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ABSTRACT
Integration of renewable and distributed energy sources is
today possible through the use of the Smart Grid but these
technologies bring benefits as well as challenges, such as their
intermittent nature that leads to utilization problems for the
grid. On the other hand, upcoming storage technologies,
such as electrical cars, hold the potential to store and utilize
this intermittent supply at a later time but bring challenges
of their own, for example efficient storage utilization and
intermittent energy demand.
In this work we propose a novel modeling of the problem

of unforecasted energy dispatch with storage as a schedul-
ing problem of tasks on machines and an associated greedy
algorithm with a guaranteed performance, along with an ef-
ficient algorithm for the problem. Finally, we outline an
extensive simulation study for a variety of scenarios based
on data from a large network of customers.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Schedul-
ing algorithms
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1. INTRODUCTION
In recent years there has been an organized effort on an

international level to modernize the power grid by adding
resilience properties, precise accounting and new services
through the use of information technologies, collectively lead-
ing to a new type of grid commonly called smart grid. It is
expected that these changes will enable the incorporation
of renewable (e.g. photovoltaic arrays and wind genera-
tor farms) and distributed (e.g. electric car fleets) energy
sources on a large scale but these technologies bring bene-
fits as well as challenges.
While established models (cf [2] and bibliography therein)

are able to accurately predict energy demand and compen-
sate with sufficient supply, the intermittent nature of re-
newable energy sources, such as wind generator farms, chal-
lenges the way we utilize energy when it is available, com-
pensate for when it is not and rely on weather forecasts for
the grids’ daily operation. On the other hand, distributed
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energy sources such as electric car fleets can act as storage
options and balance the demand and supply of electrical en-
ergy but bring challenges of their own, for example efficient
storage utilization and intermittent energy demand. In the
present work we focus on solutions that adapt the demand
and use storage capabilities to mitigate the intermittent ef-
fects of renewable and distributed energy sources.

By drawing on the problem of scheduling tasks to ma-
chines, we model the problem of energy dispatch from pro-
ducers to consumers in the distribution level of the grid, us-
ing an extended online load balancing problem. We present
a novel scheduling and resource dispatching algorithm that
is able to cope with the inherent unpredictability of renew-
able energy sources without the use of forecasts, as well as
take advantage of available storage options in the grid. We
also show analytically that the proposed algorithm is within
a logarithmic factor of the optimal solution for the specific
problem. Finally we conduct an extensive simulation study
for a variety of scenarios based on data from a large number
of customers and show that the presented algorithm is highly
competitive to methods that use forecasts and assume total
knowledge about the incoming load demand requests for the
same problem.

2. SYSTEM DEFINITION
We focus on the distribution system of the grid as a high

level abstraction, by considering a number of nodes being
connected through a simple topology, for example low volt-
age power lines in a radial feeder configuration [3]. These
nodes issue load demand requests on the feeder at irregular
intervals, independently from each other, and energy is be-
ing dispatched from generation sites to satisfy the demand.
For reasons of convention, we are assuming that requests are
scheduled in hourly timeslots and are coming in a diurnal
pattern, i.e. a demand refers to at most the next 24 hours.
Note that we are considering both electrical and thermal
services offered in two separate feeder lines on all nodes,
an electrical and a thermal one respectively. In total, we
identify three orthogonal axis to characterize load demand
requests and we support demands of any of the eight types
that these axis jointly define: elastic/inelastic, according
to the ability to shift the demanded load over time or not1,
electrical/thermal, depending on whether the demanded
load can be serviced using only electrical energy or both

1Elastic loads can be scheduled to be serviced within a set of
timeslots, while inelastic loads must be serviced necessarily
in a specific time slot.



electrical and thermal, and storage/simple, according to
the ability to store the demanded load for future use or not.
The unforecasted energy dispatch problem with storage that

is addressed here is the problem of dispatching generated
electrical and thermal energy to end consumers in a way that
minimizes peak energy consumption within a given time in-
terval, without using forecasts and by taking into account
any storage capabilities present.

3. MODELING AND ALGORITHMIC AP-
PROACH

We model the unforecasted energy dispatch problem with
storage to a problem of scheduling tasks to restricted ma-
chines2 as follows. We regard load demand requests as an
input sequence of tasks to be run on machines and the elec-
trical and thermal feeder lines as the machines themselves.
To capture the dimension of time, each feeder line corre-
sponds to 24 machines, one for each hourly timeslot, leading
to a total of 48 under this modeling. Each machine has
the capability of storing energy if a storage task is run on it,
and subsequent machines have a portion3 of this storage also
available, to reflect the fact that stored energy is available in
later timeslots. In total, the elastic/inelastic characteristic
of demand requests is expressed in the set of machines that
the demand is allowed to run, the electrical/thermal charac-
teristic in the machines themselves and the storage/simple
characteristic in the accumulated storage on the machines.
We consider the case that encapsulates the above model-

ing, where machines are defined as previously and can ac-
cumulate storage and tasks can either be simple (i.e. only
inducing load on a machine) or storage (i.e. inducing load
and generating storage). We call the resulting problem from
this transformation an online load demand balancing prob-
lem with storage, which is the problem of assigning the tasks
to the machines while minimizing the maximum load on the
machines.
Based on this modeling, we propose the StorageGreedy

algorithm, which assigns each incoming task to the allowed
machine that has the minimum load-storage difference (break-
ing ties arbitrarily). In practice, this is expressed on a sys-
tem level and for a load demand request with specific re-
strictions by scheduling the request to be executed on the
allowed timeslot with the minimum load-storage difference.
Note here that the scheduling is taking place on the node
that issued the request (where a copy of the algorithm is
running), without a centralized decision center.
Following a methodology similar to [1], we show that the

solution cost of our algorithm lies within a factor of ⌈logn⌉+
1 when compared to the cost of the optimal algorithm, where
n is the number of machines (according to our modeling,
n = 48). Note that no assumptions are made regarding the
dissipation of the stored energy and the results apply both
for dissipating and non-dissipating storage.

4. EXPERIMENTAL STUDY
Here we outline a small part of the study that was con-

ducted using the reported Swedish load demand mix for

2I.e. where a task is allowed to run only on selected ma-
chines.
3Depending on whether losses in storage are being consid-
ered.

households, using data collected from 400 households over
the course of approximately 4 years, on behalf of the Swedish
Energy Agency [4]. These data were extrapolated in order to
model different households (customer profiles) and different
types of loads (i.e. elastic/inelastic, storage etc). A num-
ber of scenarios were subsequently created, with a varying
amount of houses and penetration of renewables and flexi-
ble loads, ranging from a mix of 65%-27%-8% inelastic elec-
tric, inelastic thermal and elastic electric loads respectively
(business-as-usual scenario) to a mix of 45%-12%-12%-8%-
3% inelastic electric, inelastic thermal, elastic electric, elas-
tic thermal loads and elastic thermal, elastic electric storage
respectively (smart house/neighborhood scenario).

During our experiments we aimed at minimizing the peak
consumption and focused on the comparison between our
StorageGreedy algorithm and a simple, yet powerful al-
gorithm for the same problem that uses forecasts, called the
LPT algorithm: tasks are sorted globally by decreasing pro-
cessing time and each task is assigned to the machine that
has the least load (breaking ties arbitrarily) (see figure 1).
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Figure 1: Comparison of load demand curves for the
Business as usual and Smart house scenarios for one
household

It is easy to see that for the business as usual scenario
the two algorithms have comparable performance. However,
under the smart house scenario the StorageGreedy algo-
rithm succeeds in lowering peak consumption by taking ad-
vantage of storage, even though the LPT algorithm has full
access to forecasted demands.
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