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Abstract
In this work the finite β-effects of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron
temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining
non-adiabatic ions and the dispersion relation for el-GAMs driven non-linearly by ETG modes is derived. The
ETG growth rate from the fluid model is compared with the results found from gyrokinetic simulations with good
agreement. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found,
resulting in a significantly enhanced ETG turbulence saturation level compared with the mixing length estimate. It
is shown that the el-GAM may be stabilized by an increase in finite β as well as by increasing non-adiabaticity. The
decreased GAM growth rates is due to the inclusion of the Maxwell stress.

(Some figures may appear in colour only in the online journal)

1. Introduction

Experimental investigations have elucidated on the complex
dynamics of the low to high (L–H) plasma confinement mode
transition. Evidence of interactions between the turbulence
driven �E × �B zonal flow oscillation or geodesic acoustic
mode (GAM) [1–9], turbulence and the mean equilibrium
flows during this transition was found. Furthermore, periodic
modulation of flow and turbulence level with the characteristic
limit cycle oscillation at the GAM frequency was present [2].
The GAMs are weakly damped by Landau resonances and
moreover this damping effect is weaker at the edge suggesting
that GAMs are more prominent in the region where transport
barriers are expected [3].

During recent years investigations on coherent structures
such as vortices, streamers and zonal flows (m = n = 0,
where m and n are the poloidal and toroidal mode numbers,
respectively) revealed that they play a critical role in
determining the overall transport in magnetically confined
plasmas [4]. Zonal flows impede transport by shear
decorrelation [4, 5], whereas the GAM is the oscillatory
counterpart of the zonal flow (m = n = 0 in the potential
perturbation, m = 1, n = 0 in the perturbations in density,
temperature and parallel velocity) and thus a weaker effect on
turbulence is expected [6, 7].

The electron-temperature-gradient (ETG) mode driven by
a combination of ETGs and field line curvature effects is a

likely candidate for driving electron heat transport [10–15].
The ETG driven electron heat transport is determined by short
scale fluctuations that do not influence ion heat transport and
is largely unaffected by the large scale flows stabilizing ion-
temperature-gradient (ITG) modes. The generation of large
scale modes such as zonal flows and GAMs is realized here
through the wave-kinetic equation (WKE) analysis that is
based on the coupling of the micro-scale turbulence with the
GAM through the WKE under the assumptions that there is a
large separation of scales in space and time [4, 16–21]. In non-
linear gyrokinetic simulations large thermal transport levels,
beyond mixing length estimates, have been observed for a long
time [12, 22–26]. In particular, in [22] it is found that saturation
produced by secondary modes occurs at long wavelengths
causing significant streamer-dominated transport, suggestive
of a high saturation level for the ETG mode such as that found
in this paper.

It is interesting to note that in simulations, damping of
the GAM due to coupling to higher m modes has been found
[27–29]. In a careful evaluation of the contributions from
higher m modes it can be shown that they are, in general, of
the order ε2

n (=(2Ln/R)2) smaller. Moreover, it is evident that
using the WKE such damping would inevitably be found by
allowing the energy to be distributed among several modes.

It is well known that a linear drift wave can be significantly
damped by finite β effects and it was recently shown that finite
β can have a significant impact on secondarily generated modes

0029-5515/13/123016+08$33.00 1 © 2013 IAEA, Vienna Printed in the UK & the USA

http://dx.doi.org/10.1088/0029-5515/53/12/123016
mailto: anderson.johan@gmail.com
http://stacks.iop.org/NF/53/123016


Nucl. Fusion 53 (2013) 123016 J. Anderson et al

such as zonal flows, see [4, 32]. Although the electron GAM
(el-GAM) was previously explored in [30, 31], vital physics
were, however, neglected.

In this work the finite β-effects are elaborated on, and
numerical quantifications of the frequency and growth rate are
given. The finite β-effects are added in an analogous way
compared with the recent work on zonal flows in [32, 33]. In
particular the Maxwell stress is included in the generation of
the el-GAM. The frequency of the el-GAM is higher compared
with the ion GAM by the square root of the ion-to-electron mass
ratio (�q(electron)/�q(ion) ≈ √

mi/me where �q(electron)

and �q(ion) are the real frequencies of the electron and ion
GAMs, respectively.). It is found that similar to the linear
growth rate the finite β effects are stabilizing the GAM using
a mode coupling saturation level. Furthermore, increasing the
non-adiabaticity parameter (�e) can decrease the growth rate
through a linear contribution. Finally, the effect of an enhanced
non-linear saturation level found in [30] on the GAM growth
would lead to a correspondingly increased GAM growth rate.

2. The linear ETG mode

In this section we will describe the preliminaries of the ETG
mode which we consider under the following restrictions on
real frequency and wavelength: �i � ω ∼ ω� � �e,
k⊥ci > ω > k‖ce. Here �j are the respective cyclotron
frequencies, ρj is the Larmor radii and cj = √

Tj/mj is
the thermal velocities. The diamagnetic frequency is ω� ∼
kθρece/Ln, k⊥ and k‖ are the perpendicular and parallel wave
numbers. The ETG model consists of a combination of ion
and electron fluid dynamics coupled through quasineutrality,
including finite β-effects [13, 15].

2.1. Ion and impurity dynamics

In this section, we will start by describing the ion fluid
dynamics in the ETG mode description. In the limit ω > k‖ce

the ions are stationary along the mean magnetic field �B (where
�B = B0ê‖) whereas in the limit k⊥ci � ω, k⊥ρi � 1 the
ions are unmagnetized. In this paper we will use the non-
adabatic responses in the limits ω < k⊥cI < k⊥ci, where

cI =
√

TI
mI

is the impurity thermal velocity, and we assume

that �i < ω < �e are fulfilled for the ions and impurities. In
the ETG mode description we can utilize the ion and impurity
continuity and momentum equations of the form

∂nj

∂t
+ nj∇ · �vj = 0, and (1)

mjnj

∂ �vj

∂t
+ enj∇φ + Tj∇nj = 0, (2)

where j = i for ions and j = I for impurities. Now, we derive
the non-adiabatic ion response with τi = Te/Ti and impurity
response with τI = Te/TI, respectively. We thus have

ñj = −
 zτj

1 − ω2/
(
k2
⊥c2

j

)
 φ̃. (3)

Here Tj and nj are the mean temperature and density of species
(j = e, i, I), where ñi = δn/ni, ñI = δnI/nI and φ̃ = eφ/Te

are the normalized ion density, impurity density and potential
fluctuations and z is the charge number of species j . Next
we present the electron dynamics and the linear dispersion
relation.

2.2. The electron model

The electron dynamics for the toroidal ETG mode are governed
by the continuity, parallel momentum and energy equations
adapted from the Braginskii fluid equations. The electron
equations are analogous to the ion fluid equations used for
the toroidal ITG mode,

∂ne

∂t
+ ∇ · (ne�vE + ne�v�e) + ∇ · (

ne�vpe + ne�vπe
)

+∇ · (
ne�v‖e

) = 0, (4)

3

2
ne

dTe

dt
+ neTe∇ · �ve + ∇ · �qe = 0. (5)

Here we used the definitions �qe = −(5pe/2me�e)ê‖ × ∇Te

as the diamagnetic heat flux, �vE is the �E × �B drift, �v�e is
the electron diamagnetic drift velocity, �vPe is the electron
polarization drift velocity, �vπ is the stress tensor drift velocity,
and the derivative is defined as d/dt = ∂/∂t +ρeceê‖ ×∇φ̃ ·∇.
A relation between the parallel current density and the parallel
component of the vector potential (A‖) can be found using
Ampère’s law,

∇2
⊥Ã‖ = −4π

c
J̃‖. (6)

Taking into account the diamagnetic cancellations in the
continuity and energy equations, equations (4)–(6) can be
simplified and written in normalized form as

−∂ñe

∂t
− ∇2

⊥
∂

∂t
φ̃ − (

1 + (1 + ηe) ∇2
⊥
) 1

r

∂

∂θ
φ̃ − ∇‖∇2

⊥Ã‖

+εn

(
cos θ

1

r

∂

∂θ
+ sin θ

∂

∂r

) (
φ̃ − ñe − T̃e

)
= − (βe/2)

[
Ã‖, ∇2

‖ Ã‖
]

+
[
φ̃, ∇2φ̃

]
, (7)(

(βe/2 − ∇2
⊥)

∂

∂t
+ (1 + ηe)(βe/2)∇y

)
Ã‖ + ∇‖(φ̃ − ñe − T̃e)

= − (βe/2)
[
φ̃ − ñe, Ã‖

]
+ (βe/2)

[
T̃e, Ã‖

]
+

[
φ̃, ∇2

⊥Ã‖
]
, (8)

∂

∂t
T̃e +

5

3
εn

(
cos θ

1

r

∂

∂θ
+ sin θ

∂

∂r

)
1

r

∂

∂θ
T̃e

+

(
ηe − 2

3

)
1

r

∂

∂θ
φ̃ − 2

3

∂

∂t
ñe = − [

φ̃, T̃e
]
. (9)

Note that similar equations have been used previously in
estimating the zonal flow generation in ETG turbulence
and have been shown to give good agreement with linear
gyrokinetic calculations [13, 15]. The variables are normalized
according to(

φ̃, ñ, T̃e
) = (Ln/ρe) (eδφ/Teo, δne/n0, δTe/Te0) , (10)

Ã‖ = (2ceLn/βecρe) eA‖/Te0, (11)

βe = 8πnTe/B
2
0 , (12)

εn = 2Ln

R
, (13)

2
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ηe = Ln

LTe

. (14)

Here, R is the major radius and [A, B] = ∂A
∂r

1
r

∂B
∂θ

− 1
r

∂A
∂θ

∂B
∂r

is the Poisson bracket. The gradient scale length is defined
as Lf = −(d ln f/dr)−1. Using the Poisson equation in
combination with (3) we then find

ñe = −
(

τini/ne

1 − ω2/k2
⊥c2

i

+

(
Z2nI/ne

)
τI

1 − ω2/
(
k2
⊥c2

I

) + k2
⊥λ2

De

)
φ̃. (15)

First we will consider the linear dynamical equations (7), (8)
and (9) and utilizing equation (15) as in [15] and we find a
semi-local dispersion relation as follows:[
ω2

(
�e +

βe

2
(1 + �e)

)
+ (1 − ε̄n(1 + �e)) ω�

+ k2
⊥ρ2

e (ω − (1 + ηe)ω�)
] (

ω − 5

3
ε̄nω�

)
+

(
ε̄nω� − βe

2
ω

) ((
ηe − 2

3

)
ω� +

2

3
ω�e

)

=c2
ek

2
‖k

2
⊥ρ2

e

(1 + �e)
(
ω − 5

3 ε̄nω�

) − (
ηe − 2

3

)
ω� − 2

3ω�e

ω
(

βe

2 + k2
⊥ρ2

e

)
− βe

2 (1 + ηe) ω�

 .

(16)

In the following we will use the notation �e = τi(ni/ne)/(1−
ω2/k2

⊥c2
i ) + τI(zeffnI/ne)/(1 − ω2/k2

⊥c2
I ) + k2

⊥λ2
De. Here we

define zeff ≈ z2nI/ne. Note that in the limit Ti = Te, ω < k⊥ci,
k⊥λDe < k⊥ρe � 1 and in the absence of impurity ions,
�e ≈ 1 and the ions follow the Boltzmann relation in the
standard ETG mode dynamics. Here λDe =

√
Tc/(4πnee2) is

the Debye length, the Debye shielding effect is important for
λDe/ρe > 1. The dispersion relation equation (16) is analogous
to the toroidal ITG mode dispersion relation except that the
ion quantities are exchanged to their electron counterparts.
Equation (16) is derived using the ballooning mode transform
equations for the wave number and the curvature operator,

∇2
⊥f̃ = − k2

⊥f̃ = −k2
θ

(
1 + (sθ − α sin θ)2) f̃ , (17)

∇‖f̃ = ik‖f̃ ≈ 1

qR

∂f̃

∂θ
, (18)

ε̃nf̃ = εn (cos θ + (sθ − α sin θ) sin θ) f̃ = εng(θ)f̃ . (19)

The geometrical quantities will be determined using a semi-
local analysis by assuming an approximate eigenfunction while
averaging the geometry-dependent quantities along the field
line. The form of the eigenfunction is assumed to be

�(θ) = 1√
3π

(1 + cos θ) with |θ | < π. (20)

In the dispersion relation we will replace k‖ = 〈k‖〉, k⊥ = 〈k⊥〉
and ωD = 〈ωD〉 by the averages defined through the integrals〈
k2
⊥
〉 = 1

N (�)

∫ π

−π

dθ�k2
⊥�

= k2
θ

(
1 +

s2

3

(
π2 − 7.5

) − 10

9
sα +

5

12
α2

)
, (21)

〈
k2
‖
〉 = 1

N (�)

∫ π

−π

dθ�k2
‖� = 1

3q2R2
, (22)

0 1 2 3 4 5 6 7
0

0.05
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e
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e/R
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Gyrokinetic sim
Fluid model − Eq. 16 

Figure 1. ETG growth rate normalized to ce/R, fluid model (solid
line) and gyrokinetic model (dashed line), as a function of ηe is
shown for the parameters εn = 0.909, β = 0.01, kθρe = 0.3, s = 1,
q̄ = 1 and �e = 2.

〈ωD〉 = 1

N (�)

∫ π

−π

dθ�ωD�

= εnω�

(
2

3
+

5

9
s − 5

12
α

)
= εngω�, (23)

〈
k‖k2

⊥k‖
〉 = 1

N (�)

∫ π

−π

dθ�k‖k2
⊥k‖�

= k2
θ

3 (qR)2

(
1 + s2

(
π2

3
− 0.5

)
− 8

3
sα +

3

4
α2

)
, (24)

N(�) =
∫ π

−π

dθ�2. (25)

Here we have from the equilibrium α = βq̄2R(1 + ηe + (1 +
ηi))/(2Ln) and β = 8πno(Te + Ti)/B

2 is the plasma β, q̄

is the safety factor and s = rq̄ ′/q̄ is the magnetic shear.
The α-dependent term above (in equation (16)) represents the
effects of the Shafranov shift.

To test the accuracy of the simple dispersion relation (16),
a comparison with linear, local, gyrokinetic computations of
ETG drift wave growth rates has been performed in figure 1.
The simulations have been carried out with the GENE code [12]
using a simple large aspect ratio, s − α tokamak equilibrium.
The simulations were performed in a flux-tube domain at
mid-radius (r/a ≈ 0.5) with a resolution of 16 × 24 grid
points in the normal and parallel directions, and 12 × 48 grid
points in momentum space. A quantitatively good agreement
between the analytical and numerical results is found. Note
that, the linear ETG growth rate and frequency are only weakly
dependent on finite β.

3. Modelling electron el-GAMs

The GAMs are the m = n = 0, kr = 0 perturbation
of the potential field and the n = 0, m = 1, kr = 0
perturbation in the density, temperatures and the magnetic
field perturbations [1, 4]. The el-GAM (q, �q) induced by
ETG modes (k, ω) is considered under the conditions when
the ETG mode real frequency satisfies �e > ω > �i at the

3
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scale k⊥ρe < 1 and the real frequency of the GAM fulfils
�q ∼ ce/R at the scale qr < kr .

3.1. Linear el-GAMs

We start by deriving the linear el-GAM dispersion relation
following the outline in the previous paper [30], by writing
the m = 1 equations for the density, parallel component of
the vector potential and temperature, and the m = 0 of the
electrostatic potential

−τi
∂ñ

(1)
eG

∂t
+ εn sin θ

∂

∂r
φ̃

(0)
G − ∇‖∇2

⊥Ã
(1)
‖G = 0, (26)(

βe/2 − ∇2
⊥
) ∂

∂t
Ã

(1)
‖G − ∇‖

(
ñ

(1)
eG + T̃

(1)
eG

)
= 0, (27)

∂

∂t
T̃

(1)
eG − 2

3

∂

∂t
ñ

(1)
eG = 0, (28)

−∇2
⊥

∂

∂t
φ̃

(0)
G − εn sin θ

∂

∂r

(
ñ

(1)
eG + T̃

(1)
eG

)
= 0. (29)

We will derive the linear GAM frequency as follows using
equation (27) and by eliminating the density m = 1 component
using a time derivative of equation (29). Finally by utilizing
equation (26) we find

ρ2
e

∂2

∂t2
∇2

⊥φ̃(0)

+εnv�

〈
sin θ

∂

∂r

(
εnv� sin θ

∂φ̃(0)

∂r
+ ∇‖

J
(1)
‖

en0

)〉
= 0.

(30)

Here 〈· · ·〉 is the average over the poloidal angle θ . In the
simplest case this leads to the dispersion relation

�2
q = 5

3

c2
e

R2

(
2 +

1

q̄2

1

1 + βe/
(
2q2

r

))
. (31)

Here, q̄ is the safety factor. Note that the linear el-GAM is
purely oscillating analogously to its ion counterpart, see [6],
and its frequency is decreasing with increasing q̄. Here it is of
interest to note that it is very similar to the result found in [31].

3.2. The non-linearly driven GAMs

We will now study the system including the non-linear
terms and derive the el-GAM growth rate. The non-linear
extension to the evolution equations presented previously in
equations (7)–(9) are

−∂ñe

∂t
− ∇2

⊥
∂

∂t
φ̃ − (

1 + (1 + ηe) ∇2
⊥
) ∇θ φ̃ − ∇‖∇2

⊥Ã‖

+εn

(
cos θ

1

r

∂

∂θ
+ sin θ

∂

∂r

) (
φ̃ − ñe − T̃e

)
= +

[
φ̃, ∇2φ̃

] − (βe/2)
[
Ã‖, ∇2Ã‖

]
, (32)((

βe/2 − ∇2
⊥
) ∂

∂t
+ (1 + ηe) (βe/2) ∇θ

)
Ã‖

+∇‖
(
φ̃ − ñe − T̃e

) = [
φ̃, ∇2

⊥Ã‖
]
, (33)

∂

∂t
T̃e +

5

3
εn

(
cos θ

1

r

∂

∂θ
+ sin θ

∂

∂r

)
1

r

∂

∂θ
T̃e

+

(
ηe − 2

3

)
1

r

∂

∂θ
φ̃ − 2

3

∂

∂t
ñe = − [

φ̃, T̃e
]
. (34)

In order to find the relevant equations for the el-GAM dynamics
we consider the m = 1 component of equations (32)–(34),

−∂ñ
(1)
eG

∂t
+ εn sin θ

∂

∂r
φ̃

(0)
G − ∇‖∇2

⊥Ã
(1)
‖G

= 〈[
φ̃k, ∇2φ̃k

]〉(1) − (βe/2)
〈[
Ã‖k, ∇2Ã‖k

]〉(1) = 0, (35)(
βe/2 − ∇2

⊥
) ∂

∂t
Ã

(1)
‖G − ∇‖

(
ñ

(1)
eG + T̃

(1)
eG

)
= 〈[

φ̃k, ∇2
⊥Ã‖k

]〉(1) = 0, (36)

∂

∂t
T̃

(1)
eG − 2

3

∂

∂t
ñ

(1)
eG = − 〈[

φ̃k, T̃ek
]〉(1) = N

(1)
1 , (37)

where superscript (1) over the fluctuating quantities denotes
the m = 1 poloidal mode number, 〈· · ·〉 is the average over
the fast time and spatial scales of the ETG turbulence, and
that non-linear terms associated with parallel dynamics are
small since 1

q̄2 � 1. Note that, in evaluating the non-
linear terms a summation over the spectrum is performed
and that the m = 1 non-linear terms are odd and thus yield
a negligible contribution to the non-linear generation of the
GAM, assuming a symmetric spectrum, see equation (42). We
now study the m = 0 potential perturbations,

−∇2
⊥

∂

∂t
φ̃

(0)
G − εn sin θ

∂

∂r

(
ñ

(1)
eG + T̃

(1)
eG

)
= 〈[

φ̃k, ∇2φ̃k

]〉(0) − (βe/2)
〈[
Ã‖k, ∇2Ã‖k

]〉(0) = N
(0)
2 .

(38)

In order to evaluate the Maxwell stress part in equation (38),
we will approximate the parallel part of the electromagnetic
vector potential with the electrostatic potential through a linear
relation. The relation Ãk‖ = A0φ̃k is found using equations (8)
and (9) and the non-adiabatic response equation (15) giving an
approximation of the total stress of the form

N
(0)
2 = (1 − |�α|2) 〈[

φ̃k, ∇2φ̃k

]〉(0)
. (39)

The �α factor is found using equation (8)

|�α|2 = βe

2

∣∣∣∣ k‖(1 + �e + ϕ0)

(βe/2 + k2
⊥)ω − (1 + ηe)βekθ/2

∣∣∣∣2

, (40)

where ϕ0 is determined by the temperature equation

T̃ek = (ηe − 2/3) − 2/3ω�e

ω + 5/3εngkθ

φ̃k = ϕ0φ̃k, (41)

and �e is determined by the non-adiabatic response condition.
Equation (40) for the magnetic flutter non-linearity is
comparable to that found in [14] except that in equation (40)
the adiabatic response is taken into account. Note that �α

vanishes at βe = 0. In the above we defined the non-linear
term on the rhs in equations (35)–(38) as an average over the
fast time and small spatial scales of the ETG turbulence such
that only small scale self-interactions are important. This can
be written T̃e = 2

3 ñ
(1)
e +

∫
dtN

(1)
1 , where the m = 1 component

is determined by an integral of the convective non-linear term
defined in equation (37). This leads to a relation between the
m = 1 component of the density and temperature fluctuations
modified by a non-linear term. Here, the non-linear terms can

4
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be written in the form

N
(1)
1 = (

∂xφ̃k∂yT̃ek

)
=

∑
k

k2
θ

ηeγ

|ω|2 ∇r

∣∣φ̃k

∣∣2
, (42)

N
(0)
2 = (∇2

x − ∇2
y

) ((
∂xφ̃k∂yφ̃k

)
+

βe

2

(
∂xÃ‖k∂yÃ‖k

))
= (

1 − |�α|2) q2
r

∑
k

krkθ

∣∣φ̃k

∣∣2
. (43)

We continue by considering equations (35) and (38) for
the m = 1 and m = 0 components, respectively,

∂ñ
(1)
eG

∂t
− ∇‖J̃

(1)
‖

en0
− εn sin θ

∂φ̃
(0)
G

∂r
= 0, (44)

∂

∂t
∇2

⊥φ̃
(0)
G + εn

〈
sin θ

∂

∂r

(
5

3
ñ

(1)
eG +

∫
dtN

(1)
1

)〉
= N

(0)
2 . (45)

Here, we keep the N
(1)
1 non-linear term in order to quantify

the effects of the convective non-linearity and similarly to the
operations performed to find the linear el-GAM frequency we
eliminate the m = 1 component of the electron density by
taking a time derivative of equation (45) and use equation (44)
to substitute the time derivative of the GAM density. This
yields

∂2

∂t2
∇2

⊥φ̃
(0)
G + εn

〈
sin θ

∂

∂r

(
5

3

(
εn sin θ

∂φ̃
(0)
G

∂r
+ ∇‖

J̃
(1)
‖

en0

)
+N

(1)
1

)〉
= ∂

∂t
N

(0)
2 . (46)

Note that the el-GAM wave equation will be modified by the
effects of the parallel current density (J̃‖) and the m = 1 non-
linear terms in the general case; however, we see by inspection
that on average the term N

(1)
1 does not contribute whereas the

N
(0)
2 non-linearity may drive the GAM unstable. We will

use the WKE [4, 6, 16–21] to describe the background short
scale ETG turbulence for (�q, q) < (ω, k), where the action
density Nk = Ek/|ωr | ≈ ε0|φk|2/ωr . Here ε0|φk|2, is the
total energy in the ETG mode with mode number k where

ε0 = τ + k2
⊥ + η2

e k
2
θ

|ω|2 . We note that for typical edge plasmas,
where the density profiles are peaked, Ln/R ∼ 0.05, and the
turbulent scale length could be larger with kθρe ∼ 0.5, the
scale separation requirement is still fulfilled. The electrostatic
potential is represented as a sum of fluctuating and mean
quantities φ( �X, �x, T , t) = �( �X, T )+ φ̃(�x, t), where �( �X, T )

is the mean flow potential. The coordinates ( �X, T ), (�x, t) are
the space and time coordinates for the mean flows and small
scale fluctuations, respectively. The WKE can be written as
∂

∂t
Nk(r, t) +

∂

∂kr

(
ωk + �k · �vg

) ∂Nk(r, t)

∂r

− ∂

∂r

(
�k · �vg

) ∂Nk(r, t)

∂kr

= γkNk(r, t) − �ωNk(r, t)
2. (47)

We will solve equation (47) by assuming a small perturbation
(δNk) driven by a slow variation for the GAM compared with
the mean (Nk0) such that Nk = Nk0 + δNk . The relevant non-
linear terms can be approximated in the following form:〈[
φ̃k, ∇2

⊥φ̃k

]〉 ≈ (
1 − |�α|2) q2

r

∑
k

krkθ

|ωr |
ε0

δNk

(�q, �q

)
.

(48)

For all GAMs we have qr > qθ , with the following relation
between δNk and ∂Nk0/∂kr :

δNk = −iq2
r kθφ

0
GG(�q)

∂N0k

∂kr

+
kθqr T̃

(1)
eG N0k

τi
√

ηe − ηeth
, (49)

where we have used δωq = �k · �vEq ≈ i(kθqr − krqθ )φ
(0)
G in the

WKE and the definition G(�q) = 1
�q−qrvgr+iγk

. Here the linear
instability threshold of the ETG mode is denoted ηeth and is
determined by numerically solving equation (16). Using the
results from the wave-kinetic treatment we can compute the
non-linear contributions to be of the form〈[
φ̃, ∇2

⊥φ̃
]〉

= − i
(
1 − |�α|2) q4

r

∑
krk

2
θ

|ωr |
ε0

G
(
�q

) ∂Nk

∂kr

φ̃
(0)
G

+
(
1 − |�α|2) 2

3
q3

r

∑
krkθ

|ωr |
ε0

RN0

τi
√

ηe − ηthe
ñ

(1)
eG . (50)

In order to find the non-linear growth rate of the el-GAM we
need to find relations between the variables ñ

(1)
eG , T̃ (1)

eG and φ̃
(0)
G ,

ñ
(1)
eG = − εnqr sin θ�q

�2
q − 5

3
q2

‖ q2
r

q2
r +βe/2

φ̃
(0)
G . (51)

Using equation (51) and the Fourier representation of
equation (46) resulting in

q2
r �

3
q − 5

3

q2
‖q

4
r

βe/2 + q2
r

�q − 5

6
ε2
nq

2
r �q

= (
1 − |�α|2) (

�2
q − 5

3

q2
‖q

2
r

βe/2 + q2
r

)
q4

r

×
∑

krk
2
θ

|ωr |
ε0

G(�q)
∂Nk

∂kr

. (52)

Equation (52) is the sought dispersion relation for the el-GAM.
Note that equation (52), reduces to equation (64) of [30]
provided that the spectrum is symmetric. In the electrostatic
limit we find a perturbative solution of the form,

γq

ce/R
≈ 1

2

q2
r ρ

2
e kθρe√

εn(ηe)

1

1 + 1/2q̄2

∣∣∣∣φ̃k

Ln

ρe

∣∣∣∣2

. (53)

Here the main contribution to the non-linear generation of el-
GAMs originates from the Reynolds stress term in competition
with the Maxwell stress term. Note that the Maxwell stress
term reduces the drive of the GAM analogously to the zonal
flow situation [32] and that this result differs from the result
found in [30] where �α = 0. The non-linearly driven el-GAM
is unstable with a growth rate depending on the saturation level
|φ̃k|2 of the ETG mode turbulence. Equation (53) gives an
estimate of the maximum growth rate where a monochromatic
wave packet is assumed for the wave action density.

We will now present the numerically determined
frequencies and growth rates found by solving equation (52)
in a few limits. We have chosen common parameters relevant
for an ETG mode situation with ηe = 4.0, εn = 0.909,
β = 0.01 kθρe = 0.6 and q̄ = 1 in the strong ballooning
limit g(θ) = 1. Furthermore, the saturation level of the
ETG mode is represented by the mode coupling estimate
|φ̃k| ≈ (γk/ω�)(1/krLn). This is motivated by non-linear

5
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Figure 2. El-GAM growth (blue solid line) normalized (ce/R), real
frequency (blue dashed line), the linear solution (red dashed–dotted
line) and for the non-linear saturation level (black dotted line) of
equation (56) as a function of ηe is shown for the parameters
εn = 0.909, β = 0.01, kθρe = 0.6, k‖ = 0.01, s = 1 and q̄ = 1 in
the strong ballooning limit g(θ) = 1 with the ETG saturation level
|φ̃k| ≈ (γk/ω�)(1/krLn).

simulations of ITG turbulence [34]; however, we will show
that an elevated saturation state is available. Moreover, of the
possible saturation states, we have used the mode coupling
saturation level for simplicity whereas the enhanced saturation
level found in equation (56) would lead to a corresponding
increase in the GAM growth rate.

In figure 2, we display the el-GAM (�q) growth rate and
real frequency (in blue) as a function of ηe in comparison
with the solution to the linear el-GAM dispersion relation
equation (31) (in red) in the strong ballooning limit of g(θ) =
1. The el-GAM growth rate is increasing with increasing ηe,
analogously to the linear ETG growth rate due to the mode
coupling saturation level which is proportional to the linear
ETG growth rate. Note that the threshold value of the GAM
instability is dependent on the linear instability threshold of
the ETG mode given by ηeth.

Figure 3 shows the el-GAM (�q) growth rate and real
frequency (in blue) as a function of q̄ in comparison with the
solution to the linear el-GAM dispersion relation equation (31)
(in red) in the strong ballooning limit of g(θ) = 1. It is found
that q̄ has a stabilizing effect on the el-GAM. However, the
quantitative results are strongly dependent on the parameters
while the finite β-effects are moderate. Here, the effect of
the Maxwell stress on the growth rate is rather small of the
order of βe ∼ 0.01 for the given parameters; however, for
increasing number of impurity ions (increasing zeff ) it becomes
increasingly important. Note that in the GAM dispersion
relation a threshold value for the non-linear drive is present
below which the el-GAM is stable. The result that the GAM
growth rate may vanish for large q̄ is corroborated by non-
linear simulations of GAM physics presented in [25].

In figure 4, we expound on the effects of finite β and the
non-adiabaticity �e. The el-GAM growth rate (�(�q)) (solid
lines) and frequency (�(�q)) (dashed lines) as a function of
β with �e = 1.0 (blue) and �e = 2.0 (red) as a parameter
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Figure 3. El-GAM growth (blue, solid line) normalized to (ce/R),
real frequency (blue dashed line) and the linear solution (red
dashed–dotted line) as a function of the safety factor q̄ is shown for
the parameter ηe = 4.0 whereas the remaining parameters are as in
figure 2.
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Figure 4. El-GAM growth rates (solid line) and real frequencies
(dashed lines) normalized to ce/R as a function of βe with the
non-adiabaticity �e as a parameter. The remaining parameters are
as in figure 2 for the parameters with s = 1, q̄ = 1 in the semi-local
analysis.

are shown. We find that, similar to the linear growth rate,
the el-GAM is stabilized by the finite β effects. Furthermore
increasing �e can further decrease the growth rate through a
linear contribution.

In figures 2–4 displaying the properties of the frequency
and growth rate of the el-GAM, the Landau damping is
neglected. The effect of Landau damping is considered in
section 4.

4. Saturation mechanism

Large thermal transport levels, beyond mixing length
estimates, have been observed in gyrokinetic simulations for

6
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a long time [12, 22–26]. In particular, in [22] it is found
that saturation produced by secondary modes occurs at long
wavelengths causing significant streamer-dominated transport.
This work complements earlier efforts, e.g. such as that of [23]
through the tertiary instability and that of the generalized
shearing approach presented in [35], in determining an ETG
saturation level by a novel mechanism. Under different
operational conditions the non-linear saturation mechanism
may vary and hence it may be necessary to consider a range
of possible saturation states. Moreover, [25] highlights the
importance of the GAM for the saturation and that the GAM
frequency is involved in the non-linear saturation process
since at large q̄ the GAM growth rate may vanish. In this
section we will estimate a new saturation level to provide an
alternative elevated saturation level for the ETG turbulence
seen in experiments and simulations. The saturation level for
the ETG turbulent electrostatic potential (φ̃k) is estimated by
balancing the Landau damping in competition with the non-
linear growth rate of the GAM in a constant background of
ETG mode turbulence, according to the well-known predator–
prey models used, see equation (4) in [7],

∂Nk

∂t
= γkNk − �ωN2

k − γ1UGNk, (54)

∂UG

∂t
= γqUG − γLUG − ν�UG. (55)

Here we have represented the ETG mode turbulence as

Nk = |φk|2 L2
n

ρ2
e

and UG = 〈 eφ
(0)
G

Te

Ln

ρe
sin θ〉 with the following

parameters: γ is the ETG mode growth rate, γ1 is the
coupling between the ETG mode and the GAM. Note that in
equation (55) the non-linear generation of GAMs is replaced
by γqUG implicitly including Nk . The Landau damping rate

(γL = 4
√

2
3
√

π

ce
q̄R

) is assumed to be balanced by GAM growth
rate equation (53) modified by the neoclassical damping in
stationary state ∂N

∂t
→ 0 and ∂UG

∂t
→ 0. In steady state we

find the saturation level for the ETG turbulent intensity as
(γq = γL + ν�)∣∣∣∣eφk

Te

Ln

ρe

∣∣∣∣2

≈ 2Ln

q̄R

(
1 +

1

2q̄2

) √
εnηe

(
4

3

√
2

π
+ ν�

)

×
(

kθ

qr

)2 (
1

kθρe

)3

. (56)

Here, the saturation level is modified by the neoclassical
damping ν� = νe

q̄R

ce
and the kθ

qr
factor arises due to the spatial

extension of the GAM and we obtain∣∣∣∣eφk

Te

Ln

ρe

∣∣∣∣ ∼ 5 − 8. (57)

Note that this is significantly larger than the mixing length
estimate with | eφ

Te

Ln

ρe
| ∼ 1. In this estimation we have used

values of the parameters relevant for an experimental edge
plasma such that Ln = 0.5, q̄ = 3.0, R = 4, εn = 0.25,
1/qr ∼ (ρ2

e LT )1/3, kθρe = 0.3, where kθ/qr ≈ 5 and ηe ∼ 1.
The neoclassical damping is assumed to be small ν� � 1.

5. Conclusions

In this work the electromagnetic effects on the electron
geodesic acoustic mode (el-GAM) are investigated. The work
extends a previous study [30] by self-consistently including
linear as well as non-linear β effects in the derivation. The
linear dispersion relation of the el-GAM is purely oscillatory
with a frequency �q ∼ ce

R
whereas the GAM growth rate is

estimated by a non-linear treatment based on the wave-kinetic
approach. The el-GAM growth rate is driven by a competition
between the Reynolds stress and the Maxwell stress. The
non-linear dispersion relation is solved numerically where it
is found that the magnetic safety factor q̄ has a stabilizing
effect on the el-GAM. However the quantitative results are
strongly dependent on the other physical parameters while the
finite β-effects are moderate. The effect of the Maxwell stress
on the el-GAM growth rate can be significant and the GAM
can be stabilized for increasing β. Moreover, for an increasing
number of impurity ions (increasing zeff ), the β effects become
increasingly important. Note that in the dispersion relation a
set-off non-linear drive is present below which the el-GAM is
stable.

To estimate the ETG mode fluctuation level and GAM
growth, a predator–prey model was used to describe the
coupling between the GAMs and small scale ETG turbulence.
The stationary point of the coupled system implies that the ETG
turbulent saturation level φ̃k can be drastically enhanced by the
new saturation mechanism, stemming from a balance between
the Landau damping and the GAM growth rate. This may
result in highly elevated particle and electron heat transport,
relevant for the edge pedestal region of H-mode plasmas.
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