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Rate-Adaptive Coded Modulation for Fiber-Optic
Communications

Lotfollah Beygi, Erik Agrell, Joseph M. Kahn, and Magnus Karlsson

Abstract—Rate-adaptive optical transceivers can play an im-
portant role in exploiting the available resources in dynamic
optical networks, in which different links yield different signal
qualities. We study rate-adaptive joint coding and modulation,
often called coded modulation (CM), addressing non-dispersion-
managed (non-DM) links, exploiting recent advances in channel
modeling of these links. We introduce a four-dimensional CM
scheme, which shows a better tradeoff between digital signal
processing complexity and transparent reach than existingmeth-
ods. We construct a rate-adaptive CM scheme combining a
single low-density parity-check code with a family of threesignal
constellations and using probabilistic signal shaping. Weevaluate
the performance of the proposed CM scheme for single-channel
transmission through long-haul non-DM fiber-optic systemswith
electronic chromatic-dispersion compensation. The numerical
results demonstrate improvement of spectral efficiency over a
wide range of transparent reaches, an improvement over 1 dB
compared to existing methods.

I. I NTRODUCTION

T HE tremendous growth in the demand for high data
rates in optical networks makes efficient use of available

bandwidth indispensable [1]–[3]. The spectral efficiency,i.e.,
the number of information bits sent in each polarization per
symbol period, of these channels can be improved by joint
design of modern coding and advanced modulation formats,
so-called coded modulation (CM). Forward error correction
(FEC) [4] has already become a vital part of optical transport
network standards and has evolved in several generations [5].
CM schemes are known [6]–[8] to be superior to conventional
FEC techniques with independent FEC and modulation de-
signs, in the sense of requiring less signal power for the same
amount of redundancy and the same bit-error ratio (BER).
Also, the joint design provides more freedom in the trade-off
between digital signal processing complexity and transparent
reach.

In general, fiber-optic channels are non-Gaussian due to
the interplay of noise, dispersion, and nonlinearity. In contrast
to additive white Gaussian noise (AWGN) channels, there is
no standard framework for quantifying fundamental limits [9]
as well as designing capacity-approaching schemes for such
channels. Recently, however significant advances [10], [11]

Lotfollah Beygi was with Chalmers University of Technology, Swe-
den, and is now with Qamcom Research & Technology AB, E-
mail: beygi@qamcom.se. Erik Agrell and Magnus Karlsson arewith
Chalmers University of Technology, Sweden. E-mail: agrell, and mag-
nus.karlsson@chalmers.se. Joseph M. Kahn is with StanfordUniversity, USA.
E-mail: jmk@ee.stanford.edu. This work was published in part at Globecom
2012. The calculations were performed in part on resources provided by the
Swedish National Infrastructure for Computing (SNIC) at C3SE.

have been introduced in channel modeling of non-dispersion-
managed (non-DM) fiber-optic links with sufficiently high
symbol rates and sufficiently weak nonlinearity, often called
pseudolinear regime, where the dispersion length is much
smaller than the nonlinear length [1], [12]. The new Gaussian
noise-like model introduced for pseudolinear regime makes
it possible to adapt available CM techniques from AWGN
channels to these channels.

Three main categories of CM schemes, namely trellis-
coded modulation (TCM) [7], multilevel coded modulation
(MLCM) [13], and bit-interleaved coded modulation (BICM)
[14] have been studied for fiber-optic links operating in the
pseudolinear [1], [12] and nonlinear [15, Ch. 4], [16] regimes.
TCM was first proposed in [17] for fiber-optic systems with
an 8-point cubic (three-dimensional) polarization-shiftkey-
ing constellation. Later, the simplest 4- and 16-state TCM
schemes were applied to 8-point phase shift keying (PSK)
and differential PSK in [18]. The concatenation of TCM
with different outer codes, Reed–Solomon (RS) and Bose–
Chaudhuri–Hocquenghem codes, was studied in [19]. MLCM
was proposed in [20] for a memoryless nonlinear fiber-optic
channel with RS component codes. Two MLCM schemes were
introduced in [21] and [22] with staircase codes and nonbinary
low-density parity-check (LDPC) codes, respectively.

A comprehensive study of BICM was provided in [23]
for fiber-optic communications with different modulation for-
mats. Moreover, multidimensional BICM was studied in [24],
[25]. Furthermore, BICM has been applied to polarization-
multiplexed (PM) iterative polar modulation in [26]. CM
schemes constructed by nonbinary component codes such as
moderate-length nonbinary LDPC codes were proposed for
fiber-optic communication in [27], [28].

A dynamic or heterogeneous structure of optically switched
mesh networks demands adaptive transceivers to operate with
different signal qualities. In other words, the required error
protection provided by a CM scheme is varying with the
uncoded link performance. Therefore, a CM scheme with
the possibility of adapting the data transmission scheme to
the channel state information (CSI), a so-called rate-adaptive
scheme, is needed in these networks. To this end, a rate-
adaptive CM scheme was proposed in [29] using three non-
binary LDPC codes with different rates together with three
4-, 8-, and 16-ary constellations. In [28], the authors designed
a rate-adaptive scheme with six nonbinary LDPC codes to
provide a transmission bit rate between 100 Gb/s and 300
Gb/s in steps of 26.67 Gb/s at a fixed symbol rate. In a more
practical scenario, a rate-adaptive scheme [30] is proposed
exploiting six combinations of binary LDPC and RS codes
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together with three modulation formats. This scheme was
capable of operating within 2.9 and 3.9 dB from the AWGN
capacity in long and short non-DM single-channel fiber-optic
links, respectively, showing 50% increase in transparent reach
compared to the rate-adaptive system introduced in [31] with
hard-decision FEC.

The aim of this paper is to introduce a low-complexity rate-
adaptive CM scheme based on the recently introduced channel
model for non-DM fiber-optic links [11], [32]. To this end,
we introduce a new four-dimensional (4D) CM scheme to
reduce the complexity of the nonbinary LDPC CM introduced
in [28]. More precisely, we change the bit-to-symbol mapper
using a new constellation labeling inspired by the polar coding
approach [33] to reduce the order of the Galois field (GF), and
hence the complexity, of the exploited nonbinary LDPC code.

A distinct contribution of the new CM scheme is in pro-
viding a flexible 4D structure, using a new 4D mapper and
a probabilistic shaping method based on the shell-mapping
algorithm [34]. This flexibility is used to obtain a rate-adaptive
scheme with a single LDPC code. Simulation results are pro-
vided for a 4D nonbinary LDPC CM scheme with probabilistic
shaping over a non-DM PM single-channel fiber-optic link.
According to the numerical results, the proposed scheme can
operate within 2.7 dB from the AWGN capacity for bit rates
between 178 Gb/s and 343 Gb/s, showing 1 dB performance
improvement compared to [30]. Finally, the performance of the
proposed system is compared with other rate-adaptive schemes
in the literature as well as AWGN bounds.

II. SYSTEM MODEL

The system model including the transmitter, the non-DM
fiber-optic link, and the receiver is depicted in Fig. 1.

A. Transmitter

As shown in this figure, the CM unit encodes the informa-
tion bit sequenceU to a sequence of 4D symbols, each of
which is a pair of two-dimensional (2D) standard quadrature
amplitude modulation (QAM) symbols in two polarizations.
The symbol period isT . This encoding is represented by the
matrix S. Then, the coded symbols are sent through the non-
DM fiber-optic link after performing pulse shaping. The code
rateR is defined as the ratio of the spectral efficiencies of the
coded system to the uncoded system. Moreover, the system
redundancy overhead is defined as OH= 1/R− 1. If we rep-
resent the 4D symbol by(Sxi , Sxq, Syi , Syq) at a specific time
instant, its energy is computed asEs = S2

xi +S2
xq +S2

yi +S2
yq.

The energies in polarization x and y are represented by
S2

xi +S2
xq andS2

yi +S2
yq, respectively. The energies of the four

available dimensions are given byS2
xi , S2

xq, S2
yi , and S2

yq. It
is assumed that the signals in polarizations x and y have the
same average transmitted powerP .

B. Non-dispersion-managed fiber-optic link

The non-DM fiber-optic link hasN spans, each consisting
of a single mode fiber (SMF) and an erbium-doped fiber
amplifier (EDFA) with single-wavelength data transmission.

Electronic chromatic-dispersion compensation (EDC) is used
at the receiver. Moreover, we assume that each EDFA com-
pensates for the attenuation in each fiber span of lengthL and
adds an amplified spontaneous emission (ASE) noise. This
noise is modeled as a circular white complex Gaussian vector
with varianceσ2

ASE = GFnhν/(2T ) in each polarization [35,
Eq. 8.1.15], whereG is the required gain to compensate for
the attenuation in a span,Fn = 2nsp(1 − G−1) is the noise
figure, in whichnsp is the spontaneous emission factor, and
hν is the photon energy. The Gaussian noise model introduced
in [11] is used for the calculation of prior information of the
CM decoder. According to this model, the received signalY

in a PM fiber-optic channel with EDC (as shown in Fig. 1) is
represented by

Y = ζS+ Z, (1)

where Z represents the PM complex zero-mean circularly
symmetric AWGN in each polarization, and

|ζ|2 ≈ 1− 3N1+ǫγ2α−2 tanh(α4LD)P
2, (2)

in which γ is the nonlinear coefficient,α is the attenuation co-
efficient,β2 is the dispersion coefficient, andLD = T 2/(|β2|).
Here, the linear growth of the nonlinear noise withN , intro-
duced in [11], has been changed toN1+ǫ, where

ǫ = 3
10 log

(

1 +
6

αL asinh
(

π2

2αLD

)

)

.

As discussed in [10], this takes into account the partially cor-
related rather than entirely uncorrelated accumulation ofnon-
linear noises from different spans. The variance of the AWGN
noise in each polarization is given byσ2

Zx
= E{ZHZ}/2 =

Nσ2
ASE + σ2

NL , where

σ2
NL = (1− |ζ|2)P ≈ 3N1+ǫγ2α−2 tanh(α4LD)P

3, (3)

whereP is the transmitted power per polarization. In contrast
to conventional AWGN channels with a noise variance inde-
pendent from the input power, the variance of this equivalent
AWGN is proportional to the cube of the transmit power.

C. Receiver

The coded modulation decoder extracts the sequenceÛ
from the received signalY after EDC. According to (1), it
needs the variance of the AWGNZ in each polarization to
compute the a posteriori probabilities of the coded symbols1.
We assume perfect clock and carrier synchronization, and
perfect compensation of chromatic dispersion, polarization-
mode dispersion and polarization rotation. The signal-to-noise
ratio (SNR) is defined as|ζ|2P/σ2

Zx
. The optimum power

for each transparent reach is computed by∂SNR/∂P = 0
analytically. Our numerical evaluation using the SSFM to
determine the power that minimizes the SER is in good
agreement with the analytical results.

There is a minimum SNRγ (in dB) to obtain a BER of
10−15 at the output of the CM decoder, which is usually

1An alternative analytical result was introduced in [10] forthe same model
as |ζ|2 ≈ 1 − 32/(27π)N1+ǫγ2α−1L−1

D asinh(π2/(2αLD))P 2, which is
in a good agreement with (2) numerically.
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Fig. 1. A non-DM fiber link including a CM encoder at the transmitter, a non-DM fiber-optic channel withN spans, each consisting of an SMF and an
EDFA, and the CM decoder and EDC at the receiver (U is the input information bit sequence and̂U is the decoded bit sequence).
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Fig. 2. A schematic example of bitwise conditional MIs together with the
range of MIs for the ‘good’, ‘intermediate’, and ‘bad’ groups.

computed by numerical simulations. The gap∆γ betweenγ
and the minimum SNR obtained using the Shannon formula
for an AWGN channel with the spectral efficiencyη is a useful
measure to compare different CM schemes2. This gap, referred
to as gap from AWGN capacity [30], can be expressed as
∆γ = γ − 10 log10 (2

η − 1) dB.

III. D ESIGN OF THE CODED MODULATION SCHEME

The transmitter of the coded modulation scheme can be
represented as a mapper transforming the sequence of infor-
mation bits to a sequence of symbols from a 4D constellation.
As shown in Fig. 1, the scheme mapsm bit sequences
V1, V2, . . . , Vm to a 4D symbol sequenceS. The symbol
sequenceS is transmitted through a non-DM fiber-optic chan-
nel and received as the distorted symbol sequenceY after
the EDC. The additive noiseZ represents the added linear
ASE noise and nonlinear noise-like interference. The channel
capacity of a discrete-time memoryless channel is

max
p(V1,...,Vm)

I(V1, . . . , Vm;Y),

2This AWGN capacity, although popular as a benchmark, does not represent
the capacity of the nonlinear fiber-optic channel [9], [36].

whereI(A;B) denotes the mutual information (MI) betweenA

andB [37, Eq. (7.1)]. The maximum is taken over all possible
input vector distributionsp(V1, . . . , Vm).

A. Probabilistic signal shaping

Probabilistic shaping changes the uniform distribution of
the equivalent binary channels inputsV1, . . . , Vm such that
the distribution of the generated 1D symbols (elements of
the matrixS) from these bits better approximates a Gaussian
distribution. In other words, instead of 4D symbols with
uniformly distributed 1D elements, the 1D symbols (elements)
close to the origin (with small amplitudes) are sent more often
than 1D symbols far from the origin of the constellation (with
large amplitudes). For a system without probabilistic shaping,
the input bits are equally likely or uniformly distributed.
Thus, we use the MI between the channel input and output
I = I(V1, . . . , Vm;Y) with uniformly-distributedVis, i.e.,
p(Vi) = 0.5, i = 1, . . . ,m for a system without probabilistic
shaping.

B. Information-theoretic design framework

The MI I can be decomposed [13] asI =
∑m

i=1 Ii,
where Ii = I(Vi;Y|V1, . . . , Vi−1) is the conditional MI of
the subchanneli, provided that the transmitted bits of the
subchannels1, . . . , i − 1 are given. Since according to (1),
a non-DM fiber-optic link with EDC can be approximately
modeled as a memoryless discrete-time AWGN channel [11],
the MIs of the binary subchannels can be calculated by
a numerical method [37, Ch. 9]. We exploit the efficient
numerical method introduced in [38, Appendix] to evaluate the
MIs using Gauss–Hermite quadratures for AWGN channels.
This design framework, based on equivalent parallel binary
subchannelsIis [13], can be used to analyze the design of
different CM schemes . For a non-DM fiber-optic link, as
shown in Fig. 2, the subchannels may have different MIs for
different transparent reaches (or SNRs). Hence, to approach
the channel MI, an unequal error-protecting technique [13]
needs to be applied over them binary subchannels. To this
end, one may exploit several binary component codes, similar
to [39], to devise a capacity-achieving CM scheme, or a single
nonbinary code as in [28], which is the approach taken in
this paper. We propose a new mapper to reduce the number
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of binary codes or the order of the corresponding GF for
mitigating the complexity of the schemes introduced in [28],
[39].

C. Polar code technique

If we consider a mapper with an arbitrary number of
dimensions, the goal is to design this unit such that the
equivalent binary subchannels are categorized in two groups,
namely ‘bad’ and ‘good’ subchannels, with MIs 0 and 1,
respectively, known as polar coding. Unfortunately, this ideal
grouping can be reached only in an asymptotic case for very
large dimensions, at the cost of a high decoding complexity.
For a 4D mapper, we need to add a third group, namely ‘inter-
mediate’ subchannels, with MIs between 0 and 1, as illustrated
in Fig. 2. We consider two thresholds, shown with horizontal
dashed lines in Fig. 2, to categorize the subchannels into the
three groups. Our criterion in the design of the 4D mapper
is to minimize the number of ‘intermediate’ subchannels. We
notice here that for a given transparent reach, or SNR, the sum
of the MIs of the subchannels yields the total MI between
the channel input and output, independent from the mapper
employed [13]. Thus, reducing the number of ‘intermediate’
subchannels leads to increasing the number of bad and good
subchannels, which decreases the system complexity. In gen-
eral, for a one-dimensional (1D) constellation with a large
number of symbols, this discrete optimization of labeling to
obtain the minimum number of ‘intermediate’ subchannels is
very complicated, and even more so for 4D constellations.
Therefore, we solely performed the optimization over the 1D
labelings including the binary reflected Gray code, the natural
binary code, and the folded binary code [38, Ch. 1]. We
found that the natural labeling provides the minimum number
of ‘intermediate’ subchannels in the region of interest, i.e.,
moderate SNRs, with PM 16- and 64-QAM constellations.

IV. B IT-TO-SYMBOL MAPPER

In this section, we introduce a channel-aware 4D bit-to-
symbol mapper, often called constellation labeling, which
reduces the number of ‘intermediate’ subchannels for non-
DM fiber-optic links and provides a suitable structure to add
probabilistic shaping. We consider the 4D constellation asthe
Cartesian product of two square QAM constellations or equiv-
alently four 1D PAM constellations denoted byA×A×A×A,
whereA is a PAM constellation.

A. Four-dimensional mapper without probabilistic shaping

Without loss of generality, we proceed by describing the
4D mapper using the PM 16-QAM constellation for the sake
of simplicity. For a 4-PAM constellationA = {−3,−1, 1, 3}
with a natural labeling{00, 01, 10, 11}, the set of four symbols
is split into two setsA0 = {−3, 1} andA1 = {−1, 3}, where
the first bit (the least significant bit) of the binary labeling is 0
and 1 for symbols inA0 andA1, respectively. This partitioning
of the signal set based on a specific bit in the binary labeling
is called set partitioning with respect to the corresponding
bit. Here, the 1D constellationA with a minimum Euclidean

distance (MED) ofd0 is set partitioned into two subsetsA0

andA1 with MEDs of 2d0.
As mentioned above, the 4D constellation is represented as

the Cartesian product of four 1D 4-PAM constellations. We
use this property and the method proposed in [40], which is
a generalized version of the technique in [41] for an arbitrary
dimension, to develop a 4D set partitioning based on the
set partitioning of its constituent 4-PAM constellations.As
seen in Table II(a), each step (one labeling bit) in the set
partitioning of the 4-PAM constellationA is used in four steps
(four labeling bits) of set partitioning of the 4D constellation
A×A×A×A. Using the partitioning of the 1D constellation,
the 4D constellation is split into 16 subsets as shown in
Table II(a). We define the inter-MED between 4D sets as the
MED between the 4D symbols of the two sets. As seen in
Table II(a), the bitv1 partitions the setA×A×A×A into two
sets with an inter-MED ofd0 (vi, 0 < i ≤ m, represents a bit
from the sequenceVi at a specific time instant). Provided that
v1 is known,v2 splits the corresponding subset into two sets
with inter-MED of

√
2d0. In an analogous way, set partitioning

with the bitsv3 andv4 result inter-MEDs of
√
2d0 and2d0,

respectively, as illustrated in Fig. 3. Each of the subsetsA0

andA1 can be further set partitioned into subsetsA00, A01,
A10, andA11 and so on (the same notation as in [13], [42]).
The 4D set partitioning can be analogously continued for the
labeling bitsv5, v6, v7, andv8.

Since the first step of the set partitioning of the 4-PAM
constellation yields two setsA0 and A1 with the same
average energy of5, the distributions of the first four bits
of the 4D labeling given in Table II(a) have no effect on
the average energy of the corresponding 4D constellation.
In other words, after performing set partitioning by the
labeling bits v1, . . . , v4, we are left with 16 subsets with
the same average 4D symbol energy. Each subset has 16
4D symbols, as shown in Table II(b) for the first subset.
Moreover, as shown in Fig. 3, the inter-MED of the subsets
resulting from the 4D set partitioning in each step for a
given bit shows a nondecreasing behavior from the least to
the most significant bit. Since the corresponding neighboring
multiplicities can increase fromv1 to v8, the inter-MED is
not a good measure to categorize the channels into ‘good’,
‘intermediate’, and ‘bad’. Hence, we use the MIs of binary
subchannels for this purpose. As mentioned in the previous
section the natural labeling provides the minimum number
of ‘intermediate’ subchannels for the 4D mapper among the
labelings introduced in Section III-C. This conclusion was
observed by a numerical brute-force search.

Example: The MIs of binary subchannelsv1, . . . , v8 are
plotted in Fig. 4 for different transparent reaches of a
non-DM fiber-optic link. The AWGN model (1) with the
system parameters given in Table I is used to compute these
MIs numerically [38, Appendix]. For each transparent reach
NL, the SNR is calculated as|ζ|2P/σ2

Zx
with ζ and σ2

Zx

given in Section II-B and the optimum transmit powerP
given in Section II-C. As seen in this figure, one may exploit
the 4D mapper to categorize the binary subchannels into three
types, namely ‘bad’, ‘intermediate’, and ‘good’ subchannels,
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√
2d0

MED =
√
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Fig. 3. First four steps of the 4D set partitioning of PM 16-QAM. Black circles represent the subsets given in Table II(a).The first four bits of the binary
labeling for this constellation are represented byv4v3v2v1.

TABLE I
SYSTEM PARAMETER VALUES

Symbol rateRs 32 Gbaud
Nonlinear coefficientγ 1.4 W−1km−1

Attenuation coefficientα 0.2 dB/km
Dispersion coefficientD 17 ps/nm/km
Optical center wavelengthλ 1550 nm
EDFA noise figureFn 5 dB
Span lengthL 80 km

at a specific transparent reach. As an example, for transparent
reaches less than 20000 km in Fig. 4, we solely have
‘intermediate’ and ‘good’ subchannels, while for transparent
reaches greater than 20000 km, the binary subchannel are
categorized in ‘intermediate’ and ‘bad’ subchannels only.

B. Four-dimensional mapper with probabilistic shaping

Here, we describe how the 4D set partitioning, constructed
based on a 1D constellation with the natural labeling, can
be modified to devise this 4D mapper, which accounts for
probabilistic shaping. Indeed, we manipulate the introduced
4D labeling in the previous section such that the average
transmit power can be reduced by changing the distributions
of zeros and ones at the input of the ‘good’ subchannels.

The second set partitioning of the 4-PAM constellation
generates subsets with energies of1 and 9. Therefore, the
average energy of the 4D constellation can be reduced by
manipulating the distributions of the second set of four bits. As
will be discussed in Section V-B, we change the distributionof
zeros and ones solely in ‘good’ subchannels from uniform to a
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Fig. 4. The bitwise conditional MIs for a 4D mapper with PM 16-QAM.
The fiber-optic link is implemented with the parameters given in Table I.

nonuniform distribution, to obtain binary streams with higher
prior probability for zeros. For the selected PM 16-QAM
constellation, we can considerv5, . . . , v8 as ‘good’ subchan-
nels, which are nonuniformly shaped by the binary shaping
algorithm introduced in Section V-B. Now, the labeling of 4D
symbols inside each subset ofA × A × A × A needs to be
modified to account for signal shaping. Intuitively, the labels
of the 4D symbols in each subset can be obtained by assigning
binary labels with small Hamming weights to 4D symbols with
small symbol energies as outlined in the following steps.

(1) Create a table of all24 binary labels of length 4.
Sort the table from the lowest to highest Hamming
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TABLE II
THE 4D BINARY LABELING OF THE PM16-QAM CONSTELLATION

(A0 = {−3, 1} AND A1 = {−1, 3}).

(a) The ‘bad’ and ‘intermediate’ subchannels.

subsets of
v1 v2 v3 v4 A×A×A×A

0 0 0 0 A0 ×A0 ×A0 ×A0

0 0 0 1 A1 ×A1 ×A1 ×A1

0 0 1 0 A0 ×A0 ×A1 ×A1

0 0 1 1 A1 ×A1 ×A0 ×A0

0 1 0 0 A1 ×A0 ×A1 ×A0

0 1 0 1 A0 ×A1 ×A0 ×A1

0 1 1 0 A1 ×A0 ×A0 ×A1

0 1 1 1 A0 ×A1 ×A1 ×A0

1 0 0 0 A0 ×A0 ×A0 ×A1

1 0 0 1 A1 ×A1 ×A1 ×A0

1 0 1 0 A0 ×A0 ×A1 ×A0

1 0 1 1 A1 ×A1 ×A0 ×A1

1 1 0 0 A1 ×A0 ×A1 ×A1

1 1 0 1 A0 ×A1 ×A0 ×A0

1 1 1 0 A1 ×A0 ×A0 ×A0

1 1 1 1 A0 ×A1 ×A1 ×A1

(b) The ‘good’ subchannels devised to account for probabilistic shaping
in subsetA0 ×A0 ×A0 ×A0.

4D symbols in
v5 v6 v7 v8 weight A0 ×A0 ×A0 ×A0 Es

0 0 0 0 0 ( 1, 1, 1, 1) 4
0 0 0 1 1 ( 1, 1, 1,−3) 12
0 0 1 0 1 ( 1, 1,−3, 1) 12
0 1 0 0 1 ( 1,−3, 1, 1) 12
1 0 0 0 1 (−3, 1, 1, 1) 12
0 0 1 1 2 ( 1, 1,−3,−3) 20
0 1 0 1 2 ( 1,−3, 1,−3) 20
0 1 1 0 2 ( 1,−3,−3, 1) 20
1 0 0 1 2 (−3, 1, 1,−3) 20
1 0 1 0 2 (−3, 1,−3, 1) 20
1 1 0 0 2 (−3,−3, 1, 1) 20
0 1 1 1 3 ( 1,−3,−3,−3) 28
1 0 1 1 3 (−3, 1,−3,−3) 28
1 1 0 1 3 (−3,−3, 1,−3) 28
1 1 1 0 3 (−3,−3,−3, 1) 28
1 1 1 1 4 (−3,−3,−3,−3) 36

weights. Order labels with the same weight lexico-
graphically, considering the bit on the right as the
least significant bit.

(2) Sort the 4D symbols of each subset from lowest to
highest energy. Symbols with the same energy are
ordered based on their energies in polarization x.
If the symbols have the same 4D and 2D symbol
energies, they are ordered based on their 1D energies,
starting fromS2

xi to S2
yq (as introduced in Section II).

(3) Assign the table generated in (1) as the indices of
the table generated in (2), in the same order.

This approach yields the labeling bitsv5, . . . , v8 (‘good’
subchannels) shown in Table II(b) for the first subsetA0×A0×
A0×A0. We observe that labels with low weights correspond
to symbol with low energies, as intended. This approach is
illustrated in Fig. 5 for a subset consisting of 4D symbols
with energies of 4, 12, 20, 28, and 36.
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Fig. 5. The labeling bitsv5v6v7v8 of ‘good’ subchannels shown in
Table II(b) for the first subsetA0 ×A0 ×A0 ×A0 of PM 16-QAM. This
labeling is suitable for probabilistic signal shaping.

Bit-to-symbol

mapper

‘bad’

‘good’

‘inter.’

D
em

ul
tip

le
xe

r

Dropped bits
V1

V2

V3

U1

U2

U

S

(d × n)

(q × n)

(h × n)

(q × k)

(1 × ℓ)

(N × n)

Prob. shaping

Nonbinary
block code

Fig. 6. The encoder for the proposed CM scheme, consisting ofa block
code, a 4D mapper, and a probabilistic shaping unit.

V. POLAR CODED MODULATION

Since the 4D mapper introduced in Section IV is inspired by
the polar code concept, we call the devised CM scheme ‘polar
CM’. As seen in Fig. 6, the 4D bit-to-symbol mapper described
in the previous section performs the role of a polar code [33]in
our scheme. It divides the bit positions of the binary labeling
of constellation symbols into ‘bad’ (V1), ‘intermediate’ (V2),
and ‘good’ (V3) subchannels. Since the MI of ‘bad’ channels
is close to zero, the input of these channels is frozen to
zero or one. The matrixV1 is an all-zero matrix of size
d × n representing the dropped bits, which do not carry any
information. The sequence of information bitsU of length ℓ
is split into two groups. The first groupU1 is a matrix of size
q × k, which is encoded by a block code. The block encoder
generates a matrixV2 of sizeq×n by adding(n−k)q bits or
n− k symbols from the GF of order2q, denoted by GF(2q),
as redundancy. Finally, the second groupU2 consists ofh
row vectors with lengthsri, 0 < i ≤ h. It is encoded by
a probabilistic shaping unit to generate a matrixV3 of size
h× n. The 4D mapper unit maps the(d+ q + h)× n binary
matrix V = {VT

1 ,V
T
2 ,V

T
3 }T at the time instanti to the4× n

real matrixS. Each column ofS is a 4D symbol taken from
a constellation of size2d+q+h.

A 2q-ary nonbinary LDPC is used as the block code in
the simulations. However, one may instead consider a binary
LDPC code provided that iterative decoding is exploited
between the log-likelihood ratio (LLR) calculator and LDPC
decoder. The decoding of the binary subchannels with MI
close to 1 is performed after the detection of ‘intermediate’
subchannels (i.e., coded by the nonbinary LDPC code). This
is because the MI of these subchannels are conditioned on the
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input bits of the ‘intermediate’ subchannels, as discussedin
Section III-C.

A. LDPC coding and decoding

Since the ‘intermediate’ subchannels are dependent (the
detector of ‘intermediate’ subchanneli needs the transmitted
bits on subchannels1, . . . , i − 1), they should be decoded
jointly for optimal performance, provided that a nonbinary
encoder is used in the encoder. Independent bit-wise decod-
ing would give rise to performance degradation of the CM
scheme. Hence, the nonbinary LDPC code performs on a
vector of input bits of ‘intermediate’ subchannels. The main
shortcoming of nonbinary LDPC codes is their decoding com-
plexity, which increases with the order of the GF employed
[43]. Since the error protection using the nonbinary LDPC
code is solely performed over ‘intermediate’ subchannels,the
proposed 4D mapper reduces the number of ‘intermediate’
subchannels and consequently the required order of the GF
for the nonbinary LDPC code. Hence, the complexity of the
CM scheme compared to [28] is reduced without performance
degradation. The introduced channel model in Section II for
the non-DM fiber-optic channel simplifies the computation
of the a posteriori information required for the decoder of
the LDPC code. In other words, according to this model the
additive noise is white, hence the a posteriori probabilities of
the received symbols are computed using the noise variance
given in Section II and no iterative equalization [44, Ch. 7]is
needed.

B. Probabilistic shaping

Shell-mapping [34], [45], [46] and trellis shaping [47] are
two well-known algorithms for performing probabilistic shap-
ing over a constellation with uniformly distributed symbols.
Since the shell-mapping algorithm and the LDPC code can
be implemented jointly with lower complexity than trellis
shaping, we exploit shell-mapping in our CM scheme. Indeed,
the new 4D mapper introduced in Section IV allows us to
exploit a binary shaping encoder over ‘good’ subchannels.
Interestingly, the major part of the shaping gain is obtained
by applying probabilistic shaping over the ‘good’ (uncoded)
subchannelsV3. This approach not only allows us to exploit
a hard-decision decoder for the shaping unit but also avoids
using concatenated (or joint) signal shaping and channel
coding schemes, resulting a scheme with low complexity.

As shown in Fig. 6, the exploited binary shell-mapping
is simply described ash parallel binary encoders, where the
encoderi maps the input vector of lengthri to an output vector
of lengthn. The shaping encoderi can be simply described
as a look-up table consisting of2ri binary vectors of lengthn.
To construct this table, all2n binary vectors of lengthn are
first sorted from lowest to highest Hamming weights. Vectors
with the same weight are ordered lexicographically. Then, the
last 2n−ri vectors are discarded. Therefore, it is readily seen
that ri ≤ n and we defineRi = ri/n as the shaping rate of
the ‘good’ subchanneli.

To find the rates of the shaping encoders, we first use
the approach introduced in [13] to force symbolS to get

a (discrete) Gaussian distribution in each dimension. For
example, the distribution of the in-phase component of the
x polarization is considered as

PSxi (a) = e−λ|a|2(
∑

a∈A
e−λ|a|2)−1, (4)

where the parameterλ controls the trade-off between the
average energy of the 1D constellation and its entropyH(A).
Then, we maximize the MII(Y;V) by a numerical optimiza-
tion over the parameterλ. Now, we can compute the nonuni-
form distribution of ‘good’ subchannels and consequently the
required rate of shaping encoders for the ‘good’ subchannels.
The signal shaping reduces the required SNR or transmit
power at the cost of shaping redundancy (or constellation
expansion).

VI. COMPLEXITY ANALYSIS

The encoder and decoder of the component codes together
with the LLR calculation from soft (distorted) received sym-
bols represent the main part of the DSP complexity of a CM
scheme. For CM schemes with binary codes and a Gray-
labeled constellation, the LLRs of the subchannels can be
computed using the computationally efficient max-log approx-
imation [48, Ch. 7]. Finding the closest among the 4D con-
stellation symbols to the received (distorted) symbol requires
approximately four times the computational complexity of
finding the closest symbol in the constituent 1D constellation,
neglecting the three additions which one may be needed to
compute the4D MED from four 1D MEDs [41]. Hence, the
LLR vector for a 4D CM scheme can be computed with a
very low complexity. This complexity analysis implies thatone
may compare the complexity of the receivers for CM schemes
with different dimensions by taking into account solely the
complexity of the component code decoders per dimension.

The complexity of LDPC and RS codes have been well-
studied in the literature. The computational complexity re-
quired per iteration of the fast Fourier transform sum-product
algorithm in decoding of a2q-ary regular nonbinary LDPC
code designed over GF(2q) is in the order ofO(Jρq2q) [48,
Ch. 14], whereJ and ρ are the number and weight of the
rows of the parity-check matrix of the nonbinary LDPC code,
respectively. For RS codes, the complexity is in the order of
O(q22q) [49]. Moreover, the number of iterations required for
the convergence of LDPC iterative decoding also influence the
complexity of the decoder of these codes.

VII. N UMERICAL RESULTS

In this section, we provide numerical results for the achiev-
able rates of the proposed CM scheme as well as the AWGN
bounds [10], [11] for different transparent reaches of a single-
channel non-DM PM fiber-optic system. Although the LDPC
codes with large girth employed are capable of having no
error floor on the performance curve down to BERs around
10−12 as used in [50], we have evaluated the performance
of the proposed CM scheme with a small-girth LDPC code
together with an RS outer code. Moreover, we choose the
‘intermediate’ subchannels such that the LDPC code rate
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satisfiesRc ≤ I(Y ;Vd+1, . . . , Vd+q|V1, . . . , Vd) for different
SNRs. The CM scheme is simulated with a (3,15)-regular
quasi-cyclic nonbinary LDPC (1920,1546) over GF(26) to
bring the uncoded BER down to BERs around3×10−5. Then,
we meet BER≤ 10−15 using a (1022,1004) RS outer code
over GF(210). We use a shortening technique to match the
length of the RS code and the LDPC input block length [51,
Ch. 5]. The system parameters are given in Table I. The Fourier
transform sum-product algorithm is used for the decoding of
the nonbinary LDPC code.

The probabilistic shaping encoder output length is fixed
to 64 bits. The optimized rates of the shaping encoders for
different ‘good’ subchannels based on the method introduced
in Section V-B are given in Table III. The total rate of the CM
scheme is

R =
RRS

d+ q + h

(

h
∑

i=1

Ri + qRc

)

, (5)

where RRS is the rate of outer RS code. The total FEC
overheads of the systems for different transparent reachesare
given in Tables IV and V. The split-step Fourier method
(SSFM) [52, Eq. 2.4.10] is used to simulate a fiber-optic
channel based on the Manakov equation with an adaptive
segment length [53] of∆i = (κLNL

2
D)

1/3, where i is the
segment index,κ = 10−4, and LN = 1/(γPi−1) is the
nonlinear length of segmenti − 1 [52, p. 55] with the input
powerPi−1. In the simulations, the receiver is assumed to have
perfect knowledge of the polarization state. The optical filters
are assumed to be unity gain with double-sided bandwidth
equal to the sampling frequency used, which is usually greater
than the signal bandwidth. We consider a root-raised-cosine
pulse [54, p. 675] with an excess bandwidth of 0.2 and a
truncation length of 16 symbols.

Fig. 7 shows the information bit rate per two polarizations
versus the transparent reach for a non-DM fiber-optic link.
The gap between the bit rate achieved using the proposed
CM scheme without probabilistic shaping and the AWGN
capacity is around 50 Gbps. As seen for transparent reaches
smaller than 3000 km, probabilistic shaping decreases the
gap to around 40 Gbps (20% reduction). In this figure, the
AWGN capacity is plotted based on the Shannon formula,
2 log2(1 + SNR), for an AWGN channel for different trans-
parent reaches. To this end, the SNR was estimated in two
ways: analytically using the varianceσ2

Zx
introduced for the

Gaussian noise model and empirically by simulating at the
output of the equalizer using a Monte-Carlo simulation in a
similar way as in [30]. Fig. 7 indicates a good agreement
between the analytical and empirical approaches.

The maximum uncoded symbol error rate of a hard-decision
demodulator, denoted by SERTh, for obtaining an information
BER of 10−15 at the output of the CM decoder for differ-
ent transparent reaches are also given in Tables IV and V.
As mentioned earlier, we use a semi-analytical approach to
compute this FEC threshold. In fact, the required SNR to get
a BER around2 × 10−5 at the output of the proposed CM
scheme is computed by Monte-Carlo simulations. Then, an
interleaver is considered to make the errors independent at

TABLE III
THE RATES OF SHAPING ENCODERS FOR THE RATE-ADAPTIVE CM

SCHEME IN TABLE V.

Reach R1 R2 R3 R4 R5 R6

17× 80 0.97 0.95 0.95 0.94 0.94 0.91
31× 80 0.88 0.84 0.84 0.83 0.75 -
44× 80 0.70 0.70 0.70 0.70 - -
55× 80 0.83 0.75 0.63 - - -
90× 80 0.83 - - - - -
The encoder output length is 64 bits.
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Fig. 7. Bit rates per two polarizations achieved by the CM scheme versus the
transparent reach of a non-DM link with EDC, with and withoutprobabilistic
shaping.

the input of the outer RS decoder. Finally, the BER at the
output of the exploited outer RS decoder with no decoding
failures is obtained by [55, Eq. (16)-(19)] assuming negligible
probability of undetected errors. For example, a CM scheme
with 17 spans (first row of Table V) and 16.47% overhead has
a SER FEC threshold (SERTh) of 0.08.

VIII. R ATE ADAPTATION

To improve the utilization of optical networks with a dy-
namic or heterogeneous structure, we use the same approach
as [30] to adapt the CM scheme to the CSI estimated by the
receiver and reported back to the transmitter of the fiber-optic
system. Similarly, we consider two choices for the CSI: (i)
SNR, which is the symbol SNR estimated after polarization
tracking and EDC, and (ii) the inner LDPC code performance,
which is computed by a syndrome-based error estimator. The
CSI is usually quantized to an integer value and sent to the
transmitter using a reliable feedback channel.

The proposed ‘polar CM’ scheme provides a flexible struc-
ture to implement an adaptive-rate CM scheme with a single
LDPC code. More precisely, the number of bits in the different
(‘good’, ‘intermediate’, and ‘bad’) groups introduced in the
‘polar CM’ scheme are adjusted according to the CSI, as
shown in Tables IV and V (these tables are discussed in
Section VII). In contrast to [30], this approach exploits a
simple circuitry to provide a rate-adaptive CM scheme. Since
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TABLE IV
THE CM SCHEME WITHOUT PROBABILISTIC SHAPING FOR DIFFERENT TRANSPARENT REACHES.

Reach bit rate (Gbps) CM parameters
(km) CM AWGN bound Constellation DB UB SE OH% ∆γ (dB) SNR (dB) SERTh

13× 80 341 411 PM 64-QAM 0 6 5.32 12.78 3.35 19.26 0.07
20× 80 309 368 PM 64-QAM 1 5 4.83 24.25 2.84 17.22 0.19
27× 80 278 338 PM 64-QAM 2 4 4.34 38.32 2.96 15.80 0.29
39× 80 246 301 PM 64-QAM 3 3 3.85 55.98 2.73 14.00 0.42
53× 80 215 274 PM 16-QAM 0 2 3.36 19.21 2.98 12.64 0.08
81× 80 183 232 PM 16-QAM 1 1 2.86 39.65 2.58 10.56 0.18
113× 80 152 203 PM 16-QAM 2 0 2.37 68.56 2.80 9.01 0.29
System parameters are given in Table I, BER≤ 10−15, RS(1022,1004) outer code over GF(210) and (1920,1546) LDPC inner code over GF(26).

TABLE V
THE CM SCHEME WITH PROBABILISTIC SHAPING FOR DIFFERENT TRANSPARENT REACHES.

Reach bit rate (Gbps) CM parameters
(km) CM AWGN bound Constellation DB UB SE OH% ∆γ (dB) SNR (dB) SERTh

17× 80 330 398 PM 64-QAM 0 6 5.15 16.47 2.67 18.68 0.08
31× 80 282 326 PM 64-QAM 1 5 4.41 36.15 2.13 15.19 0.19
44× 80 241 293 PM 64-QAM 2 4 3.76 59.81 2.60 13.57 0.29
55× 80 221 267 PM 64-QAM 3 3 3.46 73.65 2.33 12.32 0.42
90× 80 178 223 PM 16-QAM 1 1 2.78 43.89 2.41 10.10 0.18
System parameters are given in Table I, BER≤ 10−15, RS(1022,1004) outer code over GF(210) and (1920,1546) LDPC inner code over GF(26).

The rates of shaping encoders are given in Table III.

the mapper is solely a simple look-up table, the rate adaptation
is straightforward to implement. As an example, in a single
channel scenario for a short link with a transparent reach
smaller than 1500 km (or SNR> 18 dB), PM 64-QAM with
no dropped bits is a suitable scheme, while for a long link with
a transparent reach of 9000 km (SNR≃ 9 dB), PM 16-QAM
with two dropped bits satisfies the required BER of10−15.

Interestingly, this rate adaptation can be seen as a proper
selection of 4D constellations extracted from well-known
lattices [6]. Tables IV and V indicate how the number of
dropped bits (DB) and uncoded bits (UB) in the 4D mapper
needs to be changed to support spectral efficiencies (SE) from
2.37 to 5.32 per polarization. As seen, for high SNRs, the
PM 64-QAM constellation extracted from the 4D cubic lattice
is used, while by decreasing the SNR, simply by changing
the mapper, we obtain the 2048-ary 4D constellation extracted
from the so-calledD4 lattice, which is the best 4D packing
lattice [56], [57]. The number of coded bits, i.e., ‘intermediate’
subchannels, is fixed to six and these bits were coded by a
nonbinary LDPC code.

In Fig. 8, the AWGN capacity (spectral efficiency) per
dimension is illustrated versus the transparent reach as well
as the SNR (using the results provided in Sections II-B and
II-C) for the rate-adaptive CM scheme over a non-DM fiber-
optic link with the parameters given in Table I. The spectral
efficiency of the system with standard constellations, 4-PAM
and 8-PAM, with and without probabilistic shaping, are also
plotted in this figure. The results show that the rate-adaptive
CM scheme using a single nonbinary code with probabilistic
shaping can achieve∆γ < 2.7 dB for transparent reaches from
17× 80 to 112× 80 km.

The transmission bit rates for different transparent reaches
are given in Table VI for four rate-adaptive schemes, includ-
ing our proposed CM scheme. Since we have not consid-

TABLE VI
PERFORMANCE(GB/S, KM ) OF RATE-ADAPTIVE SCHEMES WITH

DIFFERENT BIT RATES PER TWO POLARIZATIONS AND TRANSPARENT

REACHES.

[29], BP [30], EDC [21], EDC This work, EDC
(200,6400) (50,11000) (540,2000) (150,9000)
(300,3900) (100,6000) (662,1000) (220,4400)
(400,2100) (200,1920) (748,500) (330,1440)

ered the bandpass filtering of the signal propagated through
many cascaded reconfigurable optical add–drop multiplexers
(ROADMs) over long transparent reaches as considered in
[30], we solely compare the gap from the AWGN capacity
rather than the transparent reach. As shown in Table VI, the
rate-adaptive CM scheme introduced in [29] can achieve infor-
mation rates even higher than the AWGN capacity computed
for a scheme with EDC. Moreover, the results introduced in
[21] with distributed Raman amplification show significantly
larger transparent reaches, however the gap from the AWGN
capacity (∆γ) is larger than with our proposed scheme.

The results shown in Table V indicate larger than 1 dB
performance improvement (or reduction in∆γ) compared to
the previous results presented in [30]. However, according
to the complexity analysis introduced in Section VI, the
complexity of the exploited regular nonbinary LDPC code is
slightly higher than irregular binary LDPC codes used in [30].

IX. CONCLUSIONS

The paper introduced a new 4D LDPC CM scheme for
nonlinear fiber-optic channels. The design framework was
supported by an information-theoretic approach. The proposed
scheme exploits a 4D mapper, inspired by polar coding, to
reduce the computational complexity of the nonbinary CM
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schemes without performance degradation. The 4D scheme
provides a flexible structure to adapt the CM scheme for links
with different signal qualities in a fiber-optic network.

In contrast to existing rate-adaptive schemes in the literature,
the proposed scheme uses a single LDPC code rather than
several binary or nonbinary component codes. Furthermore,
exploiting a probabilistic shaping based on the shell-mapping
algorithm, the system FEC threshold is improved with a
reasonable increase in the system complexity.
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[25] H. Bülow and E. Masalkina, “Coded modulation in optical communica-
tions,” in Proc. Optic. Fiber Commun. Conf., Mar. 2011.

[26] I. B. Djordjevic, H. G. Batshon, L. Xu, , and T. Wang, “Coded
polarization-multiplexed iterative polar modulation (PM-IPM) for be-
yond 400 Gb/s serial optical transmission,”in Proc. Optic. Fiber
Commun. Conf., Mar. 2010, OMK2.

[27] I. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical com-
munication systems,”IEEE Photon. Technol. Lett., vol. 17, no. 10, pp.
2224–2226, Oct. 2005.

[28] M. Arabaci, I. B. Djordjevic, L. Xu, and T. Wang, “Nonbinary LDPC-
Coded modulation for high-speed optical fiber communication without
bandwidth expansion,”IEEE Photonics Journal, vol. 4, no. 3, pp. 728–
734, Jun. 2012.

[29] M. Arabaci, I. Djordjevic, T. Schmidt, R. Saunders, andR. Marcocci,
“Rate-adaptive nonbinary-LDPC-coded modulation with backpropaga-
tion for long-haul optical transport networks,” inProc. International
Conference on Transparent Optical Networks (ICTON), Jul. 2010.

[30] G.-H. Gho and J. M. Kahn, “Rate-adaptive modulation andlow-density
parity-check coding for optical fiber transmission systems,” J. Optical
Commun. Netw., vol. 4, no. 10, pp. 760–768, Oct. 2012.

[31] ——, “Rate-adaptive modulation and coding for optical fiber transmis-
sion systems,”J. Lightwave Technol., vol. 30, no. 12, pp. 1812–1818,
Jun. 2012.

[32] P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “An-
alytical modeling of nonlinear propagation in uncompensated optical
transmission links,”IEEE Photon. Technol. Lett., vol. 23, no. 11, pp.
742–744, Jun. 2011.

[33] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[34] R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of
multidimensional constellations,”IEEE Trans. Inform. Theory, vol. 40,
no. 4, pp. 1044–1056, Jul. 1994.

[35] G. P. Agrawal,Fiber-Optic Communication Systems, 3rd ed. Wiley,
2002.

http://arxiv.org/abs/1108.0391


11

[36] E. Agrell and M. Karlsson, “Satellite Constellations:Towards the
nonlinear channel capacity,”in Proc. IEEE Photonic Conference (IPC),
Burlingame, CA, Sep. 2012.

[37] T. M. Cover and J. A. Thomas,Elements of information theory, 2nd ed.
Wiley, 2006.

[38] A. Alvarado, “Towards fully optimized BICM trans-
missions,” Ph.D. dissertation, Chalmers Univ. Tech-
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