑ G↑

A somewhat similar requirement is to disable a subset of alternative branches in the restarted system.650

This type of requirement may for example be used to disable automatic inspection in favor of manual651

inspection in the restarted system.652

Figure 13 shows such a specification for an alternative between four operations
{
P,Q,R, S

}
, where653

two, R and S, are disabled in the restarted system. The active state of the automaton is updated from q0654

to q1 when any of the four operations starts. Only P and Q may reexecute in state q1.655

Figure 13. Specification for disabling operations R and S in a restarted system.

q0 q1
P ↑,Q↑,R↑,S↑ P ↑,Q↑

8. To adapt a system for restart656

As pointed out in Section 5.4, a transition that is labeled by a sometimes enabled placement event657

can only be fired when the active state of the automaton AσΩ||Anom||Are coincides with the source state658

of the transition and the guard for the event is satisfied in this state. If a sometimes enabled placement659

event models a desirable restart alternative, such as restart in a home-state, it can be valuable to adapt660

the nominal production to always enable this event.661

This section shows how the nominal production may be adapted such that placement events that are662

sometimes enabled in the supervisor become always enabled. This adaptation can be performed using663

the uncontrollability property of the SCT [26]. The sometimes enabled event that should be always664

enabled is regarded as uncontrollable and the synthesis is repeated.665

The uncontrollability forces the supervisor to only allow states and transitions such that all transitions666

that are labeled by the selected uncontrollable placement event and having source states that are reachable667

in the supervised system become enabled. In this adapted system, the selected placement event is always668

enabled. Thus, the corresponding restart alternative is then always eligible. The system can therefore669

always be restarted in the desired restart state.670

Note that, transitions labeled by placement events that are disabled by the synthesis cannot be enabled671

through this feature. These transitions can only be enabled through modifications of the dependencies672

and/or the reexecution requirements.673

8.1. To adapt the system in Example 1674
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To demonstrate adaptation, assume that the placement event σF :DE models a desirable restart675

alternative for operation F . The event, at row 38 in Table 2, is sometimes enabled when operation676

D has a constrained reexecution requirement, see Column D.677

By regarding σF :DE as uncontrollable and repeating the synthesis, on the original model, the system678

with constrained reexecution of operation D is adapted to always enable σF :DE from the states where679

F executes, and D and E are non-initial. The always and sometimes enabled placement events in the680

adapted system are shown in Column F in Table 2.681

As expected, transitions labeled by σF :DE are enabled by the supervisor. In the adapted system,682

operations C andGmay only start when operation F has completed. Thus, the adapted system has fewer683

states. Moreover, all placement events that affect operations C or G and at least one more operation are684

always disabled (rows 6, 10, 26, 29, 41). This is a consequence of the requirement to always enable685

reexecution of operation D as long as operation F has not completed.686

The fewer states in the adapted system causes many of the sometimes enable placement events other687

than σF :DE to become always enabled (rows 4, 14, 15, 16, 23, 25 28, 31, 35). This is an indirect688

consequence of the adaptation to make σF :DE always enabled.689

9. Conclusion690

An offline method for calculating restart states for control systems modeled by operations has been691

presented. The derived restart states are states in the control system that can be used for restart692

guaranteeing that the dependencies and the reexecution requirements for the operations are followed in693

the restarted system. The method enables support to an operator during the online restart, which is then694

reduced to a process where the operator updates the active control system state to a precalculated restart695

state and thereafter places the manufacturing system in a physical state corresponding to the selected696

restart state. The restart states are calculated such that the nominal production may continue directly697

after the operator involvement, without any reduced start-up pace.698

The method is based on the supervisory control theory. The focuses are on modeling operations,699

dependencies, reexecution requirements, and restart by automata and how to deduce restart states from700

the synthesized supervisor. The synthesis may for example be performed in Supremica1 where it is also701

possible to characterize the supervisor as guards for the events. The automata generated for Example 1702

are freely available2.703

Future research are concerned with practical aspects. Prototype implementations have shown that it704

is computationally efficient to preprocess the set of placement transitions to include in the synthesis.705

Therefore, it is currently investigated how the number of placement transitions to include in the model706

can be decreased while still guaranteeing that all restart states are eventually calculated in the synthesis.707

Moreover, the overall restart concept presented in this paper has been implemented and validated in a708

manufacturing system, containing two six-axis robots, in the Production Systems Laboratory at Chalmers709

University of Technology3. Through this proof of concept implementation, required control system710

1A tool for formal verification and synthesis of discrete event systems. www.supremica.org
2http://dl.dropbox.com/u/2720019/AutomataModelsForSevenOps.wmod
3http://www.chalmers.se/en/areas-of-advance/production/laboratories/psl
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augmentations as well as beneficial operator support can be studied in more detail. The generated insights711

are valuable for future development of restart and error recovery.712
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