Life cycle assessment during early development stage of a new bio-ethanol production process

Matty Janssen & Anne-Marie Tillman

Division of Environmental Systems Analysis
Department of Energy & Environment
Chalmers University of Technology
Göteborg, Sweden

October 23, 2013

Outline

Introducti

Connet

Resul

Conclus

Outline

- 1 Development of a high-gravity biofuels production process
- 2 Straw-based ethanol production
- 3 Results for straw-based ethanol production
- 4 Conclusion

Introduction

Cases

Resi

Conclus

High-gravity production of biofuels

- Second generation biofuels using wood and wheat straw
- Economically feasible process → High gravity fermentation
 - Lower water use
 - Difficulties with mixing
 - High concentrations of end products and inhibitors

Introduction Case str

Results Conclusio

High-gravity production of biofuels

- Second generation biofuels using wood and wheat straw
- Economically feasible process → High gravity fermentation
 - Lower water use
 - Difficulties with mixing
 - High concentrations of end products and inhibitors
- Use LCA along the process development path
 - To improve and/or optimize the process from an environmental life cycle point-of-view
 - To help guide the technology development by providing stakeholders the environmental hotspots during all stages

Outline Introduction

Case stud

Result

Conclusi

Technology development and scale

- Development "stages" with respect to system boundaries¹
 - Process step → Scale-up of equipment
 - Process complex → Optimization of the complete process
 - lacktriangle Value chain ightarrow Inclusion of the upstream and downstream processes

M. Shibasaki and S. Albrecht. Proceedings of European Congress of Chemical Engineering (ECCE-6), 2007, p. 5.

Outline Introduction Case study Results Conclusio

Technology development and scale

- Development "stages" with respect to system boundaries¹
 - \blacksquare Process step \rightarrow Scale-up of equipment
 - Process complex → Optimization of the complete process
 - lacktriangle Value chain ightarrow Inclusion of the upstream and downstream processes
- Time and scale in technology LCA²
 - Shifting time frame → Room for technical development, affects performance data, perhaps functional unit
 - Change in background system related to time and scale of penetration

¹ M. Shibasaki and S. Albrecht. Proceedings of European Congress of Chemical Engineering (ECCE-6), 2007, p. 5.

² K. M. Hillman and B. A. Sandén. International Journal of Alternative Propulsion 2.1 (2008), pp. 1-12.

Outline Introduction Case study

Results

Process alternatives and base case

- Inbicon's IBUS process³ in Kalundborg, Denmark
 - Feedstock is wheat straw
 - Hydrothermal pretreatment

³ J. Larsen, M. Østergaard Haven, and L. Thirup. *Biomass and Bioenergy* 46 (2012), pp. 36–45.

Outline

oduction Case study

study Res

Process alternatives and base case

- Inbicon's IBUS process³ in Kalundborg, Denmark
 - Feedstock is wheat straw
 - Hydrothermal pretreatment
- Industrial-scale evaluation using raw lab data
 - Process calculations done in spreadsheet
 - Experimental set-up → 33 process options
 - Type of enzyme
 - Process configurations
 - Enzyme load
 - Solids content in the reactor
 - Additive to increase enzyme activity
 - Base case experiment

³ J. Larsen, M. Østergaard Haven, and L. Thirup. Biomass and Bioenergy 46 (2012), pp. 36–45.

Case study

Inventory analysis for straw-based ethanol production

Cultivation and harvest

Introduction Case study

Canalysi

Inventory analysis for straw-based ethanol production

Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Outline Introduction Case study Results Conclusio

Inventory analysis for straw-based ethanol production

Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Hydrolysis & fermentation

- Differences in conversion efficiency
- Yield as basis for mass balance

ction Case study

Resul

Canalysis

Inventory analysis for straw-based ethanol production

Cultivation and harvest

Preparation and pretreatment

- Conditions: p=15 bar, T=195 °C
- Lignin used as energy source

Hydrolysis & fermentation

- Differences in conversion efficiency
- Yield as basis for mass balance

Downstream processing

- Heat duty in distillation varies little at higher ethanol concentration
- Lignin used as energy source

Introductio

Case stud

Results

Conclus

Results for 30% dry matter content

SSF - Simultaneous Saccharification and Fermentation PSSF - Pre-Saccharification and Simultaneous Fermentation SHF - Separate Hydrolysis and Fermentation

Results

Results for 30% dry matter content, PEG added

PSSF - Pre-Saccharification and Simultaneous Fermentation SHF - Separate Hydrolysis and

Results for 20% dry matter content

SSF - Simultaneous Saccharification and Fermentation PSSF - Pre-Saccharification and Simultaneous Fermentation SHF - Separate Hydrolysis and Fermentation

Outline Introduction Case study

Results

Conclu

Energy flows in process options

Outline Introduction

Case:

Results

Conclus

Change in energy mix over time

Base case (yield = 92%) - 10% DM, 7.5 FPU Highest yield (yield = 89%) - 30% DM, 7.5 FPU, PSSF, PEG addition Lowest yield (yield = 38%) - 30% DM, 5 FPU. SSF

Fossil share in energy mix:

- 2009: 80%
- 2020: 67%
- 2030: 50%

Outline Introduction Case study Results Conclusion

Conclusion

- Related to the case study results
 - Enzyme use has a significant impact
 - Several trade-offs can be identified that influence environmental impact
 - Energy analysis provides additional information about the process options

Outline Conclusion

Conclusion

- Related to the case study results
 - Enzyme use has a significant impact
 - Several trade-offs can be identified that influence environmental impact
 - Energy analysis provides additional information about the process options
- Related to scale-up
 - Equipment scale-up → Use data of industrial scale processes with similar characteristics
 - Complete system scale-up → Increased use of biomass
 - Level of detail needed at a very early development stage

Introduction

Case study

Results

Conclusion

THANK YOU

Any questions?