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Harmonic regressor: Robust solution
to least-squares problem
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Abstract
A new robust and computationally efficient solution to least-squares problem in the presence of round-off errors is pro-
posed. The properties of a harmonic regressor are utilized for design of new combined algorithms of direct calculation
of the parameter vector. In addition, an explicit transient bound for estimation error is derived for classical recursive
least-squares algorithm using the Lyapunov function method. Different initialization techniques of the gain matrix are
proposed as an extension of the recursive least-squares algorithm. All the results are illustrated by simulations.
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Introduction

Recursive least-squares (RLS) algorithms in which an
estimate of the inverse of the information matrix is
updated recursively are widely used in many applica-
tions such as adaptive control, signal processing, system
identification and others.1 One of the main drawbacks
of RLS algorithms is a round-off error accumulation
problem, which in turn has a direct impact on the esti-
mation performance and even on system stability.2–4

This problem might be solved via a frequent initializa-
tion of the gain matrix to the inverse of the information
matrix. However, a computational burden associated
with the inversion of the information matrix for large-
scale systems is the main obstacle for implementation
of this technique.

The periodic nature of a wide class of machines
results in oscillations in their signals. The model of oscil-
lating signals can be presented in the vector form with a
harmonic regressor, which consists of trigonometric
functions (sines and cosines) at different frequencies.5

The information matrix of harmonic regressor, which is
defined as the sum of rank 1 matrices calculated via mul-
tiplication of the regressor column vector by its trans-
pose with a corresponding weighting sequence is a
strictly diagonally dominant (SDD) matrix.6 Strict diag-
onal dominance of the information matrix is used in this
article for improvement of robustness of RLS algo-
rithms in the presence of round-off errors. The least-
squares problem is solved via direct calculation of the

parameter vector with an SDD information matrix. This
solution is preferable for large-scale systems (for signals
with a large number of frequencies), where high accu-
racy of calculation of the coefficients is required. One of
the algorithms for direct calculation of the coefficients
of the trigonometric polynomial is reported in Stotsky.6

However, the convergence of algorithm described in that
study6 might be slow. A new class of algorithms (high-
order algorithms) for direct calculation of the para-
meters with improved convergence rate is proposed in
this article.

Moreover, a new combination of the matrix inver-
sion technique with a recursive algorithm of direct
parameter calculation is also proposed in this article.
This combination represents a two-stage algorithm,
where an SDD information matrix is rapidly inverted
with a certain (relatively low) accuracy at the first
stage. Notice that the convergence rate of the matrix
inversion algorithm is much higher than the conver-
gence rate of the recursive algorithm of direct calcula-
tion of the parameters. Therefore, the matrix inversion
algorithm is used in the initial steps. Further
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calculations of the inverse of an SDD information
matrix give a minor contribution to the improvement
of accuracy. A recursive algorithm for direct calcula-
tion of the parameter vector with improved conver-
gence rate (high-order algorithm) is used in the second
stage, and finally delivers the parameter vector with
high accuracy. Simulations of new algorithms showed
significant improvement of the estimation performance
compared to well-known RLS algorithms in the pres-
ence of round-off errors.

Classical RLS algorithms are also studied in this
article. Explicit transient bound for estimation error is
derived using an assumption about positive definiteness
of the gain update matrix. It is shown that the gain
matrix, which is recursively updated, might be initia-
lized differently to extend the capabilities of the recur-
sive algorithm. It is also shown that RLS algorithm can
be seen as a modification of the Kaczmarz projection
algorithm, where the inverse of gain matrix is a positive
definite and SDD matrix.

Main contributions of this article can be summarized
as follows:

� A new class of high-order algorithms with improved
convergence rate for direct calculation of the para-
meters in the least-squares problem;

� A new combined matrix inversion algorithm and
recursive algorithm of direct parameter calculation;

� Explicit transient bound for estimation error in
RLS algorithm;

� A new estimation algorithm in a form of RLS algo-
rithm with an SDD gain matrix.

The article is organized as follows. The problem
statement is presented in section ‘‘Problem statement.’’
New properties of RLS algorithms are described in sec-
tion ‘‘RLS algorithms.’’ New recursive algorithms of
direct calculation of the parameter vector are presented
in section ‘‘Recursive algorithms of direct calculation
of the parameter vector.’’ Combined algorithms are
presented in section ‘‘Combined recursive algorithms.’’
The article ends with brief comparisons and conclu-
sions in section ‘‘Other methods and conclusion.’’

Problem statement

Suppose that a measured oscillating signal yk can be
presented in the following form

yk ¼ uT
ku�+ jk ð1Þ

where uk is the harmonic regressor and u� is the vector
of constant unknown parameters, which are defined as
follows

uT
k ¼ 1 cos q1kð Þ sin q1kð Þ cos q2kð Þ sin q2kð Þ . . .½

cos qrkð Þ sin qrkð Þ� ð2Þ
uT
� ¼ u0� u1� u2� u3� u4� . . . uð2r�1Þ� uð2rÞ�

� �
ð3Þ

where k ¼ 1; 2; . . . is the step number; qi i ¼
1; 2; . . . ; r are the frequencies; and jk is a zero mean
white Gaussian noise.

The model of the signal (1) is presented in the follow-
ing form

ŷk ¼ uT
kuk ð4Þ

with adjustable parameters

uT
k ¼ u0k u1k u2k u3k u4k . . . uð2r�1Þk uð2rÞk

� �
ð5Þ

Minimization of the performance index

Ek ¼
Xk
j¼1

bj yj � ŷj
� �2 ð6Þ

where bj is a weighting sequence, results in the follow-
ing least-squares solution

uk ¼
Xk
j¼1

bjuju
T
j

" #�1Xk
j¼1

bjujyj ð7Þ

Assigning weighting factor to one in step k and to l0 in
the previous steps, the equation (7) can be written as
follows

uk ¼ A�1k bk ð8Þ

Ak ¼ l0

Xk�1
j¼1

uju
T
j

" #
+uku

T
k ð9Þ

bk ¼ l0

Xk�1
j¼1

ujyj

" #
+ukyk ð10Þ

where the matrix Ak is information (Hessian) matrix,
and 0\ l0 \ 1 is a forgetting factor, k ¼ 2; 3 . . ..

In order to calculate the parameter vector uk, this
information matrix should be inverted in each step k.
This is a computationally expensive procedure, if the
size of the parameter vector is large. This matrix is an
SDD matrix for a sufficiently large k and forgetting
factor, which is close to one,7 that facilitates matrix
inversion and allows direct calculation of the parameter
vector.

RLS algorithms

Algorithm description and transient bound on
estimation error

RLS solution of equation (8) with Gk ¼ A�1k can be
written as follows1

uk ¼ uk�1 +
Gk�1uk

l0 +uT
kGk�1uk

yk � uT
k�1uk

� �
ð11Þ

Gk ¼
1

l0
Gk�1 �

Gk�1uku
T
kGk�1

l0 +uT
kGk�1uk

� �
" #

ð12Þ

The properties of the systems (1), (4), (11) and (12) are
summarized in the following Lemma.
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Lemma. Consider the systems (1) and (4) with jk ¼ 0
and recursive estimation algorithms (11) and (12).
Assume that the following inequalities for the inverse
of the gain matrix are valid

0\ a1I4G�1k 4a2I ð13Þ

where a1 and a2 are positive constants and I is the iden-
tity matrix. Then the following bound for estimation
error ~uk ¼ uk � u� is valid

k ~uk k4

ffiffiffiffiffiffiffiffiffiffiffi
lk
0V0

a1

s
ð14Þ

where V0 ¼ ~uT0 G�10
~u0 and ~u0 ¼ u0 � u�

Proof. The following relations are valid for algorithms
(11) and (12)

G�1k ¼ l0G�1k�1 +uku
T
k ð15Þ

~uk � ~uk�1 ¼ �
Gk�1uku

T
k

l0 +uT
kGk�1uk

~uk�1 ð16Þ

uku
T
k
~uk ¼

l0uku
T
k

l0 +uT
kGk�1uk

~uk�1 ð17Þ

where equation (15) follows from relation (9), equation
(16) follows from relation (11) and finally equation (17)
follows from relation (16) when multiplying relation
(16) by uku

T
k .

The performance of RLS algorithm is evaluated
using Lyapunov function candidate Vk ¼ ~uTkG�1k

~uk,
which can be written as Vk ¼ ~uT

k ðl0G�1k�1 +uku
T
k Þ~uk.

Taking into account equations (16) and (17), the first
difference is evaluated as follows

Vk � Vk�1 ¼ l0
~uT
kG�1k�1

~uk � ~uT
k�1G�1k�1

~uk�1
� �

+ ~uT
kuku

T
k
~uk + l0 � 1ð Þ~uT

k�1G
�1
k�1

~uk�1

¼ l0
~uk � ~uk�1
� �T

G�1k�1
~uk + ~uk�1
� �

+ l0
~uT
k

uku
T
k

l0 +uT
kGk�1uk

~uk�1

+ l0 � 1ð Þ~uT
k�1G

�1
k�1

~uk�1

¼ �l0
~uT
k�1

uku
T
k

l0 +uT
kGk�1uk

~uk�1

+ l0 � 1ð Þ~uT
k�1G

�1
k�1

~uk�1

and Vk4l0Vk�1. Hence the bound (14) is true.

Initialization of the gain matrix Gk: two algorithms in
one form

For convergence of the recursive algorithms (11) and
(12), inequalities (13) should be satisfied. The gain
matrix might be initialized in different ways in order to
satisfy inequalities (13). Moreover, the diagonal domi-
nance property of matrix Ak due to harmonic regressor
facilitates the choice of initial gain matrix and extends

the capabilities of the recursive algorithms (11)
and (12).

Two initialization techniques can be used in algo-
rithms (11) and (12), where the matrix Gk plays differ-
ent roles. Initialization of the gain matrix Gk to the
inverse of the information matrix Ak specifies the algo-
rithm (12) as a recursive estimate of the inverse of the
information matrix. This case corresponds to classical
RLS algorithm. Initialization of the matrix Gk to a
diagonal matrix with positive diagonal elements allows
to treat this matrix as a gain matrix, and the properties
of the algorithms (11) and (12) become similar to the
properties of the Kaczmarz algorithm.7,8 Classical RLS
algorithms (11) and (12) are robust with respect to
deviations of the gain matrix Gk from the inverse of the
information matrix Ak, provided that inequalities (13)
are valid.

Comparison of these two algorithms is presented in
Figure 1, which shows time evolution of three estimated
parameters defined in equation (5). Figure 1 shows that
classical RLS algorithm provides better estimation per-
formance compared to recursive estimation algorithm
with an SDD gain matrix. The latter, however, is more
robust against error accumulation problem, and its
properties are similar to the properties of the Kaczmarz
algorithm.7,8

Recursive algorithms of direct calculation
of the parameter vector

Second-order algorithm

Least-squares problem is a problem of calculation of
the parameter vector uk with high accuracy. The para-
meter vector uk in equation (8) can be recursively esti-
mated as follows

qi ¼ qi�1 � 2D�1k Akqi�1 +2D�1k bk +

D�1k Ak

� �2
qi�1 �D�1k AkD

�1
k bk ð18Þ

where qi is an estimate of uk; Dk is a diagonal matrix
that contains diagonal elements of Ak, which is defined
in equation (9); and bk is defined in equation (10).
Equations (8) and (18) can be combined as follows

~qi ¼ I�D�1k Ak

� �2~qi�1 ð19Þ

where ~qi ¼ qi � uk is estimation error.
The following inequality is valid kI�D�1k Akk4k\1

due to the diagonal dominance of the matrix Ak,
6,9

where the norm k�k is defined as the maximum row
sum matrix norm. This inequality guarantees the stabi-
lity of the error model (19).

Notice that two errors are defined as estimation
errors in this article. The first one is the error between
estimated parameter vector uk and true parameter
vector u�. This error is associated with estimation
performance of RLS algorithm, see section ‘‘RLS
algorithms.’’ The second estimation error qi � uk is
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associated with numerical calculation of the parameter
vector uk defined in equation (8).

The following inequality is valid for estimation error ~qi

k ~qi k4k2i k ~q0 k ð20Þ

and qi rapidly converges to uk.
Notice that algorithm (18) is named in this article as

a second-order algorithm due to the square of the error
matrix ðI�D�1k AkÞ2 in the error model (19). This algo-
rithm has improved converge rate compared to the
first-order algorithm, described in Stotsky.6 Notice that
the second-order algorithm requires more computa-
tional efforts than a first-order algorithm.

The algorithm (18) is stopped if

k Akqi � bk k \ e ð21Þ

where e is a sufficiently small positive number that con-
trols the accuracy of estimation.

Notice that the diagonal matrix D�1k in algorithm
(18) plays a role of a priori estimate of the inverse
of Ak. Obviously, the convergence rate of algorithm
(18) can be improved via improvement of the estimate
of the inverse of Ak. Such algorithms are described in
section ‘‘Combined recursive algorithms.’’

High-order algorithms

Algorithms of higher order can be worked out from the
following error model

~qi ¼ I� GAkð Þn~qi�1 ð22Þ

where n ¼ 1; 2; 3; . . . and G is an estimate of the matrix
A�1k , such that k I� GAk k4k \ 1, for example,
G ¼ D�1k . Algorithms of the order n can be written as
follows

qi ¼ qi�1 +
Xn�1
d¼0

n!

d! n� dð Þ! �1ð Þn�d GAkð Þn�d
( )

qi�1

+
Xn�1
d¼0

n!

d! n� dð Þ! �1ð Þn�d�1 GAkð Þn�d�1Gbk ð23Þ

and are summarized in Table 1.
Notice that n iterations of the first-order algorithm

are performed in each step in the nth-order algorithm.
High-order algorithms might be useful in the estima-
tion problems where a pre-specified accuracy should be
achieved in a certain number of steps. The order of the
algorithm can be chosen in this case using the error
model (22).

Combined recursive algorithms

This algorithm starts with a recursive estimation of the
inverse of matrix Ak with the following initialization

F0 ¼ I� G0Ak ð24Þ
G0 ¼ D�1k ð25Þ
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Figure 1. Comparison of (a) RLS algorithm and (b) recursive algorithm with an SDD gain matrix applied for estimation of the
parameters of the noise-contaminated signal that contains three frequencies. Estimated parameters, defined in equation (5) are
plotted with solid black, blue and red lines, whereas true parameters are plotted with dash-dot lines of the same colors.
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k F0 k4k \ 1 ð26Þ

where Dk is a diagonal matrix that contains diagonal
elements of Ak. Matrix Gi is an estimate of the inverse
of Ak, which is updated if the norm of the inversion
error I� Gi�1Ak is larger than a pre-specified number
d . 0 as follows

If k I� Gi�1Ak k5d ð27Þ
Gi ¼ Gi�1 +Fi�1Gi�1 ð28Þ
Fi ¼ I� GiAk ð29Þ
else

Gi ¼ Gi�1

The matrix Gi is used as an input to the update law
for the parameter vector qi

qi ¼ qi�1 � 2GiAkqi�1 +2Gibk +

GiAkð Þ2qi�1 � GiAkGibk ð30Þ

The error model for this algorithm (without condition
(27)) can be written as

~qi ¼ F2i+1

0
~qi�1 ð31Þ

which guarantees very fast convergence of qi to uk.
If algorithms (27)–(29) are executed for several steps

i ¼ 1; . . . ;w for a sufficiently large d, then the model
for estimation error for i ¼ w+1;w+2; . . . can be
written as follows

~qi ¼ F2w+1

0
~qi�1 ð32Þ

where k F2w+1

0 k4k1 \ k \ 1 and a positive constant
k1 define the convergence rate of the model (32).

The algorithm is stopped, if k Akqi � bk k \ e,
where e is a sufficiently small positive number. Notice
that a recursive matrix inversion is a computationally
expensive procedure, and therefore, the inverse of the
information matrix might be calculated with low accu-
racy. Estimation of the inverse matrix is stopped if
k I� GiAk k\ d, where the norm k�k is the maximum
row sum matrix norm, and the accuracy of the para-
meter calculation is much higher than an accuracy of
the matrix inversion doe.
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Figure 2. Time evolution of the (a) matrix norm k I� GiAk k and (b) vector norm k Akqi � bk k for algorithms (24)–(30) with
d ¼ 0:155 and e¼ 710�7.

Table 1. A family of high-order algorithms.

Order High-order algorithms

1 qi ¼ qi�1 � G Akqi�1 � bkð Þ
2 qi ¼ qi�1 � 2GAkqi�1 + 2Gbk + GAkð Þ2qi�1 � GAkGbk

3 qi ¼ qi�1 � GAkð Þ3qi�1 + 3 GAkð Þ2qi�1 � 3GAkqi�1 + GAkð Þ2Gbk � 3GAkGbk + 3Gbk

. . .
n

qi ¼ qi�1 +
Pn�1

d¼0

n!
d! n�dð Þ! �1ð Þn�d GAkð Þn�d

� �
qi�1 +

Pn�1

d¼0

n!
d! n�dð Þ! �1ð Þn�d�1 GAkð Þn�d�1Gbk
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The performance of algorithms (24)–(30) is illu-
strated in Figure 2, where a time evolution of the
norms k I� GiAk k and k Akqi � bk k, which represent
the matrix inversion and parameter estimation errors, is
presented. The matrix norm k I� GiAk k is sufficiently
reduced in three steps, and therefore, the matrix Gi

gets sufficiently close to the inverse of information
matrix Ak. Simultaneously, the vector norm
k Akqi � bk k is essentially reduced in three steps. The
accuracy which is required for a high-performance para-
meter estimation is achieved using algorithm (30) in the
subsequent steps, see the second subplot of Figure 2.

Finally, a comparison of RLS algorithms (11) and
(12) and combined recursive algorithms (24)–(30) for
direct calculation of the parameters of the noise-
contaminated signal that contains three frequencies is
presented in Figure 3. The components of parameter
vector (11) and the elements of gain matrix (12) of clas-
sical RLS algorithm are rounded to the first digit. All
variables in combined recursive algorithms (24)–(30)
are also rounded to the first digit, whereas the informa-
tion matrix Ak, defined in equation (9) is calculated
with higher accuracy. Rounding to the first digit is sel-
dom met in practice, but it emphasizes the error accu-
mulation problem in classical RLS algorithm. Figure 3
shows that the algorithms (24)–(30) provide better

estimation performance. This is maximum possible per-
formance improvement when using the approach pro-
posed in this article.

Other methods and conclusion

Two groups of methods might be used to solve linear
algebraic equation Akuk ¼ bk: exact methods and recur-
sive methods. Gaussian elimination method is the best
known exact method for calculation of the parameter
vector.10,11 Unfortunately, this method does not give an
exact solution of the algebraic equations due to round-
off errors, which are always present in a finite precision
implementation environment, and becomes computa-
tionally expensive for signals with a large number of
frequencies.

Recursive methods for solution of linear algebraic
equations, described in this article, that are based on
strict diagonal dominance of the information matrix
are preferable for large-scale systems as fast, robust
and computationally efficient algorithms with control-
lable accuracy, which are suitable for real-time
implementation.

This article shows that the properties of the harmo-
nic regressor might be successfully used for
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Figure 3. Comparison of (a) RLS algorithms (11) and (12) and (b) combined recursive algorithms (24)–(30) for direct calculation of
the parameters of the noise-contaminated signal that contains three frequencies. Estimated parameters are plotted with solid black,
blue and red lines, whereas true parameters are plotted with dash-dot lines of the same colors. All the variables in both algorithms
are rounded to the first (leading) digit.
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robustification of RLS algorithms. Moreover, explicit
transient bound for estimation error was derived in this
article using Lyapunov function method for classical
RLS algorithms. It was also shown that RLS algo-
rithms can be used for the parameter estimation with-
out initialization of the gain matrix to the inverse of
the information matrix. This in turn allows improve-
ment of the computational efficiency and shows robust-
ness of RLS algorithms.
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