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Abstract 
Bioelectrochemical systems can be used to energy-efficiently produce hydrogen peroxide 

(H2O2) from wastewater. Organic compounds in the wastewater are oxidized by 

microorganisms using the anode as electron acceptor. H2O2 is produced by reduction of 

oxygen on the cathode. In this study, we demonstrate for the first time production of high 

concentrations of H2O2 production from real municipal wastewater.  A concentration of 

2.26 g/L H2O2 was produced in 9 hours at 8.3 kWh/kgH2O2. This concentration could 

potentially be useful for membrane cleaning at membrane bioreactor wastewater treatment 

plants. With an acetate-containing nutrient medium as anode feed, a H2O2 concentration of 

9.67 g/L was produced in 21 hours at an energy cost of 3.0 kWh/kgH2O2. The 

bioelectrochemical reactor used in this study suffered from a high internal resistance, most 

likely caused by calcium carbonate deposits on the cathode-facing side of the cation 

exchange membrane separating the anode- and cathode compartments.  
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1. Introduction 
Hydrogen peroxide (H2O2) could potentially be used at municipal wastewater treatment plants for 

disinfection, odor control, and oxidation of recalcitrant pollutants. At membrane bioreactor 

treatment plants, H2O2 would be especially interesting as a cleaning chemical for membranes as it 

could be an environmentally friendly alternative to chlorine. A previous study has shown that H2O2 

concentrations of 2-5 g/L would be sufficient for membrane cleaning [1]. To make the membrane 

cleaning process even more environmentally friendly, H2O2 could potentially be generated onsite 

using a bioelectrochemical reactor in which dissolved organic matter present in the municipal 

wastewater is used to power the electrochemical production of H2O2. 

 

A bioelectrochemical reactor for H2O2 production consists of two compartments separated by an ion 

exchange membrane. A solution containing dissolved organic matter (e.g. wastewater) is fed to the 

anode compartment where microorganisms oxidize the organics and use the anode as electron 

acceptor. The electrons flow through an external circuit to the cathode where oxygen is reduced to 

H2O2. The cathode compartment should contain a relatively clean water or salt solution without 

metals or organics that could lead to decomposition of the produced H2O2. The first 

bioelectrochemical reactor for H2O2 production was developed by Rozendal et al. [2]. They fed the 

anode compartment with an acetate-containing nutrient medium. A H2O2 concentration of 1.3 g/L 

was generated in the cathode compartment at an energy input of 0.93 kWh/kgH2O2. Although 
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bioelectrochemical H2O2 production could take place without an input of electrical energy, a 

voltage of 0.5 V was applied to increase the reaction rate [2]. We, Modin and Fukushi [3], produced 

5 g/L of H2O2 in a reactor that was also fed with an acetate-containing nutrient medium to the 

anode. When we switched anode feed to real wastewater, a concentration of only 0.08 g/L could be 

generated because the anode delivered a much lower current. Fu et al. [4] produced 0.079 g/L H2O2 

with a glucose-containing medium as anode feed and graphite rod electrodes as cathodes. Their 

reactor was operated as a microbial fuel cell (MFC), i.e. with simultaneous recovery of H2O2 and 

electrical energy. Furthermore, MFCs with composite carbon/iron cathodes have been used for 

generation of Fenton’s reagent [5-7]. Bioelectrochemical reactors have also been investigated for 

several other applications, for example, electricity generation from wastewater in MFCs [8-10], dye 

degradation [11], hydrogen  and methane production [12, 13], caustic generation [14], and use as 

biosensors [15, 16].   

 

Although several researchers have investigated bioelectrochemical systems for H2O2 production, no 

study has so far demonstrated production of high concentrations (>2 g/L) from real municipal 

wastewater. Thus, the goal of this study was to bioelectrochemically produce practically useful 

concentrations of H2O2 using real municipal wastewater as feed to the biological anode. We define 

a practically useful concentration as 2-5 g/L, which potentially could be used for onsite membrane 

cleaning at membrane bioreactor treatment plants.  

 

 

2. Experimental 
 

2.1 Bioelectrochemical Reactor 
The bioelectrochemical reactor had cylindrical anode and cathode chambers separated by a Nafion 

117 cation exchange membrane with a diameter of 2 cm. The anode chamber had a liquid volume of 

23 mL, was 9.6 cm long with a diameter of 2 cm, and contained a 0.2 x 3 x 9 cm carbon fiber felt 

electrode attached to a 9 cm long, 0.615 cm diameter graphite rod. The cathode chamber had a 

liquid volume of 5 mL, was 1.3 cm long with a diameter of 2 cm. The gas-diffusion cathode was 

made of carbon fiber paper (Toray TGP-H-060) coated on both sides with a solution of 40% PTFE 

and graphite powder (200 mesh, Alfa Aesar) to avoid water leakage. The liquid-facing side was 

coated with carbon nanoparticles and PTFE (30% mass PTFE/mass C).  

 

2.2 Operation 
The anode chamber was fed with either a nutrient medium (hereby referred to as synthetic feed) or 

raw wastewater that had passed the preliminary treatment steps in a wastewater treatment plant in 

Tokyo, Japan (hereby referred to as real wastewater). The synthetic feed consisted of (mg/L): 500 

CH3COONa, 100 NH4Cl, 2925 NaCl, 150 CaCl2*2H2O, 200 MgSO4*7H2O, 461 KH2PO4, 939 

Na2HPO4, mixed in tap water. The cathode chamber was fed with 50 mM NaCl irrespective of 

anode feed. 

 

The reactor was operated for 63 days. During the first 4 days, the reactor was operated as a MFC 

with a 1000 Ω resistor connected between anode and cathode. Then, a cell potential of 0.2 V (day 4-

10), 0.5 V (day 10-15), and 1 V (day 16-63) was applied to the system and the current was 

measured across a 10 Ω resistor. The anode and cathode were fed continuously at flow rates of 280 

and 10 mL/d, respectively. The anolyte was also recirculated through the anode chamber at a flow 

rate of 50 mL/min. H2O2 production was investigated in specific tests with either controlled anode 

potential or controlled current (Table 1). During a H2O2 test, the cathode was operated as a batch 

whereas the anode was fed continuously at 90 mL/h. The tests usually lasted for 2, 9, or 21 h and 

the final H2O2 concentration was measured in the catholyte.  
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Table 1. H2O2 production tests.  
Test # Day Duration 

(h) 

Control
a
 

(Eanode or I) 

Anolyte 

1 38 2 -0.1 VvsSHE Synthetic feed 

2 38 2 3 mA Synthetic feed 

3 39 9 -0.1 VvsSHE Synthetic feed 

4 40 9 3 mA Synthetic feed 

5 44-45 21 -0.1 VvsSHE Synthetic feed 

6 45-46 21 3 mA Synthetic feed 

7 53 2 -0.1 VvsSHE Real wastewater 

8 53 2 3 mA Real wastewater 

9 54 9 -0.1 VvsSHE Real wastewater 

10 55 9 3 mA Real wastewater 

11 57-58 21 -0.1 VvsSHE Real wastewater 

12
b
 58-59 13.9 ~3 mA Real wastewater 

a
The reactor was operated with either controlled anode potential (Eanode) or controlled current (I) 

b
The anode potential rose rapidly and the potentiostat was not able to provide sufficient voltage to drive a 3mA current, 

so the experiment was terminated after 13.9 h. 

 

 

2.3 Analytical Methods 
H2O2 concentrations were measured spectrophotometrically [17]. Concentrations of anions were 

measured using ion chromatography (Metrohm 761 Compact IC). Concentrations of cations were 

measured using ICP-AES (Perkin Elmer Optima 3000DV). Dissolved organic carbon (DOC) 

concentrations were measured using a TOC-V analyzer (Shimadzu). Potentials were recorded using 

a NI USB-6211 data logger (National Instruments) connected to a PC. Anode potentials are 

reported against the Standard Hydrogen Electrode (SHE) but were measured against Ag/AgCl 

reference electrodes (+0.197 V vs SHE, BAS Inc.). Polarization curves were obtained by 

controlling the current using a potentiostat/galvanostat (KP07, Bank IC) and measuring the 

resulting potentials. The current was increased from 0 mA in steps of 0.1 mA every six minutes. 

 

 

3. Results and discussion 
 

3.1 Bioelectrochemical Reactor Performance 
The current produced by the reactor during normal operation (Qanode=280 ml/d, Qcathode=10 ml/d) is 

shown in Figure 1. Bioelectrochemical activity was observed after 4 days when a potential 

difference developed across the 1000 Ω resistor connected between the anode and cathode. The 

current produced in the reactor could subsequently be increased to 3.0-3.5 mA by applying an 

external potential difference across the cell. When real wastewater was fed to the anode on day 50, 

the current dropped to about 0.6 mA.   
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Figure 1. Current (thin line) and cell potential (thick line) during the experimental period. Negative 

cell potential indicate an input using a DC power source. 

 

 

The state of the reactor was investigated using polarization curves (Figure 2). On day 4, the anode 

potential rose rapidly at a current over 2 mA. On day 25, the ability of the anode had improved as a 

current of over 5 mA could be delivered at low anode potential. This performance remained stable 

until day 50. On day 52 with real wastewater as the anolyte, the anode could still deliver currents up 

to 5 mA, though at a higher potential compared to synthetic feed. On day 60, the performance had 

deteriorated and the anode potential rose quickly. The internal resistance of the reactor can be 

estimated from the slopes of the cell potential versus current curves. From day 4 to day 37, the 

internal resistance increased slowly from 253 to 319 Ω. On day 50, the internal resistance had 

increased to 536 Ω. Real wastewater feed increased the internal resistance dramatically to 745 Ω on 

day 52 and 1153 Ω on day 60. The increase from 536 Ω on day 50 to 745 Ω on day 52 can partly be 

explained by the lower conductivity of the real wastewater, which was 164 mS/cm whereas in the 

synthetic feed it was 745 mS/cm. A more rapid rise in anode potential with increasing current also 

partly explains the higher internal resistance with real wastewater.   

 

 
Figure 2. Polarization curves showing cell potential (left) and anode potential (right) as functions of 

current for different days during the experimental run. 
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As we increased the potential input to the system in the beginning of the experiment, the magnitude 

of the current flowing in the cell also increased. However, when the input potential was kept 

constant at 1 V, the current decreased from about 3.5 mA on day 16 to 1.5 mA on day 50. The 

decrease in current can be explained by an increased internal resistance caused by white deposits 

building up on the cathode-side of the cation exchange membrane. To get a qualitative indication of 

the composition of the deposits, the membrane was submerged in 50 mL 1% HNO3 for 1 day. The 

ionic composition of the HNO3 solution was then analyzed. Ca
2+

 was the most significant cation 

with a concentration of 21.4 mM. Mg
2+

 was present at 3.6 mM, Na
+
 at 3.8 mM, and K

+
 at 0.5 mM. 

For anions sulfate was present at 1.0 mM, chloride at 0.7 mM and phosphate 0.02 mM. These 

results suggest that calcium carbonate was the most important membrane deposit. Since calcium 

ions were not present in the catholyte originally, they must have migrated from the anode 

compartment through the cation exchange membrane. Migration of ions between anode- and 

cathode compartments occurs in electrochemical systems to maintain charge balance. Since the 

oxidation of organics at the anode liberates protons and the reduction of oxygen to hydrogen 

peroxide at the cathode consumes protons, migration of other ions than protons or hydroxide ions 

will lead to pH shifts [see e.g. 18, 19]. A high pH in the catholyte leads to a shift in the carbonate 

system equilibrium towards CO3
2-

 which together with calcium ions forms calcium carbonate 

precipitates. In future work on bioelectrochemical H2O2 production, we should try to minimize 

calcium carbonate deposits on the membrane. One option may be to use an anion exchange 

membrane as separator to prevent calcium ions from migrating from the anode chamber to the 

cathode chamber. Another option could be to use an acidic catholyte to prevent carbonate from 

dissolving into the liquid. 

 

3.2 H2O2 Production 
Production of hydrogen peroxide was investigated in specific tests (Table 1 and Table 2). The 

highest concentration of 9.67 g/L H2O2 was achieved after a 21-h test with controlled anode 

potential and synthetic feed to the anode. With real wastewater, the highest concentration was 2.3 

g/L, which was achieved in 9 hours with a controlled current of 3 mA. This is significantly higher 

than the 0.08 g/L in 21 hrs, which we obtained with real wastewater in a previous study [3]. The 

reason is the larger anode surface area (58.8 cm
2
 vs 31 cm

2
) and higher current (3 mA vs 0.65 mA) 

that could be generated by the anode in this study compared to the previous study. This shows the 

importance of correctly dimensioning the anode surface area in relation to the cathode compartment 

volume.  

 

Despite the high internal resistance of the bioelectrochemical reactor used in this study, H2O2 could 

be produced at a rather low energy cost. The electrical energy input was 1.8 to 3.0 kWh/kgH2O2 

with synthetic feed and 2.2 to 8.3 kWh/kgH2O2 with real wastewater. Comparing the cathodic 

coulombic efficiency (i.e. the efficiency with which electric current is converted to H2O2) in the 

tests operated with constant current shows a slight decrease with increasing test duration. Longer 

test duration leads to higher H2O2 concentration. A higher H2O2 concentration would make H2O2 

more likely to self-decompose or be reduced to water on the cathode surface, which would lower 

the coulombic efficiency. 
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Table 2. H2O2 production tests. The table shows average current, final H2O2 concentration and pH 

in the catholyte, cathodic and anodic coulombic efficiency (CE), acetate consumption in anolyte, 

percentage of acetate used to reduce acetate, and energy input. 
Test # Avg. I

a
 

(mA) 

H2O2  

conc. 

(g/L) 

Final 

cat. 

pH 

Cat.  

CE
b
  

(%) 

∆Ac
- 

(mM) 

An.  

CE
c
 

(%) 

SO4
2-

 red.
d
 

(%) 

Energy input 

(kWh/kgH2O2) 

1 3.5±0.1 0.70 11.7 80 1.2±0.2 15.3±0.2 32.7±2.1 2.2 

2 3.0 0.60 11.7 78 0.8±0.2 19.9±4.4 45.6±8.7 1.8 

3 4.0±0.1 3.50 12.3 76 1.1±0.2 19.5±3.5 36.4±10.2 2.8 

4 3.0 2.51 12.2 73 0.9±0.3 18.0±1.8 48.4±2.2 2.3 

5 4.7±0.1 9.67 12.9 78 1.2±0.2 21.1±1.3 41.5±9.1 3.0 

6 3.0 5.18 12.3 64 1.1±0.1 14.3±1.2 53.6±2.5 2.6 

7 1.0±0.2 0.23 11.0 86 0.5 9.5±1.4 78.9 2.2 

8 3.0 0.62 11.8 81 0.7 21.7 58.4 5.5 

9 1.1±0.0 0.90 10.9 73 0.7±0.1 7.4±0.6 63.6±6.2 2.9 

10 3.0 2.26 11.9 66 0.7±0.0 21.4±1.0 61.7±1.3 8.3 

11 0.9±0.2 1.51 10.7 64 0.7~0.0
e
 5.8 83.2 3.6 

12 3.0 1.73 11.8 37 X
f
 X

f
 X

f
 18.7 

a
Values with error margins (±) were from experiments with controlled anode potentials, others were run with controlled 

current of 3.0 mA. 
b
Cathodic coulombic efficiency (percentage of current charge equivalents used for H2O2 production).  

c
Anodic coulombic efficiency (percentage of the charge equivalent from the consumed acetate used to produce current). 

d
Percentage of charge equivalents from the consumed acetate used to reduce sulfate. 

e
On the first sampling occasion the influent acetate was 0.7 mM, the subsequent three sampling occasions had influent 

acetate concentration of 0.0 mM.  
f
Test #12 was terminated early and measurements on effluent concentrations were not carried out. 

 

 

Tests were carried out with either controlled anode potential or controlled current operation. 

Controlled current operation was expected to give a predictable concentration of H2O2 in the 

catholyte irrespective of anode feed whereas controlled anode potential was expected to maximize 

current generation (and thereby the H2O2 production rate) without exceeding the capacity of the 

electrochemically active microorganisms in the anode chamber. The controlled current operation 

did indeed give a predictable H2O2 concentration in the catholyte. The concentrations produced with 

synthetic feed and real wastewater were similar when constant current operation was employed 

(Figure 3). Operation with constant anode potential, however, led to varying H2O2 concentrations 

depending on the current the anode could deliver. With synthetic feed, the anode delivered an 

average current of 4.7 mA in test #5, which led to a H2O2 concentration of 9.67 g/L after 21 h. 

When the anode was fed with real wastewater, the same test duration only led to a H2O2 

concentration of 1.51 g/L since the delivered current was much smaller. Thus, for reliable H2O2 

production, constant current operation would be the best choice. However, constant current 

operation can lead to problems in bioelectrochemical systems. If the biological anode cannot deliver 

the drawn current through oxidation of organics, other abiotic reaction will occur, which will lead to 

a dramatically increased anode potential. This occurred in test #12, which had to be interrupted after 

13.9 h since the potentiostat could not provide a large enough potential (>5 V) to support a 3 mA 

current. Moreover, abiotic oxidation reactions at the anode may lead to the formation of oxygen or 

other oxidants, which may permanently damage the biological activity at the anode. This seems to 

have occurred in test #12 since the polarization curve done on day 60 (the day after test #12) 

showed a dramatically deteriorated anode performance (Figure 2).  
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Figure 3. H2O2 concentration as a function of test duration for different modes of reactor control. 

 

The type of wastewater fed to the anode determined the current generation at controlled anode 

potential. With synthetic feed, the average current ranged from 3.5 to 4.7 mA when the anode was 

controlled at -0.1 V vs SHE. The synthetic feed had an average influent acetate concentration of 

5.5±0.5 mM acetate. The anodic coulombic efficiency (CE) (i.e.the fraction of the consumed acetate 

utilized for current production) ranged from 14.3 to 21.1%. The fraction of acetate used to reduce 

sulfate ranged from 32.7% in test #1 to 53.6% in test #6. Other processes such as aerobic oxidation 

in the effluent collection vessel and methanogenesis that may have been responsible for the 

remaining portion acetate loss were not quantified. 

 

With real wastewater, the current was 0.9-1.1 mA when the anode was controlled at -0.1 V vs SHE. 

The real wastewater had an average influent DOC concentration of 3.2±0.2 mM. About half of the 

DOC in the real wastewater was present as acetate, which had an average concentration of 0.9±0.1 

mM. The high fraction acetate in the wastewater DOC could have been caused by fermentation 

taking place after collecting it at the wastewater treatment plant and storing it in the laboratory. 

When the real wastewater was fed to the anode, the reduction in DOC concentration between the 

influent and effluent was similar to the reduction in acetate concentration. This means that even 

with real wastewater as anode feed, acetate was the main source of carbon and energy for the 

electrochemically active microorganisms. The anodic coulombic efficiency was 5.8-9.5% in the 

tests with controlled anode potential. With the current controlled at 3.0 mA, it was over 21%. 

Compared to synthetic feed, a larger fraction (58.4-83.2%) of the removed acetate was used for 

sulfate reduction in the real wastewater. 
 

The pH in the catholyte increased during the H2O2 production tests (Table 2). Test #5, which had 

the highest current, also had the highest final catholyte pH of 12.9. Test #11, which had the lowest 

current, had the lowest pH of 10.7. Since Nafion 117 is a cation exchange membrane, cations 

migrated from the anode compartment to the cathode compartment when current was flowing in the 

system. The concentrations of Na
+
, Ca

2+
, Mg

2+
, and K

+
 were analyzed in the anolyte and in the 

catholyte. The distribution of these four ions in the anolyte and their increase in the catholyte are 

shown in Figure 4. In the synthetic feed, Na
+
 made up approximately 90% of the four cations, and 

also made up about 90% of the ionic charge transferred to the catholyte. In the real wastewater, 

Mg
2+

 and Ca
2+

 made up a larger fraction of the total charge, around 10% each. However, in the 

catholyte, the Ca
2+

 fraction was very small. This is because the calcium ions that migrated to the 
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cathode compartment were to a large extent deposited as calcium carbonate on the membrane. The 

percentage distribution of cations in the membrane deposits are shown in Figure 4.  

 

   

 
Figure 4. Percentage distribution of charge equivalents of Na

+
, Ca

2+
, Mg

2+
, and K

+
 in the anolyte, 

catholyte, and membrane deposits. The catholyte distribution refers to ions transferred from the 

anolyte.  

 

 

4. Conclusions 
This is the first study to show that a H2O2 concentration which could be practically useful for 

membrane cleaning in membrane bioreactor treatment plants can be generated in a 

bioelectrochemical reactor with real municipal wastewater as anode feed. A concentration of 2.26 

g/L was produced in 9 hours at an energy input of 8.3 kWh/kgH2O2. With an acetate-containing 

nutrient medium as anode feed, a concentration of 9.67 g/L could be generated in 21 hours with an 

energy input of 3.0 kWh/kgH2O2.  

 

To reduce the energy requirements for H2O2 production, the internal resistance of the reactor must 

be lowered. In this study, a high internal resistance was partly caused by calcium carbonate deposits 

on the cathode-facing side of the cation exchange membrane separating the anode- and cathode 

compartments.  
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