
Chalmers Publication Library

Sustainable production automation - Energy optimization of robot cells

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proceedings - IEEE International Conference on Robotics and Automation (ISSN: 1050-

4729)

Citation for the published paper:
Wigström, O. ; Lennartson, B. (2013) "Sustainable production automation - Energy
optimization of robot cells". Proceedings - IEEE International Conference on Robotics and
Automation pp. 252-257.

http://dx.doi.org/10.1109/ICRA.2013.6630584

Downloaded from: http://publications.lib.chalmers.se/publication/187702

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/ICRA.2013.6630584
http://publications.lib.chalmers.se/publication/187702


Sustainable Production Automation -
Energy Optimization of Robot Cells

Oskar Wigström and Bengt Lennartson

Abstract— This paper concerns the reduction of energy use
in manufacturing industry. If individual robot movements in
a system are preprocessed using Dynamic Programming, one
can attain a Mixed Integer Nonlinear Program (MINLP) which
models the energy consumption of the complete system. This
model can then be solved to optimality using mathematical
programming. We have previously shown proof of concept for
this energy reduction method. In this paper, we apply state of
the art MINLP methods to a number of problems in order
benchmark their effectiveness. Algorithms used are Nonlinear
Programming based Branch and Bound (NLP-BB), Outer Ap-
proximation (OA), LP/NLP based Branch and Bound (LP/NLP-
BB) and Extended Cutting Plane (ECP). Benchmarks show that
the NLP-BB does not perform well for nonlinear scheduling
problems. This is due to the weak lower bounds of the integer
relaxations. For scheduling problems with nonlinear costs, ECP
and in particular LP/NLP-BB are shown to outperform both
NLP-BB and OA. The resulting energy optimal schedules for
the examples show a significant decrease in energy consumption.

I. INTRODUCTION

Minimizing energy consumption in industrial applications

is important both from an environmental and economical

point of view. One of several approaches to this problem is

to improve existing hardware solutions. Energy optimization

of mechatronic devices is well investigated in [1], [2], [3].

Minimizing the energy cost for trajectories in robot applica-

tions is in itself a big research field, see e.g. [4], [5]. From

a system design perspective, a selection and matching of

efficient design solutions for pre-defined operations is studied

in [6], [7]. Also, two approaches where idle time between

the operations is used to reduce velocities and accelerations

is presented in [8]. This is however without concern to the

energy consumption.

In a typical manufacturing system, multiple robots will

often work together in close proximity each other, e.g. as

in Figure 1. One way to avoid collisions between robots is

to require booking of any areas which might be occupied

by more than one robot. Previously, we have presented a

method for the energy optimization of systems where multi-

ple moving devices share common resources [9]. The method

consists of two steps, one which preprocesses possible move-

ments within the system, and another which schedules these

processed movements. Where our previous paper focused

This work was carried out at the Wingquist Laboratory VINN Excellence
Center within the Area of Advance – Production at Chalmers, supported by
the Swedish Governmental Agency for Innovation Systems (VINNOVA) and
the Swedish Research Council. The support is gratefully acknowledged.

O. Wigström, B. Lennartson, Automation Research Group, Department
of Signals and Systems, Chalmers University of Technology, Gothenburg,
Sweden, oskar.wigstrom@chalmers.se

mainly on the preprocessing step and showed as a proof of

concept how the scheduling could be performed, this paper

delves deeper into the scheduling part.

It is reasonable to assume that the spatial paths of moving

devices in a production system are known, or can at least

be fixed. This is in particular true for industrial robots. For

example, a process designer would like a robot endpoint to

perform a linear translation. Then with a fixed path for the

endpoint, the evolution of the joint coordinates are known

by inverse kinematics. Also, the spatial paths are most often

determined before scheduling is applied. This is because to

avoid collisions in robotic systems, the areas where there is

risk for collision must be identified before scheduling. The

scheduling problem is thus a matter of driving the robots

along their paths such that mutual exclusion is fulfilled for

common resources and other constraints are upheld.

The previously mentioned preprocessing step consists of

using Dynamic Programming (DP) to generate the optimal

cost for each path (movement) as a function of time. These

functions take the form of polynomials and are then used

to form the total energy consumption for the entire system.

This is then used as a cost function in the global scheduling

problem, which takes the form of a convex Mixed Integer

Nonlinear Program (MINLP). In [9], a small case study was

presented but the solution method consisted of simply using

explicit enumeration of the feasible integer solutions and

using a Nonlinear Programming (NLP) solver to solve each

explicit instance. In this paper however, we apply state of

the art MINLP methods to study the efficiency of different

solution methods, as well as show the tractability of our

method for problems of various characteristics.

The paper is structured as follows. Section II contains

Fig. 1. Three robots working in close proximity to each other.



introduction to convex MINLP and introduces the algorithms

used for benchmarking in this paper. Section III recapitulates

the DP method used to generate the cost function for the

scheduling problem. Section IV presents the scheduling

model and Section V the case study. Finally Section VI

contains a brief discussion.

II. CONVEX MINLP METHODS

The constraints arising from a scheduling problem are that

of mixed logical linear. To describe execution and simple

temporal ordering of operations, it is enough with linear

equalities and inequalities. But when two operations are

subject to the mutual exclusion of a resource, one of the

two operations must occur before the other. The resulting

mathematical description consists of two linear constraints

with an ’exclusive or’ (XOR) statement describing that

only one of the two linear constraints should hold. Luckily,

logic expressions can be encoded into mixed integer linear

constraints [10]. Scheduling problems can thus be modeled

and solved using mixed integer methods.

In this paper, we are concerned with minimizing the com-

bined energy consumption of a number of robots working

together. In [11] we showed how to generate the minimum

cost of a nonlinear time invariant criteria as a function of

execution time. A quick summary is provided in Section

III. These energy functions are approximated as convex

polynomials and form the cost function. Because the energy

cost is convex nonlinear in general, the complete scheduling

problem is that of a convex MINLP. In an algebraic form, a

MINLP is expressed as

minimize
x,y

f(x, y)

subject to g(x, y) ≤ 0

x ∈ X

y ∈ Y integer,

where f : R
n+m → R is a possibly nonlinear objective

function and g : R
n+m → R

k is a possibly nonlinear

constraint function. In our case, we require both f and g
to be convex. From here on we will refer to convex MINLP

as just MINLP. The two sets of decision variables are x and

y, where y is required to be integer valued.

An excellent and substantial review which summarizes the

current state of MINLP can be found in [12]. There are a

number of different methods and packages that implement

these methods. In this paper, we have used the open source

solver Bonmin [13]. We chose to benchmark four popular

choices of algorithms: Nonlinear Programming based Branch

and Bound (NLP-BB), Outer Approximation (OA), LP/NLP

based Branch and Bound (LP/NLP-BB) and Extended Cut-

ting Plane (ECP). The following provides a short summary

of the algorithms.

(NLP-BB) The theory used for the branch and bound

algorithms used to solve MILP problems, first presented

in [14], do not have any requirement on linearity [15]. A

nonlinear implementation, proposed in [16], works similar

to its linear counterpart. A tree of problems, yet to be

processed is defined. The tree is initialized with an integer

relaxed problem, an NLP. The solution to this relaxed NLP

provides a lower bound on the objective. Iteratively, integer

variables are branched upon and constrained, such that NLP

subproblems, with some integers fixed and other relaxed, are

created. The resulting optimal solution for each sub problem

provides a lower bound for the current branch. When all

integer variables have been constrained such that they form

an assignment, the solution provides an upper bound for the

MINLP. Once an upper bound has been found, any nodes

with a greater lower bound can be removed from the tree

of problems. The algorithm terminates when all branches of

the tree have been explored or removed.

(OA) First presented in [17], OA utilizes the fact that a

MINLP is equivalent to a MILP of finite size, see also [18].

A MILP formulation, or reduced Master Problem (MP),

which yields the same optimal solution as the MINLP can

be constructed by linearizations of the MINLP. Usually, the

algorithm is initiated by solving the integer relaxed MINLP,

the MINLP is then linearized at the solution point and the

resulting constraints are added to the MP. Solving the MP

yields an integer solution, which is then used to form an NLP.

Solving the NLP provides yet another point at which the

MINLP is linearized. This procedure is repeated iteratively.

Note that the MP does not necessarily have to be solved to

optimality, as any valid integer assignment which yields a

better solution than the current upper bound can be used in

the NLP.

(LP/NLP-BB) First presented in [19], LP/NLP-BB func-

tions similarly to OA. Instead of solving a sequence of MPs,

a branch and bound tree with LP-relaxations is started on the

initial MP. The algorithm progresses much like a branch and

bound MILP solver would. But each time a partial integer

solution is found, it can be used to generate an NLP. Different

rulesets exist which define how often an NLP should be

generated. The resulting NLP solution point is linearized and

used to update the tree of LPs. The LP/NLP-BB thus differs

to OA in the regard that the MILP solver need not restart.

See [13] for details on Bonmin’s implementation.

(ECP) Introduced in [20], this method requires no NLP

solver to function. The algorithm is based on iteratively

solving a master MILP problem. At each iteration, the most

violated constraints of the solution are linearized and added

to the master problem. The algorithm terminates as the max-

imum constraint violation is smaller than some prespecified

tolerance.

Note that in general, for each integer relaxed MINLP that

is solved, one would like the convex hull of the relaxation to

be as tight as possible. While there exists techniques which

can be used to generate tight convex hull relaxations, this will

be of little or no help for our problem. As pointed out in [21],

even the tightest convex hull which arises from relaxations

of scheduling disjunctions is so large that it is most likely

useless in practice.



III. TRAJECTORY PLANNING

A trajectory planning problem entails finding the control

signal which will move a manipulator or other moving

device along a predefined geometric path, while upholding its

dynamical constraints. A literature review covering the last

three decades can be found in [22]. In this paper, we use the

dynamic programming method described in [11]. The grid

dimensionality is two and is unchanged for an increasing

number of spatial dimensions. A favourable property of this

particular method is that one execution will yield the optimal

cost for the entire spectrum of end times.

The following is a truncated formulation, for more detail

see [11]. Let the known spatial path be defined by a function

xp(τ), a parametrized curve dependent on one single variable

τ(t). The time optimal trajectory can be used to define xp

and its derivatives. This implies that τ is the time scale for

the time optimal trajectory, xp. For example, defining τ = t
would result in the time optimal trajectory. The relationship

between x and xp can therefore be expressed as

x(t) = xp(τ(t)), 0 ≤ τ ≤ τf , (1)

where τ(t) is a monotonically increasing function with a

starting value of 0 and final value τf , where τf in our

case corresponds to the time optimal execution time. If

τ(tf ) = τf , then tf is the new final execution time of

the dynamically scaled trajectory. Differentiating (1) with

regard to time yields expressions for speed and acceleration.

Note that we will restrict ourselves to considering the second

derivative of x. Given that x and its derivatives are functions

of τ and xp(τ), and as the latter is known, any cost function

on the form

c(tf ) =

∫ tf

0

g(x, ẋ, ẍ) dt, (2)

can be rewritten as

c(tf ) =

∫ tf

0

g(τ̇(0), τ̈) dt, (3)

where tf is the final time of the trajectory. The trajectory

planning problem is thus a matter of minimizing c with

respect to τ̇(0) and τ̈ .

Let us model τ as a discrete time double integrator with

time-varying sampling time hk that affects the time updates

as tk+1 = tk + hk. With an input variable uk which is

constant during the sampling intervals, the discrete state

space model for τ is now

[
τk+1

νk+1

]
=

[
1 hk

0 1

] [
τk
νk

]
+

[
h2
k/2
hk

]
u(tk), (4)

where ν = τ̇ and for simplicity, we introduce τk+1 =
τ(tk+1), τk = τ(tk) and νk+1 = ν(tk+1), νk = ν(tk). The

minimization of (3), subject to this discrete time model of

the time function τ(t) can be solved with DP.

For computational reasons, it is convenient to reformulate

the problem. Since τ is monotonically increasing it is possi-

ble, instead of taking steps along the t-axis in each iteration,

to take steps along the τ -axis and let tk+1 = tk + hk act

as a discrete state equation. Let the size of the steps along

τ during each iteration be defined by Δk, a user defined

sampling period or gridding of τ . The reformulated discrete

state space is now

[
tk+1

νk+1

]
=

[
1 0
0 −1

] [
tk
νk

]
+

[
hk

2Δk/hk

]
, (5)

which can be more efficiently solved by DP. For details on

the reformulation and its computational advantages, please

see [9]. From here, DP can be applied to solve the discrete

time optimal control problem. The resulting grid with opti-

mal costs can then be approximated as a polynomial. This

is done by using standard least squares curve fitting.

IV. MINLP MODEL

Modeling scheduling problems with linear costs can be

done in a number of ways. The start and end times of

operations can be treated as integers [23] or time can be

given implicitly by the order of operations [24]. As a third

option, the planning period could be discretized and an

operation starting in a specific time instance is modeled by

a boolean variable [25]. Since the energy cost is modeled as

a convex nonlinear function of execution time, we require a

formulation which uses real valued variables for the start and

end times of operations. We will therefore adapt the modeling

formalism in [23]. Although the original formulation uses

integer decision variables to model execution, real valued

variables can be used just as well. Recent formulations

for the flexible job shop scheduling problem based on the

formalism in [23] can be found in for example [26], [27].

In this paper we examine the size of industrial examples

which are tractable using our method. Booking resources

during multiple operations is concidered in the case study

and multiple bookings per operation is supported by the

model. However, alternatives and multi-capacity resources

are excluded due to space limitations, please refer to [28]

for an extended modeling format which supports this.

We formulate the scheduling problem as follows. A

problem has a set J jobs and a set R resources. Each

job, J ∈ J , consists of a set of operations OJ , we denote

each element OJ,i, i = [1, ..., hJ ], where hJ is the number

of operations in J . An operation consists of the following

parameters:

Omin
J,i - minimum execution time (constant)

Omax
J,i - maximum execution time (constant)

Os
J,i - start time (decision variable)

Of
J,i - final time (decision variable)

OP,k
J,i - cost polynomial coefficients, k = [pmin, ..., pmax]

As is, these operations can be performed in any order,



but there is also a set of temporal orderings T which

can constrict one operation to be executed after another.

We define a temporal ordering T ∈ T by the following

properties:

TL - left hand side (pointer to decision variable)

TR - right hand side (pointer to decision variable)

Ttype - temporal ordering type {eq, leq}

We also define, for each resource R ∈ R, a set of

allocation/deallocation pairs PR which will govern

how operations use resources. Each pair PR,l ∈ PR,

l = [1, ..., hR], where hR is the number of pairs in PR,

describes the allocation and deallocation of a resource.

P a
R,l - allocation (pointer to decision variable)

P d
R,l - deallocation (pointer to decision variable)

The complete scheduling problem is thus given by the

tuple

SP = 〈J , T ,R, tf 〉,
where tf is the desired cycle time which could be either

constant or variable.

As for the cost function, the total energy consumption

which is to be minimized is given by

E =
∑
J∈J

hJ∑
i=1

pmax∑
k=pmin

OP,k
J,i (O

f
J,i −Os

J,i)
k, (6)

which expresses the sum over all the evaluated cost polyno-

mial, in all operations, in all jobs. The constraints describing

execution are now expressed as

OJ
s +OJ

min ≤ OJ
f ,

OJ
f −OJ

s ≤ OJ
max,

∀{OJ : OJ ∈ Oj}, {J : J ∈ J }. (7)

Also, since we are minimizing energy levels, we must assume

that in each job, one operation is executing at all time. Idle

time is modeled by idle operations. We do this by

∑
OJ∈OJ

(
OJ

f −OJ
s

)
= tf , ∀{J : J ∈ J }. (8)

That is, the sum of all operations in a job should amount

to the desired cycle time. We should also ensure that no

operation executes outside our cycle time

OJ
f ≤ tf , ∀{OJ : OJ ∈ Oj}, {J : J ∈ J }. (9)

Note that to avoid redundant constraints, inference can be

used to skip adding the above constraint for operations which

may never execute last.

As for the temporal orderings:

TL ≤ TR, ∀{T : T ∈ T , Ttype = leq} (10)

TL = TR, ∀{T : T ∈ T , Ttype = eq} (11)

This implies that if example we would like to describe

that OJ,1 should end before OJ,2 can start, then TL = Of
J,1,

TR = Os
J,2 and Ttype = leq.

For the modeling of resources, we need to generate the

mutual exclusion for each possible combination of pairs. For

each pair, there must also be a boolean describing which

one executes first, we define a bijective mapping δ : PR ×
PR → D, where D is a set of boolean variables. If the

boolean δ(PR,1, PR,2) is true, then this implies that PR,1

executes before PR,2. Thus, δ(PR,1, PR,2) �= δ(PR,2, PR,1).
The resource constraints are given by

P d
R,l ≤ P a

R,k +M(1− δ(PR,l, PR,k))

∀ {k : k ∈ [1, ..., hR]\l},
{l : l ∈ [1, ..., hR]},
{R : R ∈ R}, (12)

where M is a constant sufficiently large to nullify the

constraint if the boolean is false. Note that, if for example

a resource is allocated at the start of OJ,1 and deallocated

at the end of OJ,2, then the pair PR,l describing this would

have P a
R,l = Os

J,1 and P d
R,l = Of

J,2.

Note that each job itself should be subject to mutual ex-

clusion. Thus for each job we add a corresponding resource

which all operations in the job books during execution. Also,

to simplify the model, if it is known that a number of opera-

tions are to execute in sequence, for example OJ,1, ..., OJ,5.

Then it is enough to define a booking from Os
J,1 to Of

J,5.

V. CASE STUDY

The robot and their operations were modeled using an

offline programming and simulation environment for robot

systems, ABB Robot Studio [29]. The software automatically

generates time optimal trajectories for each operation. The

path information for each operation can then be exported

into MATLAB where the DP algorithm described in Section

III was implemented.

TABLE I

TEST SET STATISTICS

Problem instances
A B C D

Variables 274 374 415 415
Binary 54 108 99 99

Nonlinear 106 130 154 154
Constraints 389 523 601 585
Equalities 94 109 128 128

Inequalities 295 414 473 457
Nonzeros 220 266 316 316

Robots 4 3 4 4
Zones 4 3 6 6

Operations 110 133 158 158
Sequences 16 18 24 24

Minimum time 73 s 95 s 100 s 113 s



The case study consists of four different problem in-

stances. Each of similar size but with varied characteristics.

A problem instance consists of a number of six-joint robots,

operations and common zones. The operations are grouped

into a number of sequences. Each sequence consists of 1-5
operations. The following provides a brief description.

(Instance A) Four robots each have four sequences. Each

of these sequences are to be performed in one of four

common zones. However, the first two sequences, as well

as last two can be performed in an arbitrary order.

(Instance B) Three robots each perform six sequences

in an arbitrary order. Each robot has two adjacent common

zones (in total three) in which the sequences are performed.

(Instance C) Four robots each perform six sequences. The

six sequences form three pairs, which should be performed in

order, while the two sequences in each pair can be performed

in any order.

(Instance D) In this job shop type instance, four robots

perform six sequences in a row, each in one of six common

zones.

See Table I for a compilation of statistics for the four

problem instances. Note that the number of binary variables

may not necessarily reflect the number of feasible alternatives

for a specific problem instance.

All optimization was run on a Windows 7 64bit system

with a 2.66 [GHz] Intel Core2 Quad CPU and 4 [GB] of

RAM. The minimum energy trajectory planning problem for

each operation instance was solved in close to 40 [s]. All

MINLP benchmarks were performed using Bonmin (v1.5.1)

with Cbc (v2.7.5) as MILP solver and Ipopt (v3.10.1) as

NLP solver.

For each instance, 11 MINLP formulations were cre-

ated with a range of final times. The resulting algorithm

benchmarks are compiled in Table II. Note that the DP

preprocessing time has been excluded and as such, the

solution times refer only to the time taken by the MINLP

scheduling algorithm. As can be seen, both NLP-BB and

OA display quite long solution times for instance A and

D. They are also unable to solve any of the problems in

instance B and C. The two other algorithms, LP/NLP-BB

and ECP manage better, both in terms of solution time as

well as solved problems. Time wise, ECP seem to solve

simple problems slightly faster than LP/NLP-BB. Solution

wise, LP/NLP-BB works better for the larger instances. It

is the only algorithm to solve all problems within 1000 [s]

with a termination gap of 1%.

Instances B and C were shown to be the hardest to solve.

The first is characterized by a high flexibility in the order

of which the sequences are performed. The second has a

medium amount of flexibility but a high number of common

zones. Instance D has a high a number of common zones as

C, but with its job shop style ordering of sequences, optimal

solutions could be found quite fast.

The resulting overall minimum energy consumption for

each instance as a function of cycle time is illustrated in

Figure 2. Scheduling based on the Dynamic Programming

method (dynamic scaling) is indicated by the solid curves.

70 90 110

1

1.3

1.6

x 10
5

Energy consumption for complete cycle

Instance A

Cycle time [s]

E
ne

rg
y 

co
st

 [J
]

100 120 140

1

1.3

1.6

x 10
5

Instance B

Cycle time [s]

E
ne

rg
y 

co
st

 [J
]

100 120 140

1.4

1.7

2

2.3

x 10
5

Instance C

Cycle time [s]

E
ne

rg
y 

co
st

 [J
]

110 130 150

1.4

1.7

2

2.3

x 10
5

Instance D

Cycle time [s]

E
ne

rg
y 

co
st

 [J
]

Fig. 2. Overall minimum energy consumption for the case study as a
function of cycle time. The dashed curves shows scheduling where no
scaling is allowed, the dotted show the result from linearly scaled operation
(τ̈ = 0) while the solid show dynamically scaled operations as described
in Section III.



TABLE II

TEST SET RESULTS

Problem instances
A B C D

Solved instances: 0 % termination gap, 1000 s timeout
NLP-BB 100 % 0 % 0 % 100 %

OA 100 % 0 % 0 % 82 %
LP/NLP-BB 100 % 45 % 82 % 100 %

ECP 100 % 18 % 73 % 100 %

Mean solution time: 0 % termination gap, 1000 s timeout
NLP-BB 461 s - - 339 s

OA 238 s - - 518 s
LP/NLP-BB 39 s 462 s 335 s 70 s

ECP 27 s 282 s 369 s 55 s

Solved instances: 1 % termination gap, 1000 s timeout
NLP-BB 100 % 0 % 0 % 100 %

OA 100 % 0 % 0 % 82 %
LP/NLP-BB 100 % 100 % 100 % 100 %

ECP 100 % 91 % 82 % 100 %

Mean solution time: 1 % termination gap, 1000 s timeout
NLP-BB 406 s - - 296 s

OA 236 s - - 507 s
LP/NLP-BB 38 s 162 s 321 s 46 s

ECP 26 s 435 s 252 s 42 s

For comparison, we have also plotted the result of scheduling

based on time optimal individual operations (dashed curves)

as well as linearly scaled operations (τ̈ = 0, dotted curves).

Compared to a system optimized using time optimal robot

movements, all instances show a significant decrease in

energy consumption for scheduling based on both linear and

dynamic scaling.

VI. DISCUSSION AND CONCLUSION

In this paper we have examined scheduling problems

with nonlinear energy cost functions. We have benchmarked

four different methods for solving the MINLP: Nonlinear

Programming based Branch and Bound, Outer Approxima-

tion, LP/NLP based Branch and Bound (LP/NLP-BB) and

Extended Cutting Plane (ECP). We show that LP/NLP-BB

performs best on all instances, with ECP as a close second.
For systems where the sequence of operations is given

beforehand and scheduling only with regards to common

zones has to be performed, the scheduling problem can be

solved readily. A practical implementation of the DP method

used for preprocessing is still needed to verify the data which

the MINLP is based on. However, if DP results from a

real process in anywhere near the computational results, the

possibilities for energy reduction by MINLP scheduling are

very good.

REFERENCES

[1] R. Saidur. A review on electrical motors energy use and energy
savings. Renewable and Sustainable Energy Reviews, 14(3):877 –
898, 2010.

[2] R. Visinka. Ch. 2 - Energy Efficent Three-Phase AC Motor Drives
for Appliance and Industrial Applications. Goldberg and Middleton,
2002.

[3] G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle, R. Krenn,
A. Pascucci, and M. Schedl. Dlr’s torque-controlled light weight robot
iii-are we reaching the technological limits now? In Robotics and
Automation, 2002. IEEE International Conference on, 2002.

[4] J. S. Park. Motion profile planning of repetitive point-to-point
control for maximum energy conversion efficiency under acceleration
conditions. Mechatronics, 6(6):649 – 663, 1996.

[5] E.S. Sergaki, G.S. Stavrakakis, and A.D. Pouliezos. Optimal robot
speed trajectory by minimization of the actuator motor electromechan-
ical losses. J. Intell. Robotics Syst., 33:187–207, Feb. 2002.

[6] O. Maimon, E. Profeta, and S. Singer. Energy analysis of robot task
motions. Journal of Intelligent and Robotic Systems, 4:175–198, 1991.

[7] T. Izumi, H. Zhou, and Z. Li. Optimal design of gear ratios and offset
for energy conservation of an articulated manipulator. Automation
Science and Engineering, IEEE Transactions on, 6(3):551 –557, Jul.
2009.

[8] A. Kobetski and M. Fabian. Velocity balancing in flexible manufac-
turing systems. In Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on, pages 358 –363, may 2008.

[9] O. Wigström, B. Lennartson, A. Vergnano, and C. Breitholtz. High
level scheduling of energy optimal trajectories. IEEE Transactions on
Automation Science and Engineering, 2013.

[10] J. N. Hooker. Logic-based modeling, 2002.
[11] O. Wigström, N Sundström, and B Lennartson. Optimization of hybrid

systems with known paths. In Analysis and Design of Hybrid Systems
(ADHS), 4th IFAC Conference on, 2012.

[12] Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth. Algorithms and
software for convex mixed integer nonlinear programs. In Mixed
Integer Nonlinear Programming, volume 154 of The IMA Volumes
in Mathematics and its Applications, pages 1–39. Springer New York,
2012.

[13] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard
Cornuéjols, Ignacio E. Grossmann, Carl D. Laird, Jon Lee, An-
drea Lodi, François Margot, and Nicolas Sawaya. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete
Optimization, 5(2):186–204, May 2008.

[14] A. H. Land and A. G Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[15] R. J. Dakin. A tree-search algorithm for mixed integer programming
problems. The Computer Journal, 8(3):250–255, January 1965.

[16] Omprakash K. Gupta and A. Ravindran. Branch and bound experi-
ments in convex nonlinear integer programming. Management Science,
31(12):1533–1546, 1985.

[17] Marco Duran and Ignacio Grossmann. An outer-approximation algo-
rithm for a class of mixed-integer nonlinear programs. Mathematical
Programming, 36:307–339, 1986.

[18] Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear pro-
grams by outer approximation. Mathematical Programming, 66:327–
349, 1994.

[19] I. Quesada and I.E. Grossmann. An lp/nlp based branch and bound
algorithm for convex minlp optimization problems. Computers and
Chemical Engineering, 16(10-11):937 – 947, 1992.

[20] Tapio Westerlund and Frank Pettersson. An extended cutting plane
method for solving convex minlp problems. Computers and Chemical
Engineering, 19, Supplement 1(0):131 – 136, 1995.

[21] J.N. Hooker and M.A. Osorio. Mixed logical/linear programming.
Discrete Applied Mathematics, 96:96–97, 1997.

[22] A. Gasparetto and V. Zanotto. A technique for time-jerk optimal
planning of robot trajectories. Robotics and Computer-Integrated
Manufacturing, 24(3):415 – 426, 2008.

[23] Alan S. Manne. On the job-shop scheduling problem. Operations
Research, 8(2):pp. 219–223, 1960.

[24] H.M. Wagner. An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131–140, 1959.

[25] E.H. Bowman. The schedule-sequencing problem. Operations Re-
search, 7(5):pp. 621–624, 1959.

[26] P. Fattahi, M.S. Mehrabad, and F. Jolai. Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems. Journal
of Intelligent Manufacturing, 18:331–342, 2007.

[27] Cemal ˙Mathematical models for job-shop scheduling problems with
routing and process plan flexibility. Applied Mathematical Modelling,
34(6):1539 – 1548, 2010.

[28] O. Wigström and B Lennartson. Scheduling model for systems with
complex alternative behaviour. In Automation Science and Engineering
(CASE), 2012 IEEE Conference on, 2012.

[29] ”ABB RobotStudio” Internet: http://www.robotstudio.com, [Aug. 1,
2011].


