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Abstract

The optical signal-to-noise ratio (OSNR) is an important parameter for measuring
signal quality in optical communications systems. Due to the recent development
of polarization multiplexed systems, Nyquist filtered systems and reconfigurable
systems, the traditional optical spectrum analysis method for estimating the OSNR
cannot be used. Several other methods have been proposed, with various short-
comings, so there is a need for other methods.

In this work, an in-band OSNR monitoring method for polarization multiplexed
signals based on a Stokes polarimeter has been investigated through theoretical
studies, simulations and measurements. For the measurements, a 90◦ hybrid based
polarimeter was constructed and used for measurements on noise loaded 28 GBd
DP-QPSK signals. The impact of chromatic dispersion (CD) and polarization-
mode dispersion (PMD) on the method was also investigated.

The method was successfully used to estimate the OSNR within ±1dB for
OSNR values up to 25 dB. Through simulations it was shown that the tolerable
amount of CD increased if the bandwidth used for the ADC was decreased. In the
measurements of this work, a bandwidth of 10 MHz was used, which should tol-
erate over 1000 km of SMF with D = 17ps/nm/km according to the simulations.
However, the method was shown to be sensitive to PMD, tolerating a differential
group delay of less than a tenth of the symbol time. Also developed in this work
was a method for compensating for a non-ideal 90◦ hybrid.

A provisional patent application has been filed for the method.
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1 | Introduction

FIBER OPTICAL COMMUNICATION systems are an important part of the com-
munication infrastructure of the world, and are responsible for the major part

of international communication. During the last three decades the area has under-
gone a rapid progression, with an increase in the bit-rate by a factor of 100000 [1].
Among the key innovations making this possible is the erbium doped fiber ampli-
fier (EDFA), the use of wavelength division multiplexed systems (WDM) and the
introduction of coherent receivers and advanced modulation formats such as M-ary
phase shift keying (M-PSK) and quadrature amplitude modulation (M-QAM).

In optically amplified links, the optical signal-to-noise ratio (OSNR) is an im-
portant measure of the signal quality [2]. Each amplifier the signal passes along
the link adds noise and degrades the OSNR. The traditional method for measuring
the OSNR with an optical spectrum analyzer (OSA) utilizes the linear interpolation
technique to measure the noise power between the WDM channels. However, the
recent advent of extremely densely packed WDM systems, Nyquist WDM systems
[3] and reconfigurable systems have created a need for other methods, as the sig-
nal cannot be measured with the interpolation technique in these systems. Several
methods have been proposed, among them a method based on the analysis of the
Stokes parameters developed at EXFO Sweden AB. A similar method is also pro-
posed by [4], where an integrated Stokes polarimeter is presented. However, the
method has not been thoroughly investigated theoretically nor has it been shown
that it can be implemented using readily available lumped components.

The purpose of this project is to further study the Stokes polarimeter OSNR
measuring method. This includes developing the necessary theory for describing
the method, implementing the method with a 90◦ hybrid polarimeter and inves-
tigating the effects of various signal impairments through simulations and mea-
surements. The main goal is to evaluate the usefulness of the method for OSNR
monitoring, but also to find important issues in the construction of the polarimeter
and to develop necessary signal processing software. In this thesis, the main focus
is 28 GBd DP-QPSK signals, as they are suggested as the standard for the 100Gb/s
networks currently being deployed [5].

This report is divided into six chapters. After the introduction, a more thorough
background to fiber optical communication and OSNR measuring methods is given
in Chapter 2. In Chapter 3, the Stokes-parameter-based OSNR measuring method
is described in detail, including both theoretical work and the physical setup used.
Chapter 4 presents the simulations performed, as well as the results obtained, and in
Chapter 5 the experiments done are reported, including setups and results. Finally,
the conclusions are presented in Chapter 6.
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2 | Background

IN THIS CHAPTER some background to the field of optical communication and
OSNR-monitoring is presented.

2.1 Optical modulation

Fiber-optical communication uses light as an electromagnetic carrier wave to trans-
mit information through optical fibers. A general optical carrier can be described
by

E(t) = êRe [aexp( jφ − jω0t)], (2.1)

where ê is the polarization direction, a the amplitude, φ the phase and ω0 the an-
gular frequency of the carrier. All of these properties can be varied to encode
information on the carrier wave, a process called modulation. The simplest mod-
ulation format, traditionally used in fiber-optic systems, is on-off keying (OOK)
where the amplitude is changed between a = 0 (off) and a = 1 (on). This is the
simplest form of amplitude shift keying (ASK). Also the phase φ can be modu-
lated, which is called phase shift keying (PSK). A common example of a phase
shift keying format is quaternary phase shift keying (QPSK) where the phase can
take four different values. Another way of describing this is as a complex phasor
envelope, A = ae jφ = a(cosφ + j sinφ). To visualize such a signal the phasor can
be plotted in the complex plane, in a constellation diagram. It is common to call
the real part the in-phase component, I, and the imaginary part the quadrature com-
ponent Q. In figure 2.1 constellation diagrams for OOK, QPSK and 8-PSK can be
seen.

The main reason for using higher order modulation formats is to be able to en-
code multiple bits on each symbol and thus increasing data throughput. Other ways
of increasing the throughput is to use several wavelength channels, which is called
wavelength division multiplexing (WDM) or to use each wavelength to transmit
two orthogonally polarized data streams. This is called polarization-division mul-
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Figure 2.1: Constellation diagrams for a few modulation formats.
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CW input

MZM
I-modulator

MZM
Q-modulator

90◦

QPSK

Figure 2.2: The principle of a QPSK modulator. Above the components are a small constellation diagram, to show how it changes
for each step. CW stands for continuous wave and MZM for Mach-Zehnder modulator.

tiplexing, which is abbreviated PDM or PM. It can also be referred to as dual
polarization (DP).

Consider the following example. Using 10 Gb/s OOK, each symbol represents
one bit, a one or a zero, and the symbol rate is the same as the bit rate. If instead
a DP-QPSK modulation format is used, each symbol represents four bits, since
each QPSK symbol represents two bits, and two orthogonally polarized QPSK
signals are transmitted. This means that the bit rate is multiplied by four, and
becomes 40 Gb/s. The increase of the bit rate can of course be accomplished by
using 40 Gb/s OOK, but that would also increase the bandwidth of the signal four
times, which is not the case when 10 GBd DP-QPSK is used.

Of course the higher modulation formats are not without drawbacks. An OOK
receiver uses the simple direct detection method, where a photodetector is used
to detect the optical power. For phase modulated signals, the whole electric field
needs to be detected, and a more complicated, coherent receiver is needed. How-
ever, the coherent receiver has other advantages, such as the possibility to use
digital signal processing to compensate for chromatic dispersion and polarization-
mode dispersion. These possibilities are due to the fact that both the amplitude and
phase of the electric field can be detected.

2.1.1 A DP-QPSK modulator

Quadrature modulation can be achieved using two Mach-Zehnder modulators and
a 90◦ phase shift. The input light is split with a 3 dB coupler, and each part is
modulated with a Mach-Zehnder modulator, one for the in-phase component and
one for the quadrature component. After the modulators, a 90◦ phase shift between
the two, now modulated, parts of the signal is introduced, and they are combined
again. The setup is illustrated in figure 2.2. To create a dual polarization signal,
two QPSK modulators are used and their output is combined using a polarization
beam combiner. Signal impairments caused by a non-ideal modulator includes
quadrature error, caused by the delay not being exactly 90◦, and different kinds
of skew. Here skew refers to a delay between different bit-streams. For example
XY-skew refers to the QPSK signals in the two polarizations are shifted in time so
that the symbols in the different polarizations are not aligned in time, and IQ-skew
refers to a time shift between the in-phase and quadrature components.
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2.2 Optical signal-to-noise-ratio

In systems designed for transmission longer than approximately 100 km, amplifi-
cation is needed to compensate for the power losses in the fiber [1]. It is obvious
that this is an important topic, since many submarine and long-haul systems have
a length of several thousands of kilometers. Today, in advanced WDM systems,
amplification is exclusively achieved with optical amplifiers. An optical amplifier
boosts the signal power in the optical domain, i.e. without needing to convert to
electrical signals. This greatly reduces complexity for WDM systems. The ampli-
fiers however give rise to noise that will degrade the signal and the bit-error-rate
(BER). Therefore, the optical signal-to-noise-ratio (OSNR) is an important signal
performance metric.

An important class of optical amplifiers is the erbium doped fiber amplifiers
(EDFA) [1]. The EDFA is a lumped amplifier, based on stimulated emission in
a gain medium, much like a laser. One of the energy transitions in erbium ions
matches the standard wavelength used in long-haul fiber-optic links, 1550 nm. The
amplification is achieved by exciting the erbium ions to the higher energy state of
the transition. An incoming photon can then stimulate a transition from the higher
to the lower state, which give rise to the emission of another photon. This photon
will be an exact copy of the incoming photon, with the same wavelength, phase,
propagation direction and polarization.

Apart from the stimulated emission, spontaneous electron transitions from the
higher to the lower energy states also occur. The photons emitted in such a process
will have random direction, polarization, phase and wavelength, within the gain
band of the amplifier. The spontaneously emitted photons will then be amplified in
the following amplifiers of the system, reaching the receiver as amplified sponta-
neous emission (ASE). The OSNR is defined as the ratio of the whole signal power
and the noise power,

OSNR =
Psignal,x +Psignal,y

Pnoise,x +Pnoise,y
, (2.2)

where the noise power is measured within a specified bandwidth, usually 0.1 nm.

2.2.1 Monitoring methods

Linear interpolation methods

The conventional method for measuring OSNR uses an optical spectrum analyzer
(OSA) to measure the noise power in the frequencies between the WDM channels
and the signal power at the signal wavelengths [2]. The noise power at the signal
wavelengths is then found by using linear interpolation. This is an example of an
out of band OSNR monitoring technique. In figure 2.3 the concept is illustrated in
a plot of a typical signal spectrum. It relies on the two assumptions that, firstly, the
noise level can be measured between the channels, and secondly that the noise at
the signal wavelength actually can be determined by interpolation. This is true for Wavelength
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Signal level
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Figure 2.3: The traditional
OSNR measuring method.

conventional point-to-point transmission systems, where the noise level is fairly
uniform. However, in for example Nyquist filtered systems with a small channel
spacing the first assumption is not true, i.e. the power level between the chan-
nels does not represent only the noise power, but contains a fraction of the signal
power as well. The second assumption does not hold for reconfigurable systems,
were different channels may have passed through a different number of EDFAs and
consequently have different OSNR values [2].
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Polarization-based methods

Another class of OSNR monitoring methods proposed is based on the different
polarization properties of the signal and the ASE noise. These techniques relies on
the assumption that the signal contains all its power in one polarization state, while
the ASE generally is unpolarized [2]. Obviously, this does not apply to polarization
multiplexed signals. Polarization based techniques are generally also sensitive to
polarization effects in the fiber, such as polarization mode dispersion (PMD) and
polarization dependent loss (PDL). However, in [6] a method that overcomes these
limitations for single polarization signals is described.

Interferometer-based methods

The interferometer methods are based on the assumption that the signal is highly
coherent, while the ASE noise is incoherent. Then, the total signal can be mea-
sured by combining the two arms of a Mach-Zender delay interferometer (MZDI)
constructively, and the noise power can be measured by combining them destruc-
tively. However, the assumption is not entirely valid, which introduces errors in
the OSNR measurement [2].

Reference trace method

The reference trace method uses knowledge of the spectral shape of the noiseless
signal to measure the noise power. The reference spectrum can be found by using a
polarization resolved OSA for single polarization signals, but for dual polarization
signals the reference spectrum needs to be measured at or near the transmitter [7].

2.3 Other signal impairments

In this section, signal impairments other than ASE noise are briefly described.

2.3.1 Chromatic dispersion

An important signal impairment in single mode fiber (SMF) is chromatic dispersion
(CD), which causes pulse broadening because of the group velocity being wave-
length dependent. This means that the spectral components of the signal propagate
with different velocities. The CD in SMF is caused by two phenomena, material
dispersion and waveguide dispersion. The material dispersion is caused, as the
name reveals, by the dispersive properties of the fiber material, silica. The waveg-
uide dispersion is caused by the shape of the waveguide, and can be used to tune
the dispersion of the fiber.

The effects of chromatic dispersion can be described by the transfer function

H f (z,ω) = exp
(

jβ2ω2z
2

+
jβ3ω3z

6

)
, (2.3)

where z is the length of the fiber, β2 is the group-velocity dispersion parameter, and
β3 is the third-order dispersion parameter. The parameters β2 and β3 are properties
of the fiber.

Chromatic dispersion is traditionally compensated for by using dispersion com-
pensation fiber (DCF) for which β2 has the opposite sign. In coherent systems it is
common to use digital signal processing for dispersion compensation.
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2.3.2 Polarization-mode dispersion

Fiber birefringence causes a phenomenon known as polarization-mode dispersion
(PMD). The birefringence is caused by the fiber cross-section being slightly ellip-
tic. This causes the group-velocity to be polarization dependent, with a fast and a
slow axis. The delay between the two orthogonal polarization states is called dif-
ferential group delay (DGD). As the amount and direction of the ellipticity varies
randomly over the fiber length, both the amount and the axis of the DGD varies
randomly.

For single polarization OOK signals the PMD causes pulse broadening, much
like chromatic dispersion, but to a much lesser extent. However, for dual polariza-
tion signals, PMD can also cause crosstalk between the polarizations. This is the
case when the signal polarizations are not aligned with the fast and slow axis of the
birefringence. PMD effects can be compensated for with optical components [1],
or with digital signal processing in coherent systems [8].
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3 | The Stokes polarimeter OSNR
monitor

IN THIS CHAPTER the Stokes polarimeter method for OSNR monitoring is de-
scribed in detail, including both the theoretical background and practical issues.

3.1 Theoretical background

3.1.1 Polarized light and the Stokes parameters

A natural way of describing polarized light is in terms of the electric field vector
E itself. This vector is known as the Jones vector, after the American physicist R.
C. Jones [9]. The two components represent the two orthogonal, linearly polarized
components of the the field,

E =

(
Ex

Ey

)
=

(
E0xe jφx

E0ye jφy

)
, (3.1)

here written in complex phasor form.
Another way of describing polarized light is in terms of the four Stokes param-

eters, that can be combined into the Stokes vector [10]. Written in terms of the
Jones vector components they are

S =


S0

S1

S2

S3

=


|Ex|2 + |Ey|2

|Ex|2−|Ey|2

E∗x Ey +ExE∗y
− jE∗x Ey + jExE∗y

 , (3.2)

where S0 represents the total power of the light, S1 the prevalence of 0◦ linear po-
larized light over 90◦ polarized light, S2 the prevalence of 45◦ linear polarized light
over −45◦ polarized light and S3 the prevalence of right-hand circularly polarized
light over left-hand.

The last three Stokes parameters form a three dimensional space, often referred
to as the Stokes space. For fully polarized light the Stokes parameters are related
by S2

0 = S2
1 + S2

2 + S2
3. The sphere formed by the Stokes parameters is called the

Poincaré sphere, which is shown in figure 3.1.

Figure 3.1: The Poincaré
sphere. The dots at the poles
represent circular polariza-
tion and the equator repre-
sents linear polarization.

It should be noted that the Stokes parameters usually are expressed as time
averages. As all light is polarized instantaneously, this is necessary to be able to
distinguish between polarized and unpolarized light. The implication of this is that
what determines if light is considered polarized or unpolarized is the time of the
averaging. In this work it is assumed that the time of the averaging is short enough

9



10 Chapter 3. The Stokes polarimeter OSNR monitor

for all light to be described as polarized. In reality the averaging time is determined
by the bandwidth of the measuring device used.

For describing a modulated signal it is convenient to scale the radius of the
Poincaré sphere with the average power, which differs from the common practice
of using the inside of the sphere for partially polarized light [11].

3.1.2 Representation of a modulated signal

The main focus in this work is on the dual polarization QPSK modulation format,
and as a start, the Stokes representation of such a signal will be derived. The
symbols of a DP-QPSK signal can be described by the Jones vector

EQPSK =
1√
2

(
e jφx

e jφy

)
, (3.3)

where 1/
√

2 is included for normalization and φx and φy represent the discrete
phases of the QPSK symbols. In Stokes space, this is equivalent to

S1 = 0 (3.4)

S2 =
e j(φy−φx)+ e− j(φy−φx)

2
= cos(φy−φx) (3.5)

S3 =
e j(φy−φx)− e− j(φy−φx)

2 j
= sin(φy−φx), (3.6)

where φy− φx = n ·π/2 with n = 0, . . . ,3, i.e. the possible phase differences be-
tween the polarizations are multiples of π/2. Thus, the symbols of a DP-QPSK
signal will result in four points in Stokes space, lying in the S2-S3 plane. In the
case of a pure phase modulation with a constant amplitude, S1 will always be zero,
and the signal will move in the S2-S3 plane. However, for other kinds of transi-
tions, the Stokes representation will be more complicated. Instead, we can find
the boundaries in Stokes space for a general dual polarization complex modulation
format.

Consider a complex modulation format, normalized to fit into a unit circle in
the complex plane. To find the boundaries in Stokes space, choose one of the
polarizations to have maximum amplitude, i.e. Ex = 1. Let the other polarization
take any value inside the unit circle. This can be described by the Jones vector

Figure 3.2: DP-QPSK in
Stokes space, with the disc
described in (3.8). The dots
at the intersections between
the disc and the S1 and S2
axes marks the decision
points, which are degener-
ated in Stokes space.

E =
1√
2

(
1

re jφ

)
, (3.7)

where r is the amplitude and φ the phase angle. Using equation (3.2) to calculate
the Stokes vector gives

S =
1
2


1+ r2

1− r2

2r cosφ

2r sinφ

 . (3.8)

In Stokes space, this describes a paraboloidal surface. Choosing the other polariza-
tion component to be 1, and letting the other vary inside the unit circle will result in
another paraboloidal surface, turned in the opposite direction. Together these sur-
faces describe a disc or lens-like shape in Stokes space, that defines the boundaries
of the signal. The disc is shown in figure 3.2.
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3.1.3 Polarization of the signal

The orientation of the coordinate system used in Stokes space depends on the basis
used for the polarization. To describe a signal it is convenient to align the coordi-
nate system with the polarization of the signal by choosing the S1 direction to be
parallel with the normal of the disc.

In a measuring device, the axes are defined by the orientation of the device.
Generally, the polarization of an optical signal is not stable, so if the coordinate
system used is not aligned with the signal, the orientation of the disc will fluctuate
with the polarization of the signal. In the previous description it assumed that the
polarization of the signal is stable.

3.1.4 Noise in Stokes space

The ASE noise in an optical system can be described with the Jones vector

n =

(
nx

ny

)
, (3.9)

where nx and ny are complex Gaussian random variables with the same variance,
i.e. Var(nx) = Var(ny) = Var(n). The ASE noise consists of photons with random
polarization, which means that when the time averaged Stokes parameters are used,
the noise is unpolarized. However, if a short averaging time is used, the noise has
some random polarization and will form a sphere in Stokes space.

To measure the OSNR we must find a way to measure the noise power sepa-
rated from the signal power and a measure of the signal power. If we consider the
noisy signal

En =

(
Ex +nx

Ey +ny

)
, (3.10)

the corresponding Stokes parameters will be a mix of the signal and noise Stokes
parameters. Inserting En into (3.2), we obtain

S1 = |Ex|2−|Ey|2 + |nx|2−|ny|2 +Exn∗x +E∗x nx−Eyn∗y−E∗y ny, (3.11)

S2 = ExE∗y +E∗x Ey +nxn∗y +n∗xny +Exn∗y +E∗x ny +Eyn∗x +E∗y nx, (3.12)

S3 = ExE∗y −E∗x Ey +nxn∗y−n∗xny +Exn∗y−E∗x ny +Eyn∗x−E∗y nx. (3.13)

It is not obvious from these expressions if any of the Stokes parameters of a noisy
signal can be used as a measure of the noise power, but the thickness of the disc is
less dependent on the signal power than the diameter. To illustrate this, the distance

from the S1 axis, i.e.
√

S2
2 +S2

3 and the distance from the S2-S3 plane, i.e. |S1| is
plotted in figure 3.3. Therefore, the ratio between the diameter and the thickness
of the disc is a good candidate for the OSNR measure.

As a measure of thickness of the lens we can use Var(S1) and as a measure of
the radius we can use (Var(S2)+Var(S3))/2. Using equation (3.11) we have

Var(S1) = Var(|Ex|2−|Ey|2)+Var(n)(Var(Re [Ex])+Var(Re [Ey]))+2Var 2(n)

Var(S2) = Var(ExE∗y +E∗x Ey)+Var(n)(Var(Re [Ex])+Var(Re [Ey]))+2Var 2(n)

Var(S3) = Var(ExE∗y −E∗x Ey)+Var(n)(Var(Im [Ex])+Var(Im [Ey]))+2Var 2(n).

If Ex and Ey are uncorrelated and have zero mean, which is safe to assume in real
systems, we can use the following property of the variance [12]

Var(X−Y ) = Var(X)+Var(Y ) (3.14)
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Figure 3.3: The upper line is the distance from the S1 axis, i.e.

√
S2

2 +S2
3 and the lower line is the

distance from the S2-S3 plane, i.e. |S1|, vs. time. The plot illustrates the greater impact of the signal
power on the radius of the disc than on the thickness for DP-QPSK.

to find that:

Var(|Ex|2−|Ey|2) = Var(|Ex|2)+Var(|Ey|2) ∝ Var(S) ∝ S2 (3.15)

and
Var(ExE∗y +E∗x Ey) = Var(Re [ExEy]) ∝ Var(S) ∝ S2, (3.16)

where S is the total signal power.
Now we can that the first, quadratic terms are proportional to the signal power

S squared, the second terms are proportional to the signal power times the noise
power N and the third terms are proportional to the noise power squared. This
yields

Var(S1) ∝ k21S2 + k1SN + k0N2, (3.17)

Var(S2) ∝ k22S2 + k1SN + k0N2. (3.18)

Now it is time to introduce OSNR ∝ S/N,

Var(S1) ∝ k21N2OSNR2 + k1N2OSNR+ k0N2 (3.19)

Var(S2) ∝ k22N2OSNR2 + k1N2OSNR+ k0N2. (3.20)

It follows that the thickness-radius ratio

Γ =
Var(S2)+Var(S3)

2Var(S1)
=

k22OSNR2 + k1OSNR+ k0

k21OSNR2 + k1OSNR+ k0
, (3.21)

is a function of the OSNR. The usefulness of Γ as a measure of the OSNR is
determined by the values of the constants. In figure 3.4, a Γ vs. OSNR curve for a
DP-QPSK signal is plotted.
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Γ 
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Figure 3.4: A typical simu-
lated Γ vs. OSNR curve.

In the case of no signal, with OSNR = 0, Γ = k0/k0 = 1. This means that only
noise is present, which is represented by a sphere in Stokes space. When there is
no noise present,

OSNR→ ∞ ⇒ Γ→ k22

k21
. (3.22)

This means that Γ has a maximum value, which sets a limit for how high values of
OSNR that can be measured. The actual usable limit is lower, as a small change in
Γ requires a large change in OSNR.

By assuming that k0 is negligible, Eq. (3.21) can be approximated by

Γ≈ k22OSNR+ k1

k21OSNR+ k1
=

k22

k21OSNR+ k1
OSNR+

k1

k21 + k1
. (3.23)

For OSNR-values where k21OSNR� k1 this is simplified further to the linear ap-
proximate relation

Γ≈ k22

k1
OSNR+

k21

k1
, (3.24)
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Figure 3.5: The polarimeter setup.

which can be seen as the linear part of the curve in figure 3.4. In the linear part, the
slope is approximately k22/k1.

To estimate the OSNR from Γ the inverse of Eq. (3.21) is needed. By solving
Eq. (3.21) for OSNR it is found to be

OSNR(Γ) =
−k1(1−Γ)+

√
k2

1(1−Γ)2−4k0(k22− k21Γ)(1−Γ)

2(k22− k21Γ)
. (3.25)

3.2 Implementation and practical issues

The Stokes parameters can be directly measured with several set-ups. The method
used in this work makes use of a polarization beam splitter (PBS) and a 90◦ hybrid
similar to that in a coherent receiver. In a practical implementation a number of
issues have to be addressed, both relating to the nature of the signal and to the
imperfections of the components used.

3.2.1 Principle of operation

The hybrid-based polarimeter setup uses a PBS to split the signal into orthogonal
polarization states. To extract S1, the two branches are fed directly into the ports
of a balanced detector. To extract S2 and S3, two 3dB couplers are used to feed the
two branches into a 90◦ hybrid. Figure 3.5 shows the setup.

In figure 3.6a the details of the 90◦ hybrid can be seen. The equations for the
outputs are

E1 =
1
2
(Ex +Ey), (3.26)

E2 =
1
2
(Ex−Ey), (3.27)

E3 =
1
2
(Ex + jEy), (3.28)

E4 =
1
2
(Ex− jEy), (3.29)

where the factor 1/2 is caused by the the power splitting and corresponds to a
power splitting of (1/2)2 = 1/4. The actual outputs are also multiplied by a con-
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Figure 3.6: Details of the hybrid and the 3 dB coupler. (a) A schematic view of the 90◦ hybrid. (b)
Equations for input and output fields from a 3 dB coupler.

stant phase. The Stokes parameters S2 and S3 can be extracted by

S2 = 4(|E1|2−|E2|2) (3.30)

S3 = 4(|E3|2−|E4|2), (3.31)

which is easily accomplished with balanced detectors.

3.2.2 Hybrid imperfections

The optical 90◦ hybrid is an important component of the polarimeter, and even
small imperfections will affect the results to a significant degree. However, as
will be shown in the following section, the most important impairments can be
compensated for with signal processing.

The hybrid imperfections considered here are losses and errors to the 90◦ angle.
This is done by introducing loss coefficients and replacing j with e jφ , where the
angle φ ≈ π/2. Equation (3.26) is now modified to:

E1 = kx1Ex + ky1Ey (3.32)

E2 = kx2Ex− ky2Ey (3.33)

E3 = kx3Ex + ky3e jφ Ey (3.34)

E4 = kx4Ex− ky4e jφ Ey, (3.35)

and the measured Stokes parameters are

S′2 = (k2
x1− k2

x2)|Ex|2 +(k2
y1− k2

y2)|Ey|2 +(kx1ky1 + kx2ky2)S2 (3.36)

S′3 = (k2
x3− k2

x4)|Ex|2 +(k2
y3− k2

y4)|Ey|2 +(kx3ky3 + kx4ky4)(S2 cosφ −S3 sinφ).

(3.37)

Losses outside of the hybrid (for example different losses for Ex and Ey or detector
imbalance) can be included in these expressions as well. Note that even for an
ideal hybrid, all coefficients will be 1

2 because of the power splitting. For an ideal
hybrid, φ = 90◦. Inserting this into the above equations yields

S′2 =
1
4

S2 (3.38)

S′3 =
1
4

S3, (3.39)
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which is consistent with equation 3.30.
Another observation that can be made is that as long as the loss coefficients are

equal, the only effect the imperfections will have is a scaling. The expressions can
be simplified further by observing that any linear combination of |Ex|2 and |Ey|2
can be written in terms of S0 and S1, i.e. |Ex|2 = 1

2(S0+S1) and |Ey|2 = 1
2(S0−S1).

To investigate the effect of the imperfections further, it is convenient to introduce
new coefficients and write

S′2 = `20S0 + `21S1 + `22S2, (3.40)

S′3 = `30S0 + `31S1 + `32S2 + `33S3. (3.41)

If we include losses in the different polarization branches also S1 is affected

S′1 = `10S0 + `11S1. (3.42)

This can be written in form of a matrix multiplication

S′ =


S′0
S′1
S′2
S′3

=


`00 0 0 0

`10 `11 0 0

`20 `21 `22 0

`30 `31 `32 `33




S0

S1

S2

S3

= LS. (3.43)

If the simplification is made that S0 is constant, its influence can be removed by
a DC-block. If the numerical values of the imperfections are known, the actual
Stokes parameters can be found by solving (3.43), and the actual Stokes parameters
are given by

S = L−1S′. (3.44)

3.2.3 Tracking of polarization state and phase differences

As mentioned previously, polarization fluctuations of the signal will cause the disc
to rotate in the coordinate system of the polarimeter. In addition to the rotation due
to polarization fluctuations, further rotations are caused by phase fluctuations in the
two arms of the polarimeter, after the PBS. Phase differences between the inputs of
the hybrid will cause a rotation of the disc around the S1-axis (in the measurement
system).

This can be understood by considering 45◦ linearly polarized CW light, that
will be represented by a point on the intersection of the positive S2 axis and the
Poincaré sphere. A phase shift between the x and y components will transform
the linearly polarized light to elliptical or even circular polarized light, moving the
point along a circle in the S2-S3 plane. For a modulated signal, this will cause a
rotation of the disc around the S1-axis.

Acting together, these rotations causes the orientation of the disc to fluctuate in
all directions, and to measure the dimensions of the disc, these need to be tracked.
This can be done by using a simple plane fitting algorithm, such as the singular
value decomposition (SVD). In fact, the three singular values correspond directly
to the dimensions of the disc.

The SVD is a factorization of an m×n matrix [13, 14]

A = UΣV∗, (3.45)
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where U is an m×m matrix, Σ is an m×n diagonal matrix and V is an n×n matrix.
To use it for plane fitting, set A to be the coordinates of a set of 3D points

A =


p1x p1y p1z
...

...
...

pmx pmy pmz

 . (3.46)

The columns of V will form a basis, oriented with the axes of the ellipsoid closest
to the set of points in A. Figure 3.7 shows an ellipsoid together with the basis
formed by its semi-axes. In particular, the third column will be the normal to the
closest plane. Now, the problem could be solved by doing a coordinate transfor-
mation to the basis found by the SVD and then calculating the dimensions of the
disc according to equation (3.21). However, the SVD provides us also with this
information. The diagonal of the middle matrix in the decomposition, Σ, contains
the singular values of A

Σ =



σ1 0 0

0 σ2 0

0 0 σ3

0 0 0
...

0 0 0


. (3.47)

Here, σ1, σ2 and σ3 correspond to the semi-axes of the ellipsoid closest to the

Figure 3.7: An ellipsoid to-
gether with the basis formed
by its semi-axes.

point set. The square sum of the distances from the points to the best fitted plane is
σ2

3 , and the square sum of the distances between the points and the normal to the
closest plane is σ2

1 +σ2
2 [13]. This means that if the point set are measurements of

the signal in Stokes space, σ1, σ2 and σ3 are equal to Var(S1), Var(S2) and Var(S3)
respectively, and the ratio between the diameter and the thickness of the disc is:

Γ =
σ2

2 +σ2
3

2σ2
1

. (3.48)

The columns of V define the coordinate system in Stokes space of the signal, with
the third column corresponding to the S1 direction.
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COMPUTER SIMULATIONS have been carried out both to study the effect of dif-
ferent signal impairments on the Stokes space representation of the signal,

and to study the behavior of the whole system without the constraints of available
equipment. The simulations were also used to find the cause of different problems
encountered during the experimental work. In this chapter the methods used are
described, and the main results are presented and discussed.

4.1 Method

4.1.1 Signal model

For the simulations, the Jones notation was used. For all simulations a 28 GBd DP-
QPSK baseband signal was used, both Nyqvist modulated and with a raised cosine
envelope.

The raised cosine pulse is described by

y(t) =


1, if |t|< 1−a

2T

1
2

(
1+ cos

(
π

2Ta

∣∣t− 1−a
2T

∣∣)) , if 1−a
2T < |t|< 1+a

2T

0, else

, (4.1)

where T is the symbol time and a is a parameter that determines the rise time of
the transitions. If a = 0, the pulse will have a square shape and a = 1 gives a pulse
shaped like one period of a cosine function. The raised cosine pulse can be seen in
figure 4.1.

−T −T/2 0 T/2 T
0

0.5

1

t

 

 

a = 0
a = 0.25
a = 0.5
a = 1

Figure 4.1: The raised co-
sine pulse.

Nyqvist modulated data has a narrow rectangular-shaped spectrum, which al-
lows extremely dense wavelength division multiplexing. This gives the pulses the
shape of a sinc function in time domain

y(t) =
sinπt

πt
. (4.2)

The sinc-pulse can be seen in figure 4.2.
−3T −T T 3T

−0.5

0

0.5

1

t

Figure 4.2: The sinc-pulse.
Note that the timescale is
different from 4.1.

The data used was a pseudorandom binary sequence (PRBS), that was circu-
larly shifted for the different quadrature components. Figure 4.3 shows the parts of
the simulated transmitter.

4.1.2 ASE model

The ASE noise was modeled in the frequency domain as spectrally flat noise with
random phase. This was implemented by adding

Enoise = ne jφrand , (4.3)

17



18 Chapter 4. Simulations
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Figure 4.3: The simulated transmitter setup. The same PRBS is used for Ix, Iy, Qx and Qy, but delayed a fraction of the PRBS word
length.
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Figure 4.4: The simulated system setup.

at each sample point of the signal in the frequency domain. Here n is a constant
and φrand ∼U(0,2π) is a random variable uniformly distributed between 0 and 2π .

4.2 Results

Generally, the simulation results are presented either in the form of a Γ vs OSNR
curve or as a plot of the maximum Γ value, i.e. Γ for a noiseless signal vs. the
parameter of interest. The Γ vs. OSNR curve is typically fairly linear for low
OSNR values, but starts to saturate for higher values and reaches a maximum value.
As the curve becomes less steep the uncertainty of the OSNR estimate becomes
higher, so the maximum Γ value essentially determines the maximum OSNR value
that is possible to measure. Therefore it is desirable with a steep slope and a high
maximum Γ.

It is also desirable that the behavior does not change when parameters outside
the polarimeter setup changes, for example different pulse shapes and signal im-
pairments. Thus, the Γ value for a noise free signal gives an indication of how well
the method behaves.
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4.2.1 Bandwidths and pulse shapes

The signal is filtered in two places in the setup. The first is the optical filter, whose
main purpose is to select the channel to be measured upon, and the second place
is after the polarimeter, were the signal is transferred to the electrical domain. The
optical bandwidth ∆ν of the filter, must be narrow enough to suppress the neigh-
boring channels and wide enough to let a sufficient amount of the signal through.
It is not obvious what effect different values of the optical bandwidth have, and this
was investigated with the simulations. The electrical bandwidth ∆ f is determined
by the bandwidth of the detectors and the ADC.

Closely related to the optical bandwidth is the pulse shape, which determines
the shape of the signal spectrum. To investigate the filter bandwidths separately, a
square pulse was used.

Only one channel was simulated, so the effects of neighboring channels were
not investigated. Also, there was a practical limit on how low electrical bandwidths
could be simulated, set by the word length of the PRBS. The PRBS has a spectrum
consisting of equally spaced frequency components with the spacing

∆ fPRBS =
Rsymbol

2m−1
, (4.4)

where Rsymbol is the symbol rate and m is the order of the PRBS. If the spacing
is to big, i.e. the word length is to short, too few of the frequency components
are let through the filter and the PRBS is no longer a good model of a real signal.
The problem can be solved by either using a longer word length, or by taking
the average of several simulations using random data. However, both methods
require more computing power, essentially setting the limit for what is reasonable
to simulate. The longest PRBS possible to use with respect to simulation time was
PRBS15, which is 215−1= 32767bits long. This made the lowest usable electrical
bandwidth ∆ f = 100MHz. In figure 4.5 the lowpass filtered signal representation
in Stokes space is shown.

Raised cosine pulses

S
1

S
3

S
2

S
3

Figure 4.5: Example of
a simulated, lowpass fil-
tered signal representation in
Stokes space.

In figure 4.6a-4.6d the Γ vs. OSNR curve for different bandwidth combinations
can be seen. There is a clear dependence between the maximum value of Γ and the
optical bandwidth, as can be seen in figure 4.6a, as well as the rise-time of the raised
cosine envelope, as seen in 4.6b. Essentially, narrowing the optical bandwidth of a
square-pulse signal will result in slower transitions, which explains the similarity
between the optical bandwidth and the pulse shape factor. From this we can draw
the conclusion that faster transitions gives a higher maximum Γ value.

This can be explained by studying for what parts of the signal S1 is nonzero.
From chapter 3 we know that the thickness of the disc for a noiseless signal only
takes a non-zero value in the transitions. This means that if the signal stays in the
constellations points during a larger part of the time, and less in the transitions, the
influence of the signal power on the thickness of the disc will be lower. The effect
of this is that the thickness will be a good measure of the noise level, also for low
noise levels.

On the other hand, if the electrical bandwidth is increased the maximum Γ

decreases. This can be seen by comparing figure 4.6c and 4.6d. This is consis-
tent with the previous discussion about the optical bandwidth, as a lower electrical
bandwidth will suppress the fast spikes in S1 caused by the transitions.

From a practical point of view, the results indicate that a low electric bandwidth
does not limit the usability of the method. In fact it is even desirable, both from a
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(c) ∆ν = 50GHz, ∆ f = 1GHz
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Figure 4.6: Γ vs OSNR for different pulse shapes and bandwidth combinations. Figure (a) and (b) illustrate the connection between
optical bandwidth and pulse shape, and that faster transitions gives a higher maximum Γ. Figure (c) and (d) illustrate that a higher
electrical bandwidth lowers the maximum Γ.
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Figure 4.7: Γ vs. OSNR for Nyqvist modulated data, for (a) different electrical bandwidths and (b) different optical bandwidths. The
result is not affected if the optical bandwidth is not narrower than the signal bandwidth, but is sensitive to the electrical bandwidth.

performance point of view and from an economical point of view. For the optical
bandwidth, although a wider bandwidth gives a higher maximum Γ for signals
with fast transitions, this also makes the method sensitive to the pulse shape of
the signal. In a real system, the optical bandwidth is also limited by the channel
spacing, typically 50GHz. A good choice of optical filter would be the same shape
and bandwidth as that used in the wavelength multiplexer.
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Nyqvist modulated data

In figure 4.7a and 4.7b the Γ vs. OSNR curves using Nyqvist modulated data can be
seen. As long as the optical bandwidth is wider than the signal bandwidth, changes
in the optical bandwidth have small effect on the results. The electric bandwidth
on the other hand is important, and a more narrow electric bandwidth increases the
maximum Γ value significantly.

The insensitivity to the optical bandwidth is easily explained by the narrow
shape of the signal spectrum for Nyqvist modulated data, but the dependence on
the electric bandwidth is not as obvious. Due to the more complicated nature of
the Nyqvist modulated signal it is hard to make the same kind of reasoning about
the transitions as for the raised cosine pulses. The most important conclusion to
draw from these results is that the OSNR dependence of Γ is also dependent on the
pulse shape and signal spectrum.

4.2.2 Chromatic dispersion

The chromatic dispersion (CD) was added in the frequency domain, modeling the
fiber with the transfer function

H f (z,ω) = exp
(

jβ2ω2z
2

+
jβ3ω3z

6

)
, (4.5)

where z is the length of the fiber. β2 and β3 are related to the more commonly used
dispersion parameter D and the dispersion slope S according to

β2 =
−λ 2

2πc
D and β3 =

(
S− 4πc

λ 3 β2

)(
λ 2

2πc

)2

. (4.6)

The values used were the typical ones for standard single mode fiber (SMF), D =
16ps/nm/km and S = 0.09ps/nm2/km [1].

The CD did affect the measurements, but could be compensated for easily by
using a more narrow electrical bandwidth. This is demonstrated in figure 4.8,
where the results for different fiber lengths are shown for different electrical band-
widths. The spectra of the Stokes parameters of the signal, plotted in figure 4.9,
gives a clue to the effect of the narrower bandwidth. In figure 4.9a the spectrum
for a signal without dispersion is plotted. The distance between the two curves
corresponds directly to the ratio Γ. In figure 4.9b and 4.9c the signal is affected
by different amounts of CD, and for high frequencies the S1 curve is raised to the
same level as the S2 curve. This means that the ratio Γ is decreased. However,
if the Stokes parameters are low-pass filtered with sufficiently low bandwidth, the
bump in the S1 curve is suppressed and Γ is unchanged.

Due to the limitations of the simulation method used, discussed in section 4.2.1,
lower bandwidths than 100 MHz could not be simulated. However, the results for
higher bandwidths as well as the spectral simulations gives a strong indication that
large amounts of chromatic dispersion can be tolerated, given that a sufficiently low
electric bandwidth is used. For example, by comparing figure 4.8a and 4.8b we can
see that lowering ∆ f a factor of ten increases the maximum Γ for the L = 100km
curve from 10 dB to almost 20 dB. Given the results in figure 4.9, a system with
∆ f = 10MHz will tolerate a fiber length of at least 1000 km.

4.2.3 Polarization mode dispersion

Polarization mode dispersion (PMD) to the first order can be modeled as single
element of differential group delay (DGD). This is expressed as a matrix multipli-
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Figure 4.8: Γ vs OSNR for different lengths of SMF with D = 16ps/nm/km. Note that the effect of the dispersion is negligible for
L = 100km and ∆ f = 100MHz, which was severely degraded for ∆ f = 1GHz.
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Figure 4.9: The power spectral density of S1 and S2 for different lengths of SMF (D = 16ps/nm/km). The dispersion affects only
the higher frequencies.
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Figure 4.10: The maximum Γ value, i.e. for a signal without noise, plotted vs the differential group delay ∆t and the angle between
the signal and the PMD axis, θ .

cation in the frequency domain

Êout(ω) =

(
exp( jω∆t/2) 0

0 exp(− jω∆t/2)

)
Êin(ω). (4.7)

where ∆t is the amount of DGD. The PMD is also characterized by the direction of
the slow and fast axis of the birefringence related to the x and y polarization axes of
the signal. This will be referred to as the angle θ between the signal and the DGD
element. In Eq. (4.7), θ = 0, and the signal is aligned with the DGD element. The
angle can be changed by rotating the polarization before applying the DGD matrix.
This can be done by multiplying with a rotation matrix

Êout(ω) =(
cosθ sinθ

−sinθ cosθ

)(
exp( jω∆t/2) 0

0 exp(− jω∆t/2)

)(
cosθ −sinθ

sinθ cosθ

)
Êin(ω).

(4.8)

Here, the polarization is rotated back to the original coordinate system after the
DGD is applied.

Since the Stokes representation of the signal is not affected if the x and y po-
larizations are interchanged or if the sign of θ is changed, the effect of the PMD
will symmetric around θ = 0◦ and θ = 45◦. This means that only values of θ in
the range 0◦ to 45◦ are relevant.

As can be seen in figure 4.10 the effect of PMD on the maximum Γ value is
large when the angle between the signal polarization and the PMD axis is large.
Even for moderate values of DGD, the value of Γ is lowered several dB. Note that
the timescale in the plot is one symbol slot, Tsymbol , which is 35.7 ps for a 28 GBd
signal.

However, for PMD aligned with the signal polarization the effect is not sig-
nificant. In this case, the PMD is equivalent to a timing skew between the x- and
y-polarization of the signal.

To further illustrate the effect of PMD, the Stokes representation of the signal
for different DGDs and angles are plotted in figure 4.11. Here we can note that
for the case were the signal polarization and the PMD axis are aligned, the Stokes
representation keeps within the disc-shaped boundaries. For the worst case with
the angle θ = 45◦, the disc is totally deformed.
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(a) θ = 0◦, ∆t = 0 (b) θ = 0◦, ∆t = 5ps (c) θ = 0◦, ∆t = 15ps

(d) θ = 45◦, ∆t = 5ps (e) θ = 45◦, ∆t = 15ps

Figure 4.11: The Stokes representation of the signal, plotted in the S1-S2 plane.
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Figure 4.12: Γ vs the quadrature error of the signal.
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Figure 4.13: Γ vs the power difference between the polar-
izations for different angles between the signal polarization
and PDL axis.

4.2.4 Other signal impairments

Also simulated were the effects of a quadrature error in the transmitter and polar-
ization dependent loss (PDL). The Γ vs. OSNR curves can be seen in figures 4.12
and 4.13, respectively. For large values of both PDL and quadrature error the Γ

values are severely affected. However, the quadrature error is generally controlled
and kept at a low level in real systems. This is generally true for other transmitter
impairments as well, such as bias errors, IQ gain imbalance and IQ-skew. The XY
skew is equivalent to PMD aligned with the signal polarization, and from the re-
sults of the PMD simulations we know that this does not not affect Γ very much.



5 | Experiments

THE EXPERIMENTS can be divided into two main parts, namely (i), those related
to improving the polarimeter setup, and (ii), those related to investigating the

performance of the method for measuring the OSNR. Both parts are presented in
this chapter.

5.1 Polarimeter setup

The polarimeter setup used was nearly identical to the setup described in chapter
3, with fiber coupled components. The 90◦ hybrid used was a Kylia COH24 sin-
gle polarization hybrid, and the balanced detectors were Newport 1817 80 MHz.
As ADC, a TiePie Handyscope HS4 was used, at a sampling rate of 50 MHz. In
addition, external filters with bandwidth ∆ f = 10MHz were used.

To compensate for length differences between the connecting fibers of the two
arms of the PBS, two variable optical delays were added. A delay between the two
arms will act as a DGD element, giving the same effect as a fiber with PMD. A
fiber length of 1 mm corresponds to 5 ps. This is equivalent to 0.14Ts for a 28 GBd
signal, which degrades the results significantly. As the connecting fibers differed
several centimeters, the variable delays were necessary. To find the right amount,
the delay was adjusted manually to find the minimum of the disc thickness. Note
that the compensation cannot be performed with digital signal processing, as this
would require knowledge of the complete Ex and Ey. After the hybrid, only the
low-pass filtered phase difference between Ex and Ey can be extracted.

In addition to the delay between the arms of the PBS, there was also a delay
between the S1, S2 and S3 channels. However, as this is in the electrical domain it
is possible to compensate for with digital signal processing.

+

−

+

−

+

−

90◦

hybrid

50/50

50/50

Variable delay

Variable delay

PBS

signal

ADC

S1

S2

S3

Balanced detectors ∆ f=10MHz

Figure 5.1: The polarimeter setup. The variable delays were added to compensate for length differences between the connecting
cables.
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5.1.1 Digital signal processing

The DSP includes retiming of S1, S2 and S3, to compensate for different path-
lengths, compensation for hybrid imperfections, and extraction of the dimensions
of the disc. To be able to make smaller timing adjustments than the sampling time,
the retiming was performed by interpolating the signals, using sinc interpolation.

Hybrid imperfections

As shown in chapter 3, a non-ideal hybrid can be represented by the matrix equa-
tion

S′ =


S′0
S′1
S′2
S′3

=


`00 0 0 0

`10 `11 0 0

`20 `21 `22 0

`30 `31 `32 `33




S0

S1

S2

S3

= LS, (5.1)

where S is the real Stokes parameters and S′ is the measured Stokes parameters. If
we assume that S0 is constant, these parts can be handled by removing the mean.
This is equivalent to a DC-block.

The remaining matrix can be viewed as the product of a shear matrix and a
scaling matrix. Thus S′1

S′2
S′3

=

`11 0 0

`21 `22 0

`31 `32 `33


S1

S2

S3

 (5.2)

is equivalent toS′1
S′2
S′3

=

`11 0 0

0 `22 0

0 0 `33


 1 0 0

`′21 1 0

`′31
1

tanα
1


S1

S2

S3

 , (5.3)

where the fact that `32 = k cosα and `33 = −k sinα have been used. The angle α

corresponds to the phase shift in the hybrid, and should ideally be π/2.
The parameters could in theory be found by measuring the individual loss co-

efficients of the hybrid, but this proved to be hard. Instead, the parameters were
found by fitting measurements to a sphere by adjusting the parameters. Two meth-
ods were used. The first used continous wave, single polarization light as input,
which is represented by a single point on the Poincaré sphere. The polarization
was scrambled, which together with the phase fluctuations in the polarimeter gave
measurements that covered the whole sphere. In figure 5.2 the effect of the com-
pensation on single polarization measurements is shown. The second method used
the effect of the hybrid on the shape of the disc, with a DP-QPSK signal. To find
the scaling factors, the assumption was made that the scaling could be compensated
for before the shear by normalizing the coordinates of all measurements combined,
so that they roughly form a sphere. As the hybrid imperfections distorts the disc
depending on the direction it takes, giving a higher variation of the values, the shear
parameters can be found by minimizing the variance of several Γ measurements.
This effect can be seen in figure 5.3. Both methods produced similar results.
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Figure 5.2: Single polarization measurements, with random polarization state in the S1-S2-plane. Ideally the points should fill the
circle, as the plot is the projection of a sphere.
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(b) Normalization and shear compensation.

Figure 5.3: Each point represents the Γ value for a single measurement, and the two plots illustrate the necessity of correcting for
the hybrid imperfections.

5.2 OSNR measurements

5.2.1 Transmitter setup

The polarization multiplexed signal was created by splitting a QPSK signal with a
3 dB coupler and delaying one of the arms with a length of fiber, shown in figure
5.4. This is the customary way of creating a DP-QPSK signal in the lab, without
using two QPSK modulators. As a fixed length of fiber was used, the delay could
not be adjusted. This resulted in the signal having a constant XY-skew. However,
in chapter 4 it was shown with simulations XY-skew shifted Γ a fraction of a dB,
so the created signal was still useful to test the system.

The data used was a PRBS with length of 231− 1, which was the longest se-
quence available with the pattern generator used. Generally, it is desirable to use a
long PRBS since they are more similar to real signals with random data. As was
discussed in section 4.2.1, it is also important that the spacing between frequency
components of the signal is significantly smaller than the bandwidth of the system.
Using Eq. (4.4), the spacing of PRBS31 is found to be ∆ fPRBS = 13Hz. As the
system bandwidth is ∆ f = 10MHz, the frequency components of the PRBS is not
a limiting factor.

The noisy signal for the OSNR measurements was created by noise loading,
i.e. adding noise to a noiseless signal. This was accomplished by combining the
DP-QPSK signal with ASE from an EDFA without input signal. The OSNR was
varied using a variable attenuator to control the noise power. An additional EDFA
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Fixed delay

50/50QPSK

28 GBd PBC

DP-QPSK

Figure 5.4: The setup used for creating the dual polarization signal. Due to the fact that a fixed length of fiber was used as a delay,
a constant XY skew was always present.
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Optical filter ∆ν
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OSNR reference

S1 S2 S3

Figure 5.5: The setup used for OSNR measurements.

was then also used to boost the signal power. To make a reference measurement
of the OSNR, the conventional optical spectrum analysis technique was used. This
was possible since only one channel was present, and the reference was measured
before the optical filter. After the optical filter, a variable attenuator was used to
control the input power to the polarimeter.

The measurements were made with the polarization scrambled. This can be
considered a worst case scenario, as the polarization of the signal in real systems
varies in the fiber. Combined with the fact that the method also makes it possible
to measure the angle of the input polarization, it also provides an easy way to find
any polarization dependency of the Γ measurements.

5.2.2 OSNR estimation

To extract the OSNR value from the Γ measurements, the theoretical model of the
relation between OSNR and Γ developed in chapter 3 was used. It should be noted
that the inverse relation,

OSNR(Γ) =
−k1(1−Γ)+

√
k2

1(1−Γ)2−4k0(k22− k21Γ)(1−Γ)

2(k22− k21Γ)
, (5.4)

has a very steep slope for values of Γ close to the maximum. This means that
for high OSNR values, even small uncertainties in the Γ measurements will give
rise to high deviations in the estimated OSNR. Another important feature of the
relation (5.4) is that it has a singularity for Γ = k22/k21, where it approaches in-
finity. This point is equivalent to the maximum Γ value. For higher Γ values it
has no practical significance, and takes negative values. However, as the measured
values fluctuates, it is possible to get Γ measurements that exceeds the maximum
when measuring high OSNR values. These measurements has to be discarded, or
assumed to be the maximum measurable OSNR.
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Figure 5.6: The measured Γ vs. measured OSNR, together
with the fitted theoretical curve.
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Figure 5.7: The OSNR as a function of Γ. Note the steep
slope for high OSNR values, and the vertical asymptote at
Γ = 14dB, which is the value of k22/k21 for this particular
case.

The coefficients k0, k1, k21 and k22 were found using least-squares fitting to
the measured values. In figure 5.6 the theoretical curve is plotted together with
measurements. Here the values used were k0 = 113, k1 = 72.8, k21 = 1 and k22 =
24.8.

There was always a small variation between consecutive Γ values, so to get a
more stable measurement, ten values were averaged. In figure 5.8 the estimated
OSNR is plotted vs. the OSNR measured with the OSA. The estimated OSNR
value keeps within the ±1dB borders for reference OSNR values up to more than
25 dB. This can be considered a good result, as typical OSNR values are in the
range of 15–20 dB. In both figure 5.8a and figure 5.8b the coefficients of Eq. (5.4)
were fitted to the data in figure 5.8a. The OSNR estimation in figure 5.8b is obvi-
ously less accurate, which indicates that the result is sensitive to the values of the
coefficients. However, by accident the polarization scrambler was turned of when
the measurements in figure 5.8b were made. As there is a slight polarization depen-
dence on the results (discussed below) this could be the reason for the deviation.
Still, the measurements stability over time needs to be investigated.

To test the effect of chromatic dispersion the signal was transmitted through
a length of 41.1 km single mode fiber with D = 17ps/nm/km. However, no ef-
fect could be seen, which is consistent with the simulation results, predicting that
measurements with a bandwidth of 10 MHz should tolerate at least 1000 km of
fiber. The estimated OSNR from the measurements with the fiber can be seen in
figure 5.9. The coefficients used to estimate the OSNR were fitted to the data from
another measurement, which explains the deviations for higher OSNR values.

As previously mentioned, the uncertainty in the OSNR estimation grows for
higher OSNR values. To investigate this, 500 measurements were made for OSNR
values of 15, 20 and 25 dB. The result is plotted in figure 5.10a. On the x-axis
is the angle of the disc normal to the S1 axis, representing the polarization of the
signal relative to the polarimeter. In this graph a slight polarization dependence of
the OSNR values can be seen. This could be caused by the hybrid compensation
not being perfect or a remaining delay between the inputs of the hybrid. If the
polarization of the signal is varying rapidly, an error like this is mitigated by taking
an average of several measurements, but for a stable polarization it could be a
source of errors.
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Figure 5.8: The estimated OSNR vs. the OSNR measured with the OSA. Both the individual measurements and the average is
plotted. The unconnected line segments for large OSNR values are because of Γ values higher than k22/k21, which were simply
omitted from the plot. Figure (a) and (b) show different measurements, but the theoretical model was fitted to the data in (a). The
fact that the curve in (b) is less accurate than the one in (a) is an indication that the result is sensitive to variations in the coefficients
in the model.
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Figure 5.9: The estimated OSNR vs. the OSNR measured with the OSA, with the dispersion from a 41.1 km SMF.
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(a) 500 Γ measurements, for 15, 20 and 25 dB. On the x-axis is
θ , the angle between the disc normal and the S1-axis.
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Figure 5.10: Two plots that illustrate the increase of measurement uncertainty with higher OSNR values.

5.2.3 PMD

The effect of PMD was tested using a PMD emulator that introduced a variable
DGD by splitting the signal in two orthogonal polarization states and delaying one
of them. The signal polarization was scrambled before the PMD emulator, giving
a random orientation of the DGD element. 500 measurements were made for a
DGD of 3 ps, 6 ps and 9 ps, with a noise-free signal. The Γ values are plotted in
figure 5.11. As predicted by simulations Γ is severely affected. With the DGD axis
scrambled, this leads to a large variation of Γ as the effect depends on the angle
between the signal polarization and the DGD element.

In figure 5.12 the Γ value for a noise-free signal is plotted vs. the DGD. The
results are consistent with the ones in figure 5.11, and also reveals that up to a
couple of picoseconds of DGD can be allowed for the 28 GBd DP-QPSK signal.
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5.2.4 Other experiments

The effect of a quadrature error was also tested, and the result can be seen in figure
5.13. As for the simulations, the quadrature error does affect the Γ value, but as it
is controlled in a real system, that is probably not a problem.

The setup worked for input power ranging between −12dBm and −2dBm.
The upper power limit was set by detector saturation and the lower by noise in the
detectors. A way to increase the upper power limit would be to attenuate the inputs
of the S1 detector, which is saturated first. This could possibly also improve the
lower limit, because the limiting factor is a larger variation in the Γ values due to
the different impact of noise on S1 as opposed to S2 and S3.

5.2.5 Comparison with simulation results

The results from the measurements show a good qualitative agreement with the
simulations, with the same shape of the Γ vs. OSNR curves. A comparison of the
simulated and measured curves can be seen in figure 5.14. The differences that
can be seen are probably due to different electrical bandwidths and different pulse
shapes.

As mentioned previously, the simulations suggested that the method should
tolerate the dispersion from over 1000 km of SMF, but this could not be tested in the
lab due to the lack of necessary equipment. However, the measurements showed
that 41.1 km SMF had no effect on the result. Also investigated was the effect
of PMD and quadrature error, which also showed a good qualitative agreement
between simulations and measurements.
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Figure 5.11: Measured Γ values with different amounts of DGD. On the x-axis is θ , the angle between the normal of the disc and
the S1-axis.
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Figure 5.12: The measured Γ value vs. the amount of
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spread of the Γ values

0 5 10 15 20
10.5

11

11.5

12

12.5

13

13.5

14
Γ 

[d
B

]

Quadrature error [deg]

Figure 5.13: The measured Γ vs. the amount of quadrature
error.
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Figure 5.14: A comparison between the simulated and the measured Γ vs. OSNR curves. The basic shapes of the curves are similar.
The slight differences that can be seen are probably because of the differences in electric bandwidth, ∆ f = 1GHz for the simulation
and ∆ f = 10MHz for the measurements, and differences in pulse shape. The parameter a is related to the rise time of the simulated
raised-cosine pulses.
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6 | Conclusions

IN THIS PROJECT, a 90◦-hybrid-based polarimeter was constructed and evaluated
as an OSNR monitor. With both simulations and measurements it has been

demonstrated that the polarimeter successfully estimates the OSNR within ±1dB
for a 28 GBd DP-QPSK signal for OSNR values up to 25 dB. It has also been
demonstrated that the method is insensitive to large values of chromatic dispersion.

It is not only possible to use a low bandwidth ADC, which is desirable for cost
reasons, but a low bandwidth is also necessary to mitigate the effects of chromatic
dispersion. The simulations suggested that a bandwidth of 10MHz should allow for
more than 1000 km of single mode fiber (SMF) transmission, and it was confirmed
that 41.1 km of SMF did not affect the measurements.

However, PMD degrades the accuracy of the OSNR estimation severely for
DGD values above a couple of picoseconds. The method is also sensitive to the
pulse shape and spectrum of the signal.

With the goal of developing a practical, versatile OSNR monitoring method
there are several aspects that need to be investigated further to improve measure-
ment accuracy and long-term stability. The needed studies can be divided into three
main categories, (i) further investigations of the effect of signal impairments and
the compensation for these, (ii) the difference in the results for different non-faulty
signals and (iii) testing of other hardware setups.

In this work, the effects of non-linearities in the fiber were not investigated.
This was mainly because it requires either an extended simulation effort or testing
equipment not available, but also because non-linearities are kept at a low level in
real systems since they affect the overall system performance. Nonetheless, it is a
topic that should be investigated.

One of the findings in this work is the sensitivity to PMD of the method. Even
if the amount of DGD is low in modern systems, an important topic is to find a way
of compensating for the PMD effects.

A topic that was only introduced briefly is that of the effect of different trans-
mitter characteristics, and the sensitivity to errors in the calibration. A thorough
investigation of this is needed to determine if the method needs to be calibrated to
different transmitters. There is also a need for an investigation of the measurement
stability over time.

The hybrid based-lumped component polarimeter used in this work has sev-
eral disadvantages, for example the need for adjusting the delays after the PBS.
The setup is also sensitive to vibrations due to the relatively long interconnect-
ing fibers, which cause phase fluctuations and rotations of the disc. This problem
could be avoided by using a completely integrated solution [4]. There are also
several commercial polarimeter solutions available that could be evaluated for use
for OSNR measurements, such as the Agilent N7781B, Thorlabs IPM5300 and
General Photonics POD-101D.
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