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A theoretical investigation is made of the effect of finite pulse length on the
multipactor breakdown condition for microwave signals. The analysis considers
the case of multipactor between two parallel metallic plates, using the classical
resonance theory. It is found that decreasing pulse length tends to successively
eliminate higher order resonance zones and lead to a ”pulse hardening” of lower
order modes where the multipactor-prone resonance zones shrink and the lower
boundary breakdown field of the zones smoothly increases as the pulse becomes
shorter, eventually to completely eliminate the multipactor effect for sufficiently
short pulses.

1 Introduction

Multipactor discharges in microwave components constitute a severe breakdown
problem in many modern microwave systems involving high powers, a typical
example being space borne RF equipment for communication purposes. The
discharge is caused by free electrons oscillating in vacuum between surfaces in
the device, knocking out secondary new electrons when hitting the surfaces,
and creating an avalanche-like growth of the electron density in the device,
provided certain threshold conditions are fulfilled. The concomitant breakdown
discharge tends to generate noise, change the device impedance, heat the device
walls and may even permanently damage the hardware in the devices. Thus, an
important part of the design and development of RF components is to establish
the critical RF power at which the breakdown process is initiated. This step
has become increasingly important in view of the development of modern space
borne microwave technologies towards higher and higher data rates which makes
increasing RF power levels necessary in order to maintain a sufficient carrier-
to-noise ratio.

Most investigations of the multipactor phenomenon have been made for con-
tinuous (CW) operation, i.e. the microwave power is constant in time. In this
situation it is clear that for any value of the secondary emission coefficient above
its threshold value, the electron density will eventually grow to very high values.
In fact, the successive electron growth can be described by the expression

N(m)

N0
= σm = exp(m lnσ) (1)
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where N(m) is the number of electrons after m impacts, N0 the initial number
of electrons and σ the coefficient of the electron secondary emission yield (SEY)
averaged over a bunch of impacting resonant electrons. The impact number m
is a discrete, but ”time like”, variable since it is directly related to the time
needed to make m crossings between the plates. Obviously, a necessary and
sufficient condition for electron density growth is σ > 1, where the electron
impact velocity at the surfaces determines the relevant value of σ.

However, in many microwave applications, the microwave power is not con-
stant in time as e.g. in pulsed operation involving repetitive pulses of finite
length in time separated by time slots of zero power. In such situations, break-
down can only occur provided the electron avalanche has time to grow to a
large enough value within the duration of the pulse, or if the time between
pulses is short enough for the electron population not to decay completely be-
tween pulses. The latter case can from a multipactor point of view, depending
on the situation, be more dangerous than the single pulse case. An investigation
of this case is presented in [1], where it was shown that this effect is very sen-
sitive to the reflection of low energy electrons between pulses. We will only be
concerned with the first case, basically assuming that the time between pulses
is long enough to eliminate this electron build-up effect. This case is simpler
than the one in [1], for it eliminates the need for making assumptions about the
dynamics of low energy electrons, in particular the reflection of electrons.

When designing high power microwave systems, the so called ”20 gap cross-
ings rule” is used as an engineering ”rule of thumb” for assessing the risk of
multipactor breakdown in pulsed microwave signals. This rule states that [2]
“As long as the duration of the high power peak and the mode order of the gap
are such that no more than twenty gap-crossings can occur during the high power
peak, then multipaction-generated noise should remain well below thermal noise
(in a 30 MHz band).” This rule is used widely within the space community [3]
and has its origin in numerical simulations performed between parallel plates
for two different values of the maximum SEY: 1.66 and 2.22 [2]. The physical
mechanism behind the generation of noise is the build-up of free electrons. So
by using our knowledge of the number of gap crossings and the SEY we can
estimate how much the electron population must grow for multipactor effects
to appear. Given an average SEY of about 2 the multiplication factor (or expo-
nentiation) factor exp(m lnσ) becomes of the order of 106. The number 106 is
in no way meant as an exact estimate. In every microwave system there will be
a critical electron number density, and by relating this to the ambient electron
density one could in principle find this number. But it will be very system spe-
cific, as it will depend on the ambient electron density, the system geometry, the
detection method etc. However, the quantitative results are fairly unsensitive
to this factor, and the qualitative results are not sensitive at all. Throughout
this paper we will use the value 106, but the formulas are easily adapted to any
number, and in the last section we will compare results of using 104, 106 and
108.

Microwave signals with even more complicated time variation than that of
repeated pulses arise in several other technically important situations e.g. it may

2



result from the interference of many signals in multi-carrier operation scenarios
or simply due to the coding of information in signals in microwave communica-
tion systems. The corresponding time evolution of the electron avalanche may
be very complicated and it becomes difficult to establish a simple threshold con-
dition for microwave breakdown. It is intuitively clear that a very dangerous
case is when many signals in a multi-carrier system add constructively to give
rise to high power peaks, which however tend to be of limited time duration.
The 20 gap-crossing rule is a first effort to establish a breakdown criterion for
this type of situation. Although physically pregnant, it is clear that this rule
can only be regarded as a tentative recommendation and not as a well estab-
lished criterion based on detailed investigations of the breakdown problem. A
few studies have been published where more complicated signals (multicarrier)
are considered both numerically and experimentally in several geometries [4],
[5], [6] and [7]. In essence, such signals will produce intervals where the field is
above the CW breakdown threshold, and intervals where it is below. This can
affect the electrons in basically the same way as a pure pulsed signal; which was
the reasoning behind the simplified model used in [1]. A further complication
is introduced by the use of phase shift keying of the different carriers. Depend-
ing on the amplitude, frequency and phase shift rate of the different carriers,
any number of complex situations will arise, which may significantly change the
classical resonance conditions. So far very little research has been performed on
multipactor in signals with phase shift keying, even for the most simple case of
one carrier [8].

So far, nobody has considered what the fundamental implications will be
by applying a pulsed signal to the classical resonant parallel plate case. The
present analysis studies in more detail the requirements for multipactor break-
down in microwave pulses of finite length in the simple case of parallel metallic
plates within the resonant regime. This system, and the results concerning mul-
tipactor, has the benefit of being well known and thoroughly investigated, which
means that previous results can be used without performing any complicated
derivations. It is shown that similarly to the case of microwave breakdown in
gases (corona breakdown) [9], a shortening of the pulse length leads to a ”pulse
hardening” effect in the sense that the electric field needed to cause breakdown
increases as the pulse length becomes shorter. However, since in the multipactor
case the SEY curve has a non-monotonic dependence on electron impact energy
and the electron oscillations between the plates are required to be resonant,
the resulting breakdown curve exhibits several new features as compared to the
corona case e.g. a step-like behaviour when the breakdown process changes from
one resonance order to another.

2 Breakdown in microwave pulses

In a resonant multipactor discharge between two parallel plates, one or several
thin sheaths of electrons are moving between the two surfaces. In a resonant
multipactor of order n (n = 1, 3, 5...), the electron sheath crosses the gap
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(length d) in a time τn = nπ/ω, where ω is the field angular frequency. Upon
each impact, the number of electrons in the sheath, N , will change to σnN ,
where σn is the average SEY corresponding to the particular impact velocity of
the sheath. The number of electrons after m gap crossings will thus be

Nm = N0(σn)
m (2)

Under CW conditions, the necessary criterion for an avalanche to develop is
simply σn > 1. However, in a pulsed signal, this criterion is not sufficient. As
mentioned above, in practice it is often assumed that multipactor effects will
become important and detectable when Nm/N0 ≈ 106. This means that given
a certain σn, the electron sheath must complete

m =
lnNm/N0

lnσn
≈ 14

lnσn
(3)

crossings before the discharge becomes noticeable. Conversely, for a given num-
ber of gap crossings, m, there is a lower value for σn, under which multipactor
will not be detectable. This value is

σn,low = (
Nm

N0
)1/m ≈ 106/m (4)

Thus, multipactor discharges are only possible when σn > σn,low. Clearly, when
m → ∞, the CW value σn,low = 1 is regained.

In a resonant discharge, where the electrons cross the gap in the time τn =
nπ/ω, the electron sheath will cross the gap m = [τp/τn] ≈ τp/τn times during
the pulse time τp, where [τp/τn] denotes the integer part of τp/τn. For most
wall materials the maximum SEY, σmax is σmax ∼ 5, which means that m >
min(τp/τn) ≈ 10 and the error introduced by the approximation [τp/τn] ≈ τp/τn
is small. The criterion for multipactor breakdown in a pulse of finite length can
thus be given as

σn > σn,low ≈ 106τn/τp (5)

Clearly, when σn,low > σmax is satisfied for all n, multipactor breakdown is
totally suppressed.

Application of the breakdown condition given by Eq. (5) leads to modified
criteria for multipactor breakdown and to Hatch-Williams diagrams [10] where
the size of the resonant zones as well as the number of resonant zones depend
on the pulse length. Section 3 will present a summary of the classical theory
concerning the resonant multipactor charts, and it will also be shown how these
charts change for finite pulse lengths. In particular, the breakdown power as a
function of pulse length is found to exhibit characteristic jumps between different
resonance levels, where the exact form of the resulting curve will depend strongly
on the gap distance and the field frequency. This result is analyzed in more detail
in section 5.
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3 Resonance theory and multipactor zones

The classical resonance theory for multipactor rests on the assumption that
the emission velocity of the secondary electrons is fixed to some value ve, and
that the spread in this quantity is of little importance. This means that the
theory can be applied with good accuracy for the first resonance zones, provided
Δved � (ve + vω)

2ω/(2π) [11], where Δve is the average spread in the emission
velocity ve and vω is the electron oscillatory velocity in the microwave field.
When this criterion is fulfilled, the resonant zones can be found by considering
three different effects. First of all, electrons participating in a classical resonant
discharge must cross the gap in an odd number of field half cycles. The electron
trajectories are determined by the solution of the equation of motion for the
electrons and given by [11]

z(t) =
vω
ω
(sinωt− sinωte) + (ve − vω cosωte)(t− te) (6)

It should be emphasized that due to the phase stability of the electron mo-
tion, there are certain phase regions where a small perturbation of the electron
emission phase results in a smaller perturbation in the impact phase and sub-
sequent stable resonant motion. Classically, the stability factor, G,

G ≡ |ve − vωnπ sinωte
ve − 2vω cosωte

| (7)

is required to be smaller than unity. However, a larger value for G can be
allowed in the presence of a larger SEY [12]. Thus, the condition

σn > G (8)

can be taken as the appropriate criterion for phase stability.
The final requirement for multipactor breakdown to be possible in a pulsed

signal is that the SEY should be larger than the critical value derived in the
previous section, i.e.

σn > σn,low ≈ 106τn/τp (9)

Actually it is more convenient to use τn = nπ/ω = nT/2, where T is the signal
period, in which case the condition reads

σn > σn,low ≈ 103nT/τp (10)

Figs. 1 - 4 show the dependence of the size of the classical resonance zones
on the ratio between the pulse length and the field period. In these figures we
also include a common approximation for the lower envelope of the resonance
zones [13]. This approximation is simply the equality between the maximum
impact velocity and the first cross over velocity, v1, i.e.

2vω + ve = v1 (11)
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Fig. 1 shows the resonant zones for CW conditions, the so-called Hatch-
Williams diagram. In practice, this depiction is not quite true and only the
first couple of resonance zones have been verified experimentally (see e.g. [10]).
In addition there will be hybrid zones between the classical resonance zones
[12]. When using the resonant theory under CW conditions it is not necessary
to have a detailed knowledge of the SEY curve for the material in question,
whereas in the pulsed case, the shape of the curve and the maximum SEY
becomes of great importance. Throughout this paper we will use the simple
Vaughan approximation [14] for the SEY as a function of the electron impact
velocity

σ = σmax [ε exp(1− ε)]
β

(12)

where ε = Wi/Wmax, Wi is the electron impact energy, Wmax is the electron
impact energy corresponding to the secondary yield maximum, and β = 0.62
if Wi ≤ Wmax, and 0.25 if Wi > Wmax. This simple SEY curve is thus char-
acterized completely by σmax and Wi, or alternatively (and more frequenctly
used) by σmax and W1, where W1 is the electron impact energy where the SEY
is unity, the so-called first cross over energy.

The SEY depends on the impact velocity of the electrons, above the first
cross over velocity, v1, the SEY is above unity, as the impact velocity increases
the SEY curve goes through a maximum, and eventually, when the velocity
becomes higher than the second cross over velocity, v2, the SEY drops below
unity again. It is standard practice to use the cross over energy instead of
velocity. In this case we have W1 = mv21/2, and W2 = mv22/2, where m is the
electron mass. The same goes for the average emission energy of the secondary
electrons, We = mv2e/2.

In Figs. 2-4 one can see the appearance of the Hatch-Williams diagrams for
pulse lengths between 40 and 7 field periods. Fig. 2 shows the diagram for a
pulse length of 40 field periods. Even such a long pulse tends to eliminate all
resonance zones with n > 5, simply because those trajectories need too many
field periods to cross the gap and never reach the critical number regardless
of the power. In addition to the disappearance of the higher order zones, the
resonant zones that still exhibit multipactor breakdown have shrunk. The upper
boundaries have been shifted down in voltage, and the lower ones up. In Fig. 3
the pulse length is 20 field periods, and only the zones corresponding to n = 1
and n = 3 remain. Finally, in Fig. 4, the pulse length is 7 field periods. Only
the first zone remains and it has shrunk significantly. In this case the electrons
are only able to cross the gap 14 times during the pulse, which requires a rather
high SEY for the electron population to reach the assigned critical value. Given
the physical parameters, multipactor becomes impossible when τp/T = 6.3.
However, as the number of electron transits is a discrete quantity, multipactor
would be impossible for τp/T < 7.
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Figure 1: The appearance of the classical Hatch-Williams diagram for parallel
plates under CW conditions, where the spread in emission velocity is assumed
to be zero. The physical parameters are W1 = 50 eV, We = 3 eV, and σmax = 3.
The dashed straight line represents the breakdown voltage predicted by Eq. (11)
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Figure 2: The appearance of the classical Hatch-Williams diagram for a pulse
length of 40 field periods. The physical parameters are the same as in Fig. 1.
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Figure 3: The appearance of the classical Hatch-Williams diagram for a pulse
length of 20 field periods. The physical parameters are the same as in Fig. 1.
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Figure 4: The appearance of the classic Hatch-Williams diagram for a pulse
length of 7 field periods. The physical parameters are the same as in Fig. 1.

4 The 20 gap threshold

The application of the 20 gap crossing rule is described in [3], and it is appro-
priate to compare our results with those of the 20 gap rule. The proceedure for
doing this approximately is rather straightforward. Electrons cross the gap in
the time τn = nT/2. The number of times an electron bunch belonging to a cer-
tain mode will cross the gap in the pulse time is thus m = [τp/τn] ≈ 2τp/(nT ).
Only modes that have m ≥ 20 are assumed to be able to lead to multipactor.
Hence

n ≤ 1

10

τp
T

(13)

For τp/T < 10, multipactor is impossible. The first (n = 1) resonance zone
becomes ”activated” when τp/T = 10, the second (n = 3) when τp/T = 30, n =
5 when τp/T = 50 and so on. To find the lower breakdown voltage corresponding
to each resonance zone, we consider the time it takes to cross the gap. In a
resonant discharge, close to the lower breakdown threshold, the electrons cross
the gap in roughly the time d/(vω + ve). Putting this equal to τn we find

vω ≈ d

τn
− ve (14)

Which gives us the breakdown voltage from

U =
mωdvω

e
(15)

However, we also require v1 ≤ 2vω + ve ≤ v2, which means

2dω

π(ve + v2)
≤ n ≤ 2dω

π(ve + v1)
(16)

This gives us a bound on the resonance zones that may appear in the Hatch-
Williams diagram. How many of these zones that will actually appear depends
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on the pulse length according to Eq. (13). The application of formulas (13),
(15), and (16) yields different values for the breakdown voltage as a function of
pulse length over field period. In each interval belonging to a given resonance
order, the breakdown voltage is a certain constant. Using the full resonance
theory presented in section 3 yields a similar set of thresholds. However, these
are not exactly constant in each interval, but can vary quite a lot, depending on
the resonance order. Comparison between the twenty gap rule results and the
results of the full resonant theory are seen in Figs. 5- 8, which will be discussed
in the next section.

5 Breakdown voltage and pulse length

The Hatch-William diagrams in section 2 represent an idealized picture of the
multipactor phenomenon in pulsed signals. The detailed result crucially de-
pends on the combination of material parameters and the gap-frequency prod-
uct. However, some qualitative features could be emphasized. For large values
of the product d · ω, only higher order multipactor modes can be important
(since the resonance zones of lower order involve very high impact velocities
and SEY values below unity). These zones are very narrow and disappear when
the pulse becomes too short. Consequently, one would expect a ladder-like pro-
file for the breakdown voltage, where the voltage jumps between the different
resonance zones, becoming successively higher as the pulse becomes shorter.
On the other hand, for very small values of d · ω, only the first resonance zone
will be important. This zone is quite wide and the effective SEY value varies
significantly over the width of the zone. This will lead to a smoothly increasing
breakdown voltage for decreasing pulse lengths. In Figs. 5 - 8, the form of the
breakdown curves are shown for four different values of d · ω. The maximum
pulse length was chosen to be τp/T = 100 and only discrete values of τp/T were
used. When using classical resonance theory (i.e. neglecting emission velocity
spread), it becomes quite cumbersome to include results for very long pulses for
large values of d · ω, since it would involve many higher order resonance zones.
On the other hand, it is easy to estimate the highest order of resonance that
will be relevant for a given pulse length. From Eq. (10) it can be inferred that

nmax =
τp
3T

lnσmax

ln 10
(17)

For max(τp/T ) = 100 this yields nmax = 15 as the maximum resonance order
that can be important, regardless of the gap width.

There are few experimental results available in the published literature con-
cerning multipactor breakdown in pulsed signals that allow a detailed compar-
ison. However, in Ref. [6], the multipactor breakdown power was measured as
a function of pulse length, making possible at least a qualitative comparison
with the theoretical results obtained in the present work. In the experiment,
the breakdown power was found to be almost constant as the pulse width de-
creased from 100 μs down to approximately 5 μs and then the characteristic
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pulse hardening was observed for further decreasing pulse width c.f. Fig.5. It is
also interesting to note that in the experiment there is a jump down in break-
down threshold as the pulse length is increased from 100 μs to 200 μs. This
feature was commented upon in Ref. [6] as ”unclear” , but was confirmed by re-
peated measurements. Clearly this jump is in good qualitative agreement with
the present findings and can be explained as a transition to another resonance
order.

In Figs. 5 - 8 one can see the breakdown threshold as a function of pulse
length for d · ω = 107, 3 × 107, 108, and 2 × 108 (m/s) respectively. In Fig. 5
we have d · ω = 107 (m/s), and only the first resonance zone is relevant. Since
the first resonance zone is quite wide, the SEY value varies significantly over
the width of the resonance region and the breakdown curve has a distinctive
smooth appearance, steadily increasing with decreasing pulse length. This is
the so-called pulse hardening effect. Fig. 6 shows the case of d · ω = 3 × 107

(m/s). Inspecting Fig. 1 one can infer that the two first resonance zones are
responsible for the discharge. The jump between the two resonance zones is very
clear and the sudden increase in breakdown voltage when going from n = 3 to
n = 1 is almost twice the value for n = 3. This agrees qualitatively with the
results found in Ref. [6]. In Fig. 7 we have d · ω = 108 (m/s), and we can see
the resonance zones corresponding to n = 3, 5 and 7. The jumps between the
resonance zones are still quite clear. Finally, in Fig. 8 we have d · ω = 2 × 108

(m/s), and we can see the thresholds corresponding to n = 5, 7, 9, and 11. The
jumps between the resonance zones are less distinctive in comparison to Fig. 6
and 7.

An inspection of figures 5 - 8 reveals that for large values of d · ω, the
twenty gap rule and the more sophisticated calculations give qualitatively the
same result. The actual values for the breakdown thresholds, and the point of
inception of a new resonance zone do not agree completely, and e.g. in figure
8 the twenty gap crossing rule states that electrons belonging to n = 11 are
of no consequence. This does not agree with the more detailed calculations.
Furthermore, for low values of d · ω, the thresholds show a certain dependence
on τp/T within the resonance intervals (see figs. 5 and 6). This feature is not
predicted by the twenty gap crossing rule.

Throughout this paper we assumed a multiplication factor exp(m lnσ) ≈
106. This number is based on a very rough estimate of the average SEY and
using the 20-gap rule. It is therefore of interest to investigate the results of
changing this factor. In Fig. 9 the breakdown threshold is shown for the case
of first order resonance for three different values of the multiplication factor:
104, 106, and 108. Clearly, the qualitative results are identical, and the three
curves all show the same continuous increase in the threshold field with decreas-
ing pulse length. However, by decreasing the multiplication factor we move the
start of this increase to lower pulse lengths, and similarily, by increasing the
multiplication factor we move the start to longer pulses. This is perfectly natu-
ral, since a lower number of required electron number increase in a fixed number
of gap crossings require a lower SEY and consequently a lower voltage. Whereas
higher electron number increase requires higher voltages. Looking at Fig. 10
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Figure 5: The circles represent the lower breakdown voltage as a function of
τp/T for d · ω = 107 m/s. The material properties are the same as in Fig.
1. The dots represent the lower threshold as given by the twenty gap crossing
rule (see section 4). The dashed straight line represents the breakdown voltage
predicted by Eq. (11).

we see the same situation but for a gap where 1’st and 3’rd order multipactor is
relevant. The effect of changing the multiplication factor is simply to shift the
transition between the two resonances either to lower pulse lengths for a lower
multiplication factor, or higher pulse lengths for a higher multiplication factor.

It should be noted that complicated rf signals inside communication lines
does not always lead to an increase in the multipactor threshold. Specifically
a recent study [15] revealed that inside a relatively wide gap, a decrease in the
multipactor threshold is possible in the case of digitally modulated signals. Such
a decrease can be attributed to a very general phenomenon known as stochastic
electron heating in microwave fields [16]. In fact, when the rf electric field
switches phase in a stochastic manner, electrons can acquire more energy than
in the case of a pure monochromatic signal with the same amplitude, provided
that the electron transit times are long enough, and that the phase jumps do not
occur with too high frequency. Therefore particular attention should be paid to
multipactor predictions inside wide gaps in the case of complex rf signals.
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Figure 6: The lower breakdown voltage as a function of τp/T for d ·ω = 3× 107
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Figure 7: The lower breakdown voltage as a function of τp/T for d · ω = 108
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Figure 8: The lower breakdown voltage as a function of τp/T for d ·ω = 2× 108
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Figure 9: The lower breakdown voltage as a function of τp/T for d·ω = 107 m/s,
and three different values of the multiplication factor: N/N0 = 104 (marked by
small dots), 106 (circles), and 108 (big dots).
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Figure 10: The lower breakdown voltage as a function of τp/T for d · ω =
3×107 m/s, and three different values of the multiplication factor: N/N0 = 104

(marked by small dots), 106 (circles), and 108 (big dots).

6 Conclusions

A first theoretical investigation has been made of the effect of finite pulse length
on the multipactor breakdown condition in microwave signals, within the clas-
sical resonant theory for parallel plates. It is found that decreasing pulse length
tends to successively eliminate higher order resonance zones in a step like fashion
and to lead to a ”pulse hardening” of lower order modes where the breakdown
field of the zones smoothly increases as the pulse become shorter, eventually to
completely eliminate the multipactor effect for sufficiently short pulses. These
features are in good qualitative agreement with recently published experimental
results. We also found that the qualitative features of the different breakdown
curves had no dependence on the choice of the multiplication factor, but that
the actual values for the pulse length where the pulse hardening and jumping
between resonance orders are shifted. Since the multiplication factor depends
so heavily on the number of background electrons, it might be able to verify this
effect experimentally using different seeding sources. In the space community,
the twenty gap crossing rule is used to judge whether a system is susceptible to
multipactor. However, it was shown above that only the basic features of the
breakdown threshold can be replicated using the twenty gap rule. The pulse
hardening effect is missed completely, and the breakdown threshold is generally
quite different. Aside from shedding light on some recent experimental results,
and providing a first theoretical investigation of the resonant multipactor pro-
cess in pulsed signals, the study also gives practical guidelines for designing
microwave signals. In particular, formulas are given for estimating how short
a pulse needs to be to completely eliminate resonant multipactor, and how to
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estimate the resonance order and breakdown voltage in the case of pulsed reso-
nant multipactor in a parallel plate system. We did not take into consideration
the possibility of electron build-up over several pulses. This can be the case
when the pulses are sufficiently long, and the time between pulses is sufficiently
short for the electron number not to decay completely. In systems with very
large dimensions there is also the possibility of an electron avalanche even if the
pulses are very short and well separated, for electrons will be accelerated during
the pulse, and then drift across the gap, to eventually collide with a wall. If the
time of the collision is synchronous with another pulse, these impacts can lead
to secondary electrons with the right speed to repeat the process, and eventually
lead to a multipactor breakdown.
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