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ABSTRACT: Six water-soluble spiropyran derivatives have been characterized with respect to
the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic
model was formulated including the spiro- and the merocyanine isomers, the respective
protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis
reaction mechanism were supplemented by calculations using quantum mechanical (QM)
models employing density functional theory. The results show that (1) the substitution pattern
dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal
isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral
pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis
reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas
the corresponding protonated form is stable toward hydrolytic degradation.

■ INTRODUCTION

Photochromic molecules from the spiropyran family are
reversibly switched between the spiro form (SP), displaying
absorption only in the UV region, and the merocyanine form
(MC), absorbing light also in the visible region, using light of
appropriate wavelengths.1 Although the color change is the
most widely recognized feature for spiropyrans and photo-
switches in general, it is by no means the only property that
changes upon isomerization. Additional examples are the redox
energies,2 molecular structure,3 and charge distribution,4 to
mention a few. Altogether, the light-induced changes in these
and other properties have been harnessed for applications in,
for example, the photocontrol of biological functions,5−13

bioimaging,14−18 optical signal processing, and photoswitching
in general,19−30 as well as in chemosensing.31−38 In many of
these situations, aqueous media is required and, hence, also
spiropyran derivatives that are readily dissolved in water. As the
spiropyran backbone per se has very poor water solubility,
covalent attachment of solubilizing groups, or supramolecular
complex formation with water-soluble hosts have been used for
this purpose.5,29,39−45 Our approach has been to covalently
attach positively charged alkylamino- or amidine groups to the
spiropyran photoswitch. These compounds have been studied
in the contexts of photo- and pH controlled DNA-binding,5,7

photoinduced cytotoxicity,9 membrane interactions,8 and
supramolecular complex formation.44 Owing to the potential
applicability in diverse fields, the ring-opening mechanism,46−48

conformational distribution,48,49 and photochemical proper-
ties50,51 of various derivatives have also been addressed by
theoretical investigations. Although the spiropyrans represent a
very versatile class of photochromic compounds with several
promising candidates for future use in biological applications,

the behavior in aqueous media is relatively unexplored. Here,
we present a comprehensive model of all processes relevant for
the interconversions between the different species (SP, MC,
and the respective protonated forms) including the thermal and
photoinduced isomerization processes, as well as the undesired
hydrolysis reaction. To support experiments, the hydrolytic
degradation of the MC form was also investigated by
theoretical calculations, using both quantum mechanics (QM)
and combined quantum mechanics/molecular mechanics
(QM/MM) models employing density functional theory.
These addressed several mechanisms for both the protonated
and the nonprotonated forms of the molecule and also the
effect of water on the barrier heights, with final energies
obtained at the B3LYP/6-311++G(2d,2p) level of theory. We
hope that the results from this study will be of help to others in
the design of spiropyran derivatives for various applications
where aqueous media is a requirement.

■ EXPERIMENTAL SECTION

Materials. The synthesis of 1,5 2,9 4,44 and 67 have been
described earlier, whereas the synthesis of 3 and 5 are outlined
in the Supporting Information. The ring-opened forms (MC
and MCH+) were prepared by heating the SP isomer in an
aqueous solution at pH 1 until the sample was fully converted
to the MCH+ form (ca. 5 min). For MC, this was followed by
neutralization of the pH using NaOH. The SPH+ form was
prepared by dissolving SP in aqueous solution followed by
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acidification with conc. HCl. Subsequent basification of the
solution fully regenerated the SP form.
Photophysical Measurements. The absorption measure-

ments were carried out on a CaryBio 50 UV/vis spectrometer
equipped with a Varian PCB 1500 Water Peltier System
thermostat for temperature control. Typically, the measure-
ments were performed at 25 °C. The visible light was generated
by a 500 W Xe lamp equipped with a hot mirror (A = 1.8 at 900
nm) to reduce the IR intensity and suitable optical filters. For
quantum yield determinations, an interference filter in the
visible region was used (see Supporting Information for
details). The UV light was generated by a UVP lamp model
UVGL-25 (254 nm, 700 μW/cm2). The samples were
continuously stirred during all irradiation processes.
The time-based absorption measurements at pH 4−10 were

performed in buffered solutions with 10 mM Na2HPO4/
NaH2PO4 set to the respective pH. At pH 3 and lower, the pH
was set by adding standard portions of conc. HCl.
Computational Details. All quantum chemical calculations

were performed using the Gaussian 09 software package.52 To
address the reaction mechanism of hydrolysis, two models were
used. The reaction steps of the minimum energy path and the
alternative reaction paths were addressed using a smaller QM
model which included the initial merocyanine and one explicit
water molecule (QM(1w)) (see Figure S6 in the Supporting
Information). All the minima and transition states (TSs) for
QM(1w) were optimized using Becke’s three parameter hybrid
functional53 with the Lee−Yang−Parr correlation functional54

(B3LYP) with the 6-31+G(d,p) basis set. This model
considered solvent effects of water using the integral equation
formalism for the polarizable continuum solvent model

(IEFPCM).55 To investigate potential effects of explicit water
molecules on the barrier heights of the most important TSs, an
ONIOM (our own N-layered integrated molecular orbital and
molecular mechanics) integrated QM/MM method56 model
was used, in which six water molecules and the merocyanine
were included in the QM layer, surrounded by a 40 Å box of
explicit water molecules in a B3LYP/6-31G(d):AMBER setup
(ONIOM(6w)). To ensure the relaxation of water equilibrated
around MC, the final ONIOM(6w) model was obtained in
several steps. Initially, the QM/MM model was fully minimized
with only the MC molecule included in the QM layer. This was
followed by an optimization with the water molecule closest to
CA (for labeling of atoms, see Scheme 1) included in the QM
layer, and all water molecules farther than 15 Å from the MC
molecule being frozen. Finally, five additional water molecules
were chosen (the five closest to the CA atom), resulting in three
above and three below the plane of the merocyanine molecule
(see Figure S6 in the Supporting Information). This way, the
potential stabilizing contribution of water molecules from both
sides of the MC molecule could be followed. For the QM layer
atoms, charges were determined using the Merz−Singh−
Kollman scheme57 on the QM(1w) model, and for the
remaining five water molecules the charges were determined
after initial minimization.
The named TSs and minima were identified as for the

QM(1w) model. Our focus was on the MC reactant state and
on the three critical TSs, TSI, TSII, and TSIII, which were
subject to further calculations.
All critical points obtained for QM(1w), and the above

selected ones for ONIOM(6w), were followed by second
derivative calculations at the same level of theory as

Scheme 1. Interconversion Pathways between the Different Forms of the Spiropyran Derivatives, Here Exemplified for 1a

aFramed: Labelling of relevant atoms discussed in the text.
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optimizations were performed. These were used to determine
the nature of the optimized critical point (minimum or TS), to
obtain both zero point energies and thermal contributions to
the energy, and entropy contributions to free energies within
the harmonic approximation.
In the case of QM(1w), for III and TSIV the initial reactant

consists practically of two molecules coordinated only by one
small group from each, which resulted in convergence problems
with the molecular fragments rotating around the intermo-
lecular axis. Therefore, convergence was achieved by constrain-
ing the relative orientation of the fragments for the above two
critical points. This led to an additional imaginary vibrational
frequency for both calculations, not related to the reaction
coordinate. Due to the small magnitudes, 2i cm−1 and 12i cm−1,
respectively, the final energy values are not significantly
affected. TSIII and the TS between the TTT and the TTC
conformers of MCH+ could not be located with the solvent
model. Therefore, these two TSs were optimized at the same
level of theory as the other critical points in the gas phase,
followed by a single point calculation which considered solvent
effects. For the two product states (IV and HP), the
transformations between different coordination relative to
each other were not considered. The transition state HTSI
starting from the TTC conformer of MCH+ was obtained using
the loose convergence criteria as implemented in the Gaussian
09 software package.
Electronic energies were also calculated using point energy

calculations at the B3LYP/6-311++G(2d,2p) and B3LYP/6-
311++G(2d,2p):AMBER level of theory for QM(1w) and
ONIOM(6w), respectively. For QM(1w) critical points III,
TSIV, IV, and HP consist of two separate molecules
coordinated to each other, why the single point energy
calculations with higher basis set also serve the purpose of
minimizing potential effects of basis set superposition errors
observed with smaller basis sets.58−60 For more details, see
section “Theoretical Calculations” in the Supporting Informa-
tion.

■ RESULTS AND DISCUSSION
The primary objective of this work has been to investigate in
detail the various thermal, acido- and photochromic processes
for the spiropyran derivatives shown in Figure 1. Compounds
1−4 have a nitro substituent in the 6-position of the
benzopyran moiety (C6, see Scheme 1 for labeling of relevant
atoms discussed in the text). These compounds differ in the
number of methylene units in the aminoalkyl-derived “tail”
attached to the indoline nitrogen NI (three or five), as well as
the number of methyl groups on the amino nitrogen NA (two
or three). Compounds 5 and 6 are equipped with a quaternary
amine via a propyl tail and come with an aldehyde and a cyano
group on C6, respectively. The main reason for using different
substituents on the benzopyran ring was to vary the pKa-value
of the phenolic OH group of the protonated MC isomer
(MCH+, see Scheme 1).61 A more electron withdrawing
substituent is expected to stabilize the negatively charged
oxygen OPh of the nonprotonated MC isomer and, hence,
decrease the pKa-value.

62 Moreover, the variation of the
substituents at both the benzopyran ring and the indoline
nitrogen NI effects several other thermal and photoinduced
processes, as will be described in detail below. In the following
sections, the experimental results (spectra, kinetic traces, etc.)
will be shown only for 1, whereas the corresponding data for
2−6 is collected in the Supporting Information.

General Behavior. Scheme 1 shows the relevant forms of 1
and the corresponding interconversion pathways. The spectra
of the respective forms are shown in Figure 2 (see Figure S1 in
the Supporting Information for corresponding spectra of 2−6).

The SP isomer is converted to the MC isomer by UV-light
exposure, and the reverse reaction is triggered by visible light.
In the dark, the two isomers are interconverted by thermal
processes. As opposed to organic solvents, where the thermal
equilibrium is shifted to virtually 100% SP, the rate constants
for the thermal isomerization processes SP → MC and MC →
SP (ko and kc in Scheme 2) are comparable in aqueous solution.
This is due to the highly polar nature of water which

stabilizes the zwitterionic MC form. It has also been suggested
that hydrogen bonding contributes to the MC form
stabilization.63

Upon acidification, protonation of the MC phenolate oxygen
OPh leads to the formation of MCH+. Here, the pKa-value of
this form is referred to as pKa

II. While this form is readily
converted to SP using visible light, the corresponding thermal
conversion is not observed. Moreover, we suggest that the
MCH+ isomer is stable also to hydrolytic degradation (vide

Figure 1. Structures of the closed spiro (SP) forms of the spiropyran
derivatives studied in this work.

Figure 2. Absorption spectra of 1SP (○), 1SPH+ (●), 1MC (□),
1MCH+ (■), and HP (▲). At pH below ca. 4, HP displays absorbance
only below 375 nm (not shown).
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inf ra). Upon further acidification, also the SP isomer is
protonated. We assign this species to SPH+, where the indoline
nitrogen NI of the SP isomer is protonated, with a pKa-value
referred to herein as pKa

I.64 This form displays neither thermal
nor photoinduced isomerizations, i.e., it can only be
interconverted to the other forms after deprotonation to the
SP isomer.65 The pKa-values of 1−6 are collected in Table 1. It

is obvious that the substituent on C6 influences pKa
II, whereas it

has no effect on pKa
I.61,66 The ability to tune the pKa-value by

the choice of substituent has been proven useful in many
situations, including the pH-controlled DNA-binding observed
in our laboratory.7 Furthermore, pKa

I for 1−6 are significantly
lower compared to spiropyran derivatives without a positively
charged functionality attached to the indoline nitrogen NI. For
example, pKa

I of 1, 2, 5, and 6 are almost two units lower
compared to spiropyran derivatives with a methyl group
attached to NI (0.4 versus 2.3).

67 As SPH+ cannot be converted
to MC/MCH+ by neither thermal nor photoinduced processes,
this implies that the pH range over which 1−6 maintain their
photochromic properties is significantly broadened.
Finally, one of the limiting factors for the application of

spiropyrans in aqueous medium is the hydrolytic instability of
the MC form.45 Hydrolysis has been proposed to be initiated
by nucleophilic attack at the ene-iminium cation, followed by a
retro-aldol reaction yielding Fischer’s base and salicylaldehyde
as hydrolysis products (HP). Here, we suggest that the
nonprotonated MC isomer is the only form that is susceptible
to hydrolysis and that water is the major nucleophile involved
in the reaction. Scheme 2 summarizes the kinetic model with
the respective rate constants for the thermal processes and the
pKa-values for the protonated forms.

The sections below are organized as follows: First, the
thermal processes (isomerization reactions and hydrolysis) at
pH 7 will be described together with the photoinduced
isomerization reactions. At pH 7, none of the protonated
species are formed, i.e., the involved components are SP, MC,
and HP. Second, the corresponding results at different pH will
be presented for a selection of the derivatives. Our main
objective in the design of 1−6 was to investigate the influence
from the substituent on C6 in the benzopyran ring. Hence, we
concentrated on 1, 5, and 6 in this section.61 The results from
pH 5−9 suggest that water is the nucleophile in the hydrolysis
reaction, rather than OH−. In the pH-interval 0−1, the
equilibrium MC/MCH+ is shifted to nearly 100% MCH+ and

the hydrolysis reaction is virtually halted. Hence, our kinetic
model in this pH range contains SPH+, SP, and MCH+. Based
on these results, we suggest that MC is the only isomer that
undergoes hydrolysis. Finally, we present computational results,
which addressed the hydrolysis mechanism in aqueous media
for both the MC and the MCH+ forms that further strengthen
the above notion.

Thermal and Photoinduced Processes at pH 7. Figure
3 shows the time-dependent absorbance of 1MC reflecting the

thermal interconversions of the dissolved SP and the MC forms
together with the subsequent hydrolysis of MC. Similar kinetics
with biexponential “rise and decay” behavior have been
observed for other spiropyran derivatives.40,45 As the pKa-
values of the SPH+ and the MCH+ forms of 1 were determined
to 0.4 and 3.7, respectively, the concentrations of the
protonated forms are negligible at pH 7 (see Table 1 for the
pKa-values of derivatives 1−6). Hence, our kinetic model at this
pH includes the species SP, MC, and HP. The absorbance of
MC levels out at a nonzero value after ca. 8000 min, suggesting
that the hydrolysis reaction is reversible.68 Hence, the kinetic
model shown in eq 1 was used to describe the kinetics at pH 7.

⇌
−

H IooSP MC HP
k

k

k

k

c

o

h

h

(1)

This kinetic model gives rise to a biexponential rate
expression for the concentrations of all involved species.69

Thus, the kinetic trace was fitted according to eq 2.70

= + +− −A A ae bek t k t
0

rise decay (2)

Here, krise reflects the rise time of the initial part of the kinetic
trace in Figure 3, whereas kdecay is the rate constant of the
subsequent decay. If ko + kc ≫ kh + k−h, krise would have been
the sum of ko and kc and, hence, the rise would reflect the rate
of the thermal equilibrium establishment between SP and MC.
Here, this assumption is not valid, and the analytic rate
expressions for [SP], [MC], and [HP] derived using the
Laplace transform method were used (see Supporting
Information for the derived rate expressions).69 The resulting
rate constants for 1−6 are collected in Table 2.
It is obvious that there are large variations in both the ratio

ko/kc as well as the sum ko + kc between the different

Table 1. pKa-Values of SPH
+ (pKaI) and MCH+ (pKaII) for

1−6

1 2 3 4 5 6

pKa
I 0.4 0.4 1.6 1.4 0.4 0.4

pKa
II 3.7 4.2 4.4 4.2 4.5 4.4

Scheme 2. Rate Constants for the Thermal Processes and
pKa-Values for the Protonated Forms SPH+ and MCH+

Figure 3. Kinetic absorption trace of 1MC at 25 °C monitored at 512
nm reflecting the thermal interconversions between SP, MC, and HP
according to eq 1. The solid line is the fitted trace using the
biexponential expression in eq 2. Inset: Absorption spectrum recorded
at t = 12000 min, clearly showing the residual absorption of 1MC
centered at 512 nm.
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derivatives, which in turn manifest itself in differences in the
hypothetical thermal equilibrium position [MC]/[SP] and the
time required to reach it. For example, 3 contains ca. 80% MC
at thermal equilibrium, whereas the corresponding number for
6 is only 14%. Depending on the application, both situations
may be desired (visible-light activation to the SP form versus
UV activation to the MC form). As for minimizing the effect of
the hydrolytic degradation, a thermal equilibrium position
enriched in SP is preferred, as the concentration of the
hydrolyzable MC isomer is kept at a minimum. The quantum
yields of the photoinduced isomerization processes and the
photostationary distributions (PSD) are also collected in Table
1. The resistance toward photodegradation was controlled by
exposing the samples to alternating UV/vis cycles. No
detectable decomposition was observed after 10 cycles (see
Figure S5 in the Supporting Information).
Thermal Processes at High pH. The experiments and the

data analysis procedure at pH 7 described above were
performed also at pH 5−10. Figure 4 shows the pH
dependence of the rate constants ko, kc, kh, and k−h for 1, 5,
and 6. The extracted rate constants reflect the kinetic model
shown in eq. 1, i.e., none of the protonated species SPH+ or
MCH+ were considered. For 1, this is a good approximation
over the entire pH interval 5−10 as pKa

II = 3.7 for this

derivative, and hence, less than 5% exists as MCH+ at pH 5. For
5 and 6, the corresponding pKa-values are 4.5 and 4.4. This
implies that around 25% MCH+ is present at pH 5, why the
data is only shown between pH 6 and pH 10.
The rate constants for thermal opening and closing (ko and

kc in Figure 4a,b) show no significant variations with pH. This
is true also for the rate constant of hydrolysis MC → HP (kh in
Figure 4c) up to pH 9, whereas an increase by a factor of ca. 2 is
observed at pH 10 for all derivatives. This strongly suggests that
water is the major nucleophile in the hydrolysis reaction in the
pH-independent interval up to pH 9, whereas the correspond-
ing attack by OH− is the rate determining step at higher pH.68

The data for the corresponding condensation reaction (reverse
hydrolysis, k−h in Figure 4d) shows that the process experiences
a rate increase when going from pH 8 to pH 7. We will,
however, not analyze the condensation reactions in the sections
below, but instead focus on the hydrolysis reaction. The rate
constants displayed in Figure 4 are tabulated in Table S1 in the
Supporting Information.

Thermal Processes at Low pH. At pH significantly below
pKa

II (see Scheme 2 and Table 1) the MC/MCH+ equilibrium
is shifted to virtually only MCH+. Hence, SP was dissolved at
the respective pH and the rise in the absorbance of MCH+ was

Table 2. Rate Constants for the Thermal Processes, Isomerization Quantum Yields, and Photostationary Distribution (PSD) of
compounds 1−6 at 25 °C at pH 7

ko [min−1] kc [min
−1] kh [min−1] k−h [min−1] ko/kc Φo

a % Φc
b % PSDc

1 3.5 × 10−3 5.1 × 10−3 2.2 × 10−3 9.8 × 10−5 0.69 1.8 4.4 0.79
2 3.4 × 10−3 3.9 × 10−3 1.8 × 10−3 ∼0 0.87 1.6 3.9 0.88
3 5.2 × 10−3 1.4 × 10−3 6.5 × 10−4 1.9 × 10−5 3.7 0.67 4.5 0.36
4 4.4 × 10−3 1.5 × 10−3 6.1 × 10−4 1.1 × 10−5 2.9 0.43 4.3 0.34
5 2.1 × 10−2 5.0 × 10−2 2.0 × 10−3 1.2 × 10−4 0.42 4.7 1.4 12
6 5.6 × 10−3 3.4 × 10−2 2.6 × 10−3 5.4 × 10−5 0.16 4.0 1.2 4.3

aIsomerization quantum yield for the process SP → MC using 254 nm UV-light. bIsomerization quantum yield for the process MC → SP using
visible light centered at 503 nm. cPhotostationary distribution [MC]/[SP] after the application of 254 nm UV-light.

Figure 4. pH dependence of the thermal rate constants ko (a), kc (b), kh (c), and k−h (d). Data shown for 1 (■), 5 (●), and 6 (▼). The data is
collected in Table S1 in the Supporting Information.
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monitored as a function of time. The results for 1 at pH 0 and
pH 1 are shown in Figure 5.

From the “rise and stay” behavior it is obvious that the
hydrolysis reaction is virtually halted at pH 0 and pH 1.
Therefore, the kinetic model in this pH regime is described by
eq 3.

⇌+ +H Iooo H IoooSPH SP MC MCH
K

k

k Kp pa
I

c

o a
II

(3)

In this pH region, however, the [MC]/[MCH+] equilibrium is
shifted to virtually 100% MCH+. Hence, the kinetic situation
reduces to a model including only SPH+, SP, and MCH+

according to eq 4.

→+ +H IoooSPH SP MCH
K kp a

I
o (4)

The kinetic traces were fitted to a monoexponential rate
expression according to eq 5.

= − −A A ae(1 )k t
0

rise (5)

The equilibrium establishment between SP and SPH+ is
extremely fast compared to ko. Hence, the apparent rate
constant of thermal opening, krise, is described by eq 6.

=
+ +k k
[SP]

[SP] [SPH ]rise o
(6)

As pKa for SPH
+ (pKa

I, see Table 1) is known for all derivatives,
the rate constant ko is easily extracted from the experimentally
fitted krise. The ko-values at pH 0 and 1 were found to be: 4.0 ×
10−3 min−1 and 3.4 × 10−3 min−1 for 1, 1.3 × 10−2 min−1 and
2.0 × 10−2 min−1 for 5, and 5.0 × 10−3 min−1 and 5.3 × 10−3

min−1 for 6. These values agree very well with the
corresponding values at pH 5 to pH 10 shown in Figure 4a.
The fact that the rate constant of thermal opening SP → MC is
virtually pH independent between pH 0 and 10 clearly shows
that there is no direct accelerated acid induced opening SP →
MCH+, but that MCH+ is formed via thermal opening SP →
MC followed by protonation of MC.
Furthermore, no hydrolysis is seen over 8000 min at pH 0

and 1. If OH− would have been the nucleophile involved in the
rate determining step, the halted hydrolysis could have been
explained by the low OH− concentration at these pH values.
This is highly unlikely, however, as the rate of hydrolysis does
not vary significantly with the OH− concentration between pH
5 and 9. Thus, we suggest that MCH+ is not susceptible to

hydrolysis. This notion will be further supported by computa-
tional means (vide inf ra).

Thermal Processes at Intermediate pH. At pH 2−4, a
full kinetic model including all species and processes shown in
Scheme 2 has to be applied. We could not find the analytic
expression for this kinetic situation by the Laplace trans-
formation method. Instead we used the experimental rate
constants derived at pH 5 and the respective pKa-values to
simulate the concentration profiles versus time for all relevant
species by numerical means. These concentration profiles were
compared with the experimentally recorded absorption traces
of MC and MCH+ at pH 2−4. While the experimentally
obtained values of ko and kc at pH 5 together with pKa

I and
pKa

II were used in the simulations, the values of kh and k−h were
slightly adjusted for each pH-value to improve the goodness of
fit (the experimental values at pH 5, kh = 1.8 × 10−3 min−1, k−h
= 6.6 × 10−5 min−1, were varied in the intervals 1.8 × 10−3

min−1 − 2.6 × 10−3 min−1 and 0 − 6.6 × 10−5 min−1,
respectively). Note that these adjustments are no larger than
the variations in the experimentally obtained values of kh and
k−h between pH 5 and pH 10. The results for 1 are shown in
Figure 6 and the corresponding data for 5 and 6 is shown in

Figure S4 in the Supporting Information. The results clearly
show that the kinetic model holds also at pH values where the
interconversions between all five species have to be taken into
account.

Theoretical Investigation of Hydrolysis. To support
experiments, the mechanism of hydrolysis of the MC isomer
was investigated in detail by theoretical calculations. The
reaction steps were explored using a QM model with one
explicit water molecule considered, referred to herein as
QM(1w), whereas the effect of solvent molecules on the
barrier height was also addressed with a larger ONIOM
model.56 Here, six water molecules were included in the QM
layer, further surrounded by water molecules treated by MM
(ONIOM(6w)). Fortunately, in recent years several theoretical
studies have focused on various spectral properties of the SP ⇄
MC conversion mechanism of spiropyrans and related
derivatives, which greatly helped in selecting the optimal
models and the applied theoretical method.46,47,49−51 Balasu-

Figure 5. Thermal formation of 1MCH+ from 1SP via 1MC at pH 0
(dashed line) and pH 1 (solid line). The slower rise observed at pH 0
reflects the lower concentration of the thermally isomerizable SP form.

Figure 6. Experimentally recorded absorbance traces for 1MC and
1MCH+ at 25 °C at pH 2 (dash-dot, recorded at 410 nm, MCH+), pH
3 (dashed, recorded at 410 nm, MC and MCH+), and pH 4 (dotted,
recorded at 512 nm, MC). The corresponding normalized traces
derived from a simulation using the kinetic model in Scheme 2 and the
rate constants at pH 5 are also shown (solid lines). Note that kh and
k−h were slightly adjusted from the values determined at pH 5 (see text
for details).
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bramanian et al. have analyzed in detail the effect of several
density functionals and continuum solvent models on relative
energies of different conformers.49 Based on these results and
on previous tests on hydrolysis reactions using Møller−Plesset
(MP2) calculations as a reference,71,72 geometry optimizations
for the QM(1w) model were performed at the B3LYP/6-
31+G(d,p) level of theory with solvent effects of water
considered by the IEFPCM model.73 Final energies were
obtained from point energy calculations at the B3LYP/6-311+
+G(2d,2p) level. All energetic values are discussed at the latter
level unless noted otherwise.
Prior to addressing the reaction steps, the initial “reactant”

conformer of MC was selected based on considering the four
different relative orientations of the p-nitro-phenolate and the
indolenium groups. Based on previous results48 and on our
analysis (see Supporting Information), we concluded that the
TTC conformer is the major initial reactant and, hence, was
used in the calculations. The initial TTC conformer was
optimized with four alternative water positions close to CA and
the lowest energy conformer was selected to be the reactant
state (MC) as shown in Figure 7. A similar analysis was

performed for the protonated form, MCH+, where the
energetic distribution of the conformers showed that the
TTT conformer is somewhat more stable than the TTC
conformer. However, the two conformers are separated by only
a low energy transition state (TS) as detailed in the Supporting
Information, why we addressed the reaction paths starting from
both TTC and TTT conformers for MCH+.
To determine the most likely minimum energy pathway of

the reaction, several alternative mechanisms were initially
considered using QM(1w). These include two different paths
starting from the neutral form, MC, and also two paths starting
from the protonated form, MCH+. The energy profile of the
reaction was compared with the free energy values derived back
from the experimental rate constants of hydrolysis shown in
Table 2 using classical transition state theory.74 Out of the
reaction pathways mentioned above, those which resulted in

unlikely high energy values for TSs or for intermediate
structures were excluded from further analysis. For more
details on the calculations, see the Experimental Section, and
“Theoretical Calculations” in the Supporting Information.

The MC Form. The structure of the hydrolysis products
shows that the nucleophilic attack of the water molecule takes
place on the double-bond between the nitro-phenolate and the
indolenium fragments, with the water oxygen (OW) coupling to
carbon atom CA (for labeling of the atoms see Scheme 1 and
Scheme 3). Accordingly, in the initial reactant state MC, for

both QM(1w) and ONIOM(6w) models, the water molecule is
coordinated on the phenolate oxygen OPh close to the central
CA−CB double bond as shown in Figure 7 and Figure S7 in the
Supporting Information. The reaction in QM(1w) then
proceeds via the first transition state (TSI) with a barrier of
26.5 kcal/mol into the first intermediate (I), in which OPh
becomes protonated and the OH group from the water
molecule (OW−H) forms a bond with CA. Judging from the
structure of the hydrolysis products, the protons from the two
OH groups eventually have to transfer to the opposite carbon,
CB, which will finally result in a methyl group on the
indolenium fragment. From intermediate I, the overall reaction
could in principle proceed with a double proton transfer, where
OW−H protonates CB, together with simultaneous OW

protonation by OPh−H (see Scheme 3). However, the
corresponding TS energy shown in Figure 8 is above 40

Figure 7. Selected critical points along the minimum energy path
starting from the TTC conformer with the nucleophilic water molecule
coordinated on the molecule (MC). The obtained critical points were
qualitatively the same for the QM(1w) and ONIOM(6w) models.
Relevant distances of the atoms participating in the hydrolysis are
displayed for the QM(1w) and in parentheses for the ONIOM(6w)
with values in Ångströms. For more details, see Tables 3 and 4, and
Figures S6 and S7 in the Supporting Information.

Scheme 3. The Mechanism of Hydrolysis for MC along the
Minimum Energy Pathway As Determined by the QM
Calculationsa

aOnly selected critical points required to clearly show the reaction
mechanism are displayed. For all reaction steps, see Figure S7 in the
Supporting Information. The nomenclature of the different con-
formers in the reactant stateMC is based on the cis or trans position of
the central three bonds, here shown for the lowest energy conformer,
TTC.
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kcal/mol, which renders this reaction path very unlikely.
Instead, the structure of intermediate I allows for a direct
protonation of CB from OPh−H, with a barrier height of 28.9
kcal/mol at TSII (see Table 3 and Figures 7 and 8). From this

point, intermediate II, the reaction proceeds with the breakup
of the bond between CA and CB via TSIII, with ΔG = 26.5
kcal/mol. In intermediate III the fragments are coordinated
with OW−H on CB, which is in sp2 hybridization. Although at
this point the proton is still bonded to the oxygen, the extended
conjugation with the ring system renders the molecule in a
planar conformation. Finally the protonation of CB takes place
with a small barrier from III (19.4 kcal/mol) through TSIV
(20.7 kcal/mol), and the hydrolysis products are formed (IV
and HP). Considering reaction energetics of the minimum
energy path, there are three TSs: TSI, TSII, and TSIII, which
have similar relative energies where the highest barrier
corresponds to the transfer of the first proton to CB from

OPh (TSII) with a free energy of 27.2 and 28.9 kcal/mol at the
B3LYP/6-31+G(d,p) and B3LYP/6-311++G(2d,2p) levels of
theory, respectively. Considering the reactant and the product
states, MC and HP, the small relative energy difference, −0.6
and 0.3 kcal/mol for the B3LYP/6-31+G(d,p) and B3LYP/6-
311++G(2d,2p) levels, respectively, are in line with the ratios of
kh and k−h displayed in Table 2. This is also in accordance with
other similar hydrolysis reactions, where reversibility was
observed.68 Note that after the breakup of the CA−CB bond
at TSIII, there are two molecular fragments, and the following
steps in the reaction involve a shallow TS in our investigation.
Consequently, the formation of the final two hydrolysis product
molecules could in principle also be achieved by proton
transfers with other solvent molecules that the present quantum
chemical calculations do not consider.
To address the effects of further explicit water molecules on

the barrier height with a different approach, the initial MC form
and the three high energy TSs were also investigated in the
ONIOM(6w) model. Despite major differences in the QM(1w)
and ONIOM(6w) models, the main structural parameters of
the optimized MC, TSI and TSII critical points are very similar
as seen in Figure 7. The largest difference can be observed for
TSIII, where the distance between CA and CB is 2.22 Å and
2.08 Å for the QM(1w) and ONIOM(6w) models, respectively.
In terms of energetics, the ONIOM(6w) free energy barrier

heights are all lower than the values for the corresponding TSs
in QM(1w). When the ΔE values presented in Table 4 are

compared for TSI and TSII, it is seen that they are similar for
the two models. Thus, the lower free energies arise from the
more favorable relative entropy terms and also from some
smaller extra stabilization by the surrounding water molecules.
However, in the case of TSIII the final energies are significantly
lower for the ONIOM(6w) than for the QM(1w) model. To
understand the underlying reasons for this difference, we have
analyzed the components of the ONIOM energies, which is
briefly discussed here. The electronic relative energy of only the
QM layer is 31.3 kcal/mol for TSIII at the B3LYP/6-311+
+G(2d,2p) level, which is 18.6 kcal/mol from the total
ONIOM ΔE of 13.3 kcal/mol obtained with the B3LYP/6-
311++G(2d,2p):AMBER setup shown in Table 4. This clearly
shows that the different TSIII geometry with 2.08 Å CA···CB
distance in the ONIOM(6w) compared to the 2.22 Å as
obtained for the QM(1w) has no substantial effect on the
barrier height. The excess stabilization of TSIII in the
ONIOM(6w) model is rather caused by the favorable
contributions of the water molecules in the MM layer: the

Figure 8. Reaction profile for hydrolysis of the MC isomer obtained
using the QM(1w) model. Energy values for the minimum energy
pathway via the phenolate mediated proton transfer (solid line), and
the reaction pathway with direct protonation (dashed line) were
obtained considering solvent effects of water at the IEFPCM-B3LYP/
6-31+G(d,p) level of theory.

Table 3. Energetic Properties of the Reaction Steps for MC
along the Minimum Energy Pathway Obtained Using the
QM(1w) Model at Different Levels of Theory

B3LYP/6-31+G(d,p)a B3LYP/6-311++G(2d,2p)b

step ΔEc ΔH ΔG ΔE ΔH ΔG

MC 0.0 0.0 0.0 0.0 0.0 0.0
TSI 23.8 21.6 25.5 24.7 22.5 26.5
I 9.0 10.3 12.0 9.3 10.6 12.3
TSII 24.8 22.7 27.2 26.5 24.4 28.9
II 9.7 11.1 13.1 11.2 12.6 14.6
TSIIId 23.1 21.7 25.4 24.0 22.5 26.2
III 23.2 22.5 19.6 23.8 22.4 19.4
TSIV 24.7 21.3 20.2 25.2 21.8 20.7
IV 6.9 6.3 6.2 7.8 7.2 7.1
HP 0.8 −0.5 −0.6 1.8 0.4 0.3

aUsing IEFPCM solvent model for water. bUsing the IEFPCM-
B3LYP/6-31+G(d, p) structure and IEFPCM solvent model for water.
cValues are in kcal/mol. dTSIII structure was obtained in the gas
phase at the B3LYP/6-31+G(d,p) level of theory.

Table 4. TS Barrier Heights Obtained for the QM(1w)
Model and the ONIOM(6w) Model Using the MC Critical
Point as Reference

QM(1w)a ONIOM(6w)b

step ΔEc ΔH ΔG ΔE ΔH ΔG

TSI 24.7 22.5 26.5 23.6 19.3 18.9
TSII 26.5 24.4 28.9 23.9 21.9 24.0
TSIII 24.0 22.5 26.2 13.3 11.4 7.4

aThe relative energies were obtained at the IEFPCM-B3LYP/6-311+
+G(2d,2p)//IEFPCM-B3LYP/6-31+G(d,p) level of theory. bThe
relative energies were obtained with B3LYP/6-311++G-
(2d,2p):AMBER setup calculated on B3LYP/6-31G(d):AMBER
structures. cAll values are in kcal/mol.
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Coulomb and the van der Waals terms are, respectively, 9.8 and
8.7 kcal/mol more favorable in TSIII compared to MC.
In overall, the major difference arising from considering

explicit water molecules is that for the QM(1w) model there
are three high energy TSs, while for the ONIOM(6w) model
there is only one TS found with higher energy: TSII. For both
models this is the highest TS with a 28.9 and 24.0 kcal/mol
barrier height for the QM(1w) and ONIOM(6w) models,
respectively. Although further refinement of the energy values,
e.g., by investigating several QM/MM water configurations or
by obtaining conformational entropy contributions using MD
sampling is beyond our scope, the obtained values can be used
for a qualitative comparison with the experimental rates. Free
energy values can be derived back from the experimental rate
constants kh displayed in Table 2 using classical transition state
theory. These are ∼23−24 kcal/mol, which is in close
agreement with the theoretical values.
The MCH+ Form. To consider further paths for hydrolysis,

we have also investigated the protonated form MCH+ using the
QM(1w) model starting from both of its two lowest energy
conformers, TTC and TTT (See Figure S8, Table S2 and text in
the Supporting Information). In the reactant form, referred to
as MCH+, the OPh−H group is clearly less prone to accept a
proton from the nucleophilic water molecule. To test this
reaction path, we have obtained in principle the protonated
form of the first intermediate, HIalt (see Figure S8 in the
Supporting Information). Here OPh−H accepts an additional
H+, resulting in the formation of OPh−H2

+, and the remaining
OH− from the water molecule forms a bond with CA. The
relative energy of this intermediate is very high, 58.4 kcal/mol
for TTC, and for TTT we could not even locate this critical
point as calculations converged back to the reactant state. In an
alternative pathway, the reaction could start with the addition
of water directly to the central CA−CB double-bond, with OH−

forming a bond with CA, and H+ coupling to CB. However, this
reaction path is also much higher than any critical point along
the reaction observed for MC, as the corresponding TS has a
relative energy of 49.9 and 48.5 kcal/mol for the TTC and TTT
conformers, respectively. The very high energy critical points
observed for the hydrolysis paths of MCH+ are clearly a
consequence of either the protonation per se, or the fact that a
direct addition of water to the central CA−CB double bond is
unfavorable. The similarity of the results obtained for TTC and
TTT demonstrates that a change in the initial MCH+

conformation for this reaction would not alter the energetics
significantly. Furthermore, considering the structure of the
hydrolysis products HP, the initial addition of water cannot
take place in any alternative way, which is why we conclude that
MCH+ is not susceptible to hydrolysis.

■ CONCLUSIONS
We have investigated the behavior of six spiropyran derivatives
in aqueous solution between pH 0 and 10. The following
conclusions can be drawn: (i) The substitution pattern
influences substantially the rates of the thermal isomerization
processes as well as the pKa-values for the protonated forms of
SP and MC (SPH+ and MCH+). Interestingly, the pKa of SPH

+

is decreased by as much as ∼2 units by the attachment of
positively charged amino groups to the indoline nitrogen via
alkyl linkers. This allows for photoinduced isomerizations
between the SP and the MC forms over a wider pH range. (ii)
The apparent rate of hydrolysis of the MC isomer varies
significantly with the substitution pattern. This, however, is a

result of the differences in the thermal equilibrium positions
[MC]/[SP], whereas the intrinsic rate constant of hydrolysis is
virtually the same for all derivatives. (iii) The rate constant of
hydrolysis does not vary significantly between pH 5 and 9,
clearly suggesting that water is the nucleophile in this pH range.
(iv) The nonprotonated MC isomer is the only form that is
susceptible to hydrolysis. This is due to the key role of the
phenolate oxygen, acting as a base by accepting a proton from
the nucleophilic water, and later transferring it to the farther
carbon, CB. As a consequence, the hydrolytic degradation is
halted at pH values where MCH+ is the dominating open form.
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