


Comments on the stochastic characteristics of fission chamber

signals

L. Pál1 and I. Pázsit2

1Centre for Energy Research, Hungarian Academy of Sciences,
H-1525 Budapest 114, POB 49, Hungary

2Chalmers University of Technology, Department of Applied Physics,
Division of Nuclear Engineering,
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Abstract

This report presents a theoretical investigation of the stochastic properties of the signal
series of ionisation chambers, in particular fission chambers. The signals of the detector
are assumed to be generated by incoming particles corresponding to an inhomogeneous
Poisson distribution. Each incoming particle generates a current pulse with constant shape
and random amplitude, and the detector signal consists of the time series of such current
signal pulses incurring also a pile-up effect in the case of high intensity of the primary
events. Exact relationships are derived for the higher order moments of the detector signal,
which constitute a generalisation of the so-called higher order Campbelling techniques. The
probability distribution of the number of time points when the signal exceeds a certain level
is also derived. Assuming that the incoming particles form a homogeneous Poisson process,
explicit expressions are given for the higher order moments of the signal and the number of
level crossings in a given time interval for a few selected pulse shapes.

1. Introduction

The recent interest in fast reactor systems and in many other fields drew an increased
attention to the development of neutron detectors which are particularly suitable for deploy-
ment in such systems, especially to the technical improvement of the fission chambers. The
fission chamber is an ionization chamber in which the electron-ion pairs are generated by
fission fragments in the gaseous volume of the detector. At low neutron intensities, the fis-
sions generate individual current signals, i.e. pulses, that are generally separated and can be
counted with a given efficiency. At high neutron intensities, a continuous current is formed
between the electrodes with its mean value being represented by a direct current value. The
current mode is based on the measurement of the direct current. In addition, the detector
current shows particular fluctuations, which can be separated as an alternating current com-
ponent. The Campbell technique utilizes the information content in the alternating current
part. However, it has to be noted here and now that the use of the Campbell technique
through the variance calculated from these fluctuations is not without complications. This
is because, in a measurement in a reactor core, the cumulative signals are not independent



due to the branching process of the neutrons in the core, and hence the temporal distribu-
tion of the number of neutrons inducing fissions in the detector is not Poissonian. Some
consequences of the non-Poissonian character of time series of neutrons crossing the fission
chamber in a given time interval will be discussed in an other report.

The theoretical aspects of the physical processes that take place inside the fission cham-
bers have been studied by several authors [1], [2], [3]. By using the basic charge transport
equations, they are trying to calculate both the mean shape of an individual signal and the
mean value of the saturation current, but they do not investigate the effect of the temporal
randomness of the output signals of the fission chamber.

In contrast, we are not concerned with the processes taking place inside the fission cham-
ber. We will consider the fission chamber from this point of view essentially as a black box.
Hence, the objective of the present work is the study of the stochastic properties of the out-
put current (voltage) signal of the fission chambers, which are special, gas-filled ionization
chambers. The starting point is the working principle of the ionization chamber, which will
be referred to as detector : the nuclear particles passing through the fission chamber generate
positive and negative charges, which give rise to a signal of electric current due to the electric
field between the electrodes of the chamber. In order to derive expressions for the statistics
of the detector signal, consisting of the sum of randomly following individual pulses, we shall
make some assumptions on the statistics of the incoming particles and on the shape and the
amplitude statistics of the individual pulses generated by the incoming particles.

The practical way of classifying the different detector operation modes can be found in
Chapter 4 of Knoll’s book [4]. If the incoming particle flux is low, then the detectors are
used in pulse mode, and if the incoming flux is high, in current mode. In the latter case it
is practical to measure the variance which is specific to the fluctuations of the current, to
quantify the incoming particle flux. As it will be seen shortly, the advantage of this approach
is that the contributions from the gamma radiation, which in this context count as noise, and
which produce less charge in the detector per incoming particle than the neutrons, and can
be reduced to a negligible level. This measurement method is usually called the Campbell-
method. It is important to note that the Campbell-method gives correct results only if the
particles arrive to the detector according to a Poisson process.

Actually, in principle it is not necessary to distinguish between these two operational
modes, because if the probability distribution function of the sum of the random signals in
the detector can be determined for a given moment t > 0, then its expected value can be
identified with the measurement in the current mode, and its variance can be identified with
the measurement in the Campbell mode. Obviously, the number of signals higher than a
given level in a given time interval can be associated with measurements in the pulse mode.

Numerous articles can be found in the literature on the theory of fission chambers, and on
the derivation of the so-called higher order Campbelling techiques, which contain unneces-
sarily complicated and often incorrect calculations, and which will not be listed here. In this
report a simple detector model will be used, which is amenable to concise analytical deriva-
tions to obtain exact results. These will, among others, reproduce the results published by
Lux and Baranyai in 1982 [5], [6] and by Bärs in 1989 [7] in a simple and transparent way.

Before turning to the model and the derivations from first principles, it might be inter-
esting to recall the empirical methodology used in Knoll’s book [4] to obtain expressions
for the current and the Campbell mode. Assume that ν detections took place during the
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measurement time T , each creating a charge Q, then the current η can be estimated as

η =
ν

T
Q. (1.1)

The moments of the current can be estimated from that of the number of detections. Assum-
ing that ν is a random variable which follows a Poisson distribution (such that E{ν} = s0 T ),
the expectation of the current is given as

E{η} = i = s0Q, (1.2)

where s0 is the intensity of the detection events. Thus, the mean value of the current is
proportional to the incoming particle flux ψ, since this latter is linearly proportional to
the intensity s0 of the detection events. That is, one has s0 = r ψ, where r is a constant
proportionality factor, taking into account the physical properties of the detector.

Since, due to the Poisson distribution one has D2 {ν} = s0 T , the variance of the current
η is equal to

D2 {η} =
s0
T
Q2. (1.3)

The relative standard deviation of η is given as:

D{η}
E{η}

=
1√
s0 T

. (1.4)

This formula indicates that the relative standard deviation of the current is inversely pro-
portional to the square root of the measurement time T . Hence a long measurements time
(often called sampling time) reduces the relative standard deviation as long as the system is
stationary. However, in practice a long measurement period has the disadvantage that the
expectation of the current may change in time, which will go unnoticed, and hence will have
undesirable technical consequences.

Eq. (1.3) gives an expression for the variance which is necessary for a measurement in
Campbell-mode. It describes a proportionality between the variance of the detector current
and the intensity s0 of the incoming radiation and, what is more important, a proportionality
between the variance and the square of the charge. In this simple calculation the fluctua-
tion of the charge Q, generated in the individual detection events, was neglected, which is
acceptable in the present case. The variance in (1.3) reflects only the temporal fluctuations
of the number of the individual detection events. The fact that the variance is proportional
to the square of the charge created by the detected events indicates the suppression of the
intensity of the particles creating less charge per event in the case of several types of radia-
tion being present simultaneously. For example, if the detector is a fission chamber, then in
the presence of gamma background radiation the neutron intensity can be measured more
precisely in Campbell-mode than in current mode, since in the former, the detection of the
gamma events will be suppressed. However, it is important to emphasize that these simple
calculations are valid only if the number of particles arriving to the detector follow a Poisson
distribution.

It is worth to note that the Campbell theorem [8], which is often referred to in the
literature, is given by the following expressions for the expected value and variance of the
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random process η(t) which consists of random sum of deterministic signals f(t) created
according a homogenous Poisson process with intensity s0:

E{η)} = s0

∫ +∞

−∞
f(t) dt and D2 {η} = s0

∫ +∞

−∞
f(t)2 dt. (1.5)

Expressions (1.5) are valid if the integrals exist. In the simple case descried above, the
function f(t) is equal to a window of the same length as the measurement period T , i.e.

f(t) =
Q

T
∆(t) ∆(T − t), (1.6)

Using this in (1.5) leads to

E{η} = s0

∫ +∞

−∞
f(t) dt = s0

Q

T

∫ T

0

dt = s0Q,

and

D2 {η} = s0

∫ +∞

−∞
f(t)2 dt = s0

Q2

T 2

∫ T

0

dt =
s0
T
Q2.

which, obviously, are identical with (1.2) and (1.3).
The current signal (or voltage signal) generated by the particles arriving to the detector

can be considered as the response function of the detector. In reality, this response function
cannot be given by a deterministic function f(t); rather, it can only be described by a function
ϕ(ξ, t) which depends on the possible realisations of a random variable ξ. The continuously
arriving particles generate the detector current as the aggregate of such response function
current signals, each related to a different realisation of ξ. In the general case, the resulting
random detector signal is complicated to calculate and it is hardly possible to handle it
analytically. For the sake of simplicity, in this report we will study a class of random
response functions, in which the dependence of ϕ(ξ, t) on the random variable ξ and time t
is factorised into a form ϕ(ξ, t) = a(ξ) f(t) where a is the random amplitude of the pulse and
f(t) is the pulse shape. Although this assumption restricts somewhat the generality of the
description, it will lead to a formalism which, for several basic signal shapes f(t) is amenable
to an analytical treatment, while still representing a realistic model of the detector signal.

The objective of this work is thus to determine the probability distribution function of
the sum of random response signals of randomly appearing particles in a simple detector
model. We assume that the number of incoming particles within a given time period follows
an inhomogeneous Poisson distribution, and that the detector counts all arriving particles.
We do not deal with the charge generating processes in the ionization chamber. For the
simplicity, the interaction between the charges generated by consecutive particles will also
be neglected. This means that the random response signals related to different particles
are considered to be independent and identically distributed. The question of correlated
detection events, induced by incoming neutrons generated in a branching process, will be
treated in a forthcoming publication.
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2. General theory

As indicated in the Introduction, the detector response signal (current or voltage), in-
duced by the particle detected is assumed to depend on time t and one single random
variable. This random variable will be indicated with ξ, and let t denote the time from the
beginning of the response signal. If x is a realization of the random variable ξ, then the time
dependence of the response signal is given by the real function ϕ(x, t). For the most basic
signal shapes to be considered in this work, i.e those that are constant or monotonically
decreasing for t > 0 (square, exponential, triangle) ξ will be the (random) initial value of
the response signal. For other, non-monotonically varying signal shape it can be identified
with a given parameter of the signal pulse. We assume that ξ ∈ <, where < is the set of
real numbers, and it has a finite expected value and variance. Let

W (x) =

∫ x

−∞
w(x′) dx′ = P {ξ ≤ x} (2.1)

denote the distribution function of the random variable ξ. The probability that the value of
the response at time t after the arrival of the particle is not greater than y is given by the
degenerate distribution function

H(y, t) =

∫ +∞

−∞
∆[y − ϕ(x, t)]w(x) dx. (2.2)

The probability density function h(y, t) of H(y, t) is given as

h(y, t) =

∫ +∞

−∞
δ [y − ϕ(x, t)] w(x) dx. (2.3)

For the sake of the generality of the treatment we assume that the sequence of particle
arrivals constitutes an inhomogeneous Poisson process. In this case the probability that no
particle arrives at the detector during the time interval [t0, t], t ≥ t0 is given by

T (t0, t) = exp

{
−
∫ t

t0

s(t′) dt′
}
. (2.4)

Here s(t′) is the intensity of the particle arrivals at time t′. Denoting the sum of the signals
at t ≥ t0 as η(t), we shall seek the probability of the event that η(t) is less than or equal to
y with the condition that its value was zero at t0, i.e. the quantity

P {η(t) ≤ y|η(t0) = 0} = P (y, t|0, t0) =

∫ y

−∞
p(y′, t|0, t0) dy′. (2.5)

Straightforward considerations yield the following backward-type integral Chapman-Kolmo-
gorov-equation for the probability density function p(y, t|0, t0):

p(y, t|0, t0) = T (t0, t) δ(y) +

∫ t

t0

T (t0, t
′)s(t′)

∫ y

−∞
h(y′, t− t′) p(y − y′, t|0, t′) dy′ dt′. (2.6)

The r.h.s. of Eq. (2.6) consists of the sum of the probabilities of the mutually exclusive
events that there will not, or there will be a first detection sometime between t0 and t,
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whereas the product of the probabilities under the last integral sign is due to the fact that
the contribution from the first detection at time t′ to the total detector signal resulting
from all detection events at the terminal time t is independent from that of the subsequent
detections.

Introduce now the characteristic functions

π(ω, t|0, t0) =

∫ +∞

−∞
eıωy p(y, t|0, t0) dy, (2.7)

ρ(ω) =

∫ +∞

−∞
eıωx w(x) dx, (2.8)

and

χ(ω, t) =

∫ +∞

−∞
eıωy h(y, t) dy =∫ +∞

−∞

∫ +∞

−∞
eıωy δ [y − ϕ(x, t)] dy w(x) dx =

∫ +∞

−∞
eıωϕ(x, t)w(x) dx. (2.9)

Then, from Eq. (2.6) one obtains

π(ω, t|0, t0) = T (t0, t) +

∫ t

t0

T (t0, t
′)s(t′)χ(ω, t− t′) π(ω, t|0, t′) dt′. (2.10)

From this integral equation it is seen that

lim
t↓t0

π(ω, t|0, t0) = 1. (2.11)

Further, by derivation w.r.t. t0, one obtains the differential equation

∂π(ω, t|0, t0)
∂t0

= s(t0) π(ω, t|0, t0) [1− χ(ω, t− t0)] (2.12)

By accounting for the initial condition (2.11), the solution of (2.12) is obtained as

π(ω, t|0, t0) = exp

{
−
∫ t

t0

s(t′) [1− χ(ω, t− t′)] dt′
}
, (2.13)

or, equivalently,

π(ω, t|0, t0) = exp

{
−
∫ t−t0

0

s(t− t′) [1− χ(ω, t′)] dt′
}

(2.14)

where χ(ω, t′) is defined in (2.10) as

χ(ω, t′) =

∫ +∞

−∞
exp {ıω ϕ(x, t′)} w(x) dx. (2.15)

Eq. (2.14) can be considered to be the characteristic function of the generalized inhomoge-
neous Poisson-process.
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Assume that the time instants of the particle arrivals correspond to a homogeneous Poisson-
process with constant intensity s0, and further that the condition

s0

∣∣∣∣∫ +∞

−∞
[1− χ(ω, t)] dt

∣∣∣∣ < +∞

is fulfilled. In this case the characteristic function π(ω,+∞|0,−∞) exists and is given by

π(ω,+∞|0,−∞) = πst(ω) = exp

{
−s0

∫ +∞

−∞
[1− χ(ω, t)] dt

}
. (2.16)

This also means that there exists an asymptotically stationary signal level η(st), with the
probability density function

πst(y) = L−1 {πst(ω)} . (2.17)

For the simplification of the subsequent calculations it is practical to introduce the logarithm
γst(ω) of the characteristic function (2.16), i.e.

γst(ω) = ln πst(ω) = s0

∫ +∞

−∞
[χ(ω, t)− 1] dt. (2.18)

2.1. Expected value, variance and cumulants

From the formula (2.18) one can easily calculate the expected value of the stationary
signal η(st)

E
{
η(st)

}
= i

(st)
1 =

1

ı

[
dγst(ω)

dω

]
ω=0

= s0

∫ +∞

−∞

[∫ +∞

−∞
ϕ(x, t)w(x) dx

]
dt, (2.19)

and its variance as

D2
{
η(st)

}
= σ2

st = −
[
d2γst(ω)

dω2

]
ω=0

= s0

∫ +∞

−∞

[∫ +∞

−∞
ϕ(x, t)2w(x) dx

]
dt. (2.20)

If the value of the signal amplitude ξ is always unity, that is w(x) = δ(x − 1), then (2.19)
and (2.20) revert to the formulae of the Campbell’s theorem mentioned in the foregoing in
the form

E
{
η(st)

}
= s0

∫ +∞

−∞
f(t) dt (2.21)

and

D2
{
η(st)

}
= s0

∫ +∞

−∞
f(t)2 dt (2.22)

with f(t) = ϕ(1, t). After proper calibration, both of these forms are suitable to determine
the particle intensity s0.

As is known [9], through the formula

κ(st)n =
1

ın

[
dnγst(ω)

dωn

]
ω=0

= s0

∫ +∞

−∞

[∫ +∞

−∞
ϕ(x, t)nw(x) dx

]
dt
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from the logarithmic characteristic function γst(ω) one can determine the cumulants or

semiinvariants κ
(st)
n of η(st), which can be expressed by the moments of η(st)). This way

we immediately arrive at the results referred to in the literature as higher order Campbell
techniques [5], [6]. It is readily seen that all cumulants are linearly proportional to the
intensity s0. A few cumulants are given below for illustration.

κ
(st)
1 = i

(st)
1 ,

κ
(st)
2 = i

(st)
2 −

(
i
(st)
1

)2
,

κ
(st)
3 = i

(st)
3 − 3 i

(st)
2 i

(st)
1 +

(
i
(st)
1

)3
,

κ
(st)
4 = i

(st)
4 − 4 i

(st)
3 i

(st)
1 − 3

(
i
(st)
2

)2
+ 12 i

(st)
2

(
i
(st)
1

)2
− 6

(
i
(st)
1

)4
,

where
i(st)n = E

{(
η(st)

)n}
, n = 1, 2, . . . .

2.2. Autocorrelation function

In many cases it is desirable to know the autocorrelation function of the detector signal.
For the determination of the autocorrelation function one needs the probability

P {η(t1) ≤ y1, η(t2) ≤ y2|η(0) = 0} = P2(y1, y2, t1, t2) (2.23)

that the value of the detector signal η(t) is not larger than y1 at t1 and it is not larger than
y2 at t2, on the condition that its value was zero at t = 0, for non-negative time intervals

t2 − t1 = θ.

Further, it is assumed that the distribution function P2(y1, y2, t1, t2) is absolute continuous,
hence one can write

P2(y1, y2, t1, t2) =

∫ y1

−∞

∫ y2

−∞
p2(y

′
1, y
′
2, t1, t2) dy

′
1 dy

′
2. (2.24)

As before, denote the distribution function of the random variable ξ as

P {ξ ≤ x} = W (x) =

∫ x

−∞
w(x′) dx′ (2.25)

and let s0 ∆t+o(∆t) be the probability that an impulse occurs in the time interval (t, t+∆t).
With the standard methods of the derivation of the backward equation one obtains

p2(y1, y2, t1, t2) = e−s0t2 δ(y1) δ(y2)+

s0

∫ t2

0

e−s0t
′

[∆(t1 − t′)U2(y1, y2, t1 − t′, t2 − t′) + ∆(t′ − t1)U1(y2, t2 − t′)] dt′, (2.26)

where
U2(y1, y2, t1 − t′, t2 − t′) =
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∫ y1

−∞

∫ y2

−∞
h2(y

′
1, y
′
2, t1 − t′, t2 − t′) p2(y1 − y′1, y2 − y′2, t1 − t′, t2 − t′) dy′1 dy′2 (2.27)

and

U1(y2, t2 − t′) =

∫ y1

−∞

∫ y2

−∞
δ(y′1)h1(y

′
2, t2 − t′) p1(y2 − y′2, t2 − t′) dy′1 dy′2. (2.28)

It is easily seen that the relationships

h2(y
′
1, y
′
2, t1 − t′, t2 − t′) =

∫ +∞

−∞
δ [y′1 − ϕ(x, t1 − t′)] δ [y′2 − ϕ(x, t2 − t′)] w(x) dx (2.29)

and

h1(y
′
2, t2 − t′) =

∫ +∞

−∞
δ [y′2 − ϕ(x, t2 − t′)] w(x) dx. (2.30)

hold. For completeness, write also down the relationship

p1(y, t) = e−s0 t δ(y) + s0

∫ t

0

e−s0 (t−t
′)

[∫ y

−∞
h(y′, t′) p1(y − y′, t′) dy′

]
dt′, (2.31)

where

h(y′, t′) dy′ =

∫ +∞

−∞
δ [y′ − ϕ(x, t′)] w(x) dx dy′.

Introducing the characteristic functions

π2(ω1, ω2, t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
exp{ı ω1y1 + ı ω2y2}p2(y1, y2, t1, t2) dy1 dy2, (2.32)

χ2(ω1, ω2, t1 − t′, t2 − t′) =∫ +∞

−∞

∫ +∞

−∞
exp{ı ω1y1 + ı ω2y2}h2(y1, y2, t1 − t′, t2 − t′) dy1 dy2 =∫ +∞

−∞
exp {ı ω1 ϕ(x, t1 − t′) + ı ω2 ϕ(x, t2 − t′)} w(x) dx, (2.33)

as well as

π1(ω2, t2 − t′) =

∫ +∞

−∞
exp{ı ω2y2}p1(y2, t2 − t′) dy2 (2.34)

and
χ1(ω2, t2 − t′) =∫ +∞

−∞
exp{ı, ω2y2}h1(y2, t2 − t′) dy2 =

∫ +∞

−∞
exp {ı ω2 ϕ(x, t2 − t′)} w(x) dx, (2.35)

from (2.26) one obtains the equation

π2(ω1, ω2, t1, t2) = e−s0t2+
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s0

∫ t2

0

e−s0t
′

[∆(t1 − t′)χ2(ω1, ω2, t1 − t′, t2 − t′) π2(ω1, ω2, t1 − t′, t2 − t′)+

∆(t′ − t1)χ1(ω2, t2 − t′)π1(ω2, t2 − t′)] dt′

Introducing the variables

t = t2, t− θ = t1, where θ > 0, and t′ = t− v

one obtains the equation
π2(ω1, ω2, t− θ, t) = e−s0t+

s0

∫ t

0

e−s0(t−v) [∆(v − θ)χ2(ω1, ω2, v − θ, v) π2(ω1, ω2, v − θ, v)+

∆(θ − v)χ1(ω2, v) π1(ω2, v)] dv. (2.36)

In view of the relationship

π2(ω1, ω2, t− θ, t) = π1(ω2, t), if 0 < t ≤ θ,

it is seen that Eq. (2.36) corresponds to two integro-differential equations. Namely, if t > θ,
one has

∂π2(ω1, ω2, t− θ, t)
∂t

= −s0 π2(ω1, ω2, t−θ, t)+s0 χ2(ω1, ω2, t−θ, t) π2(ω1, ω2, t−θ, t), (2.37)

whereas for t ≤ θ

∂π1(ω2, t)

∂t
= −s0 π1(ω2, t) + s0 χ1(ω2, t) π1(ω2, t). (2.38)

The solution represented by (2.37) and (2.38) can be compactly written in the form of one
single equation as

π2(ω1, ω2, t− θ, t) =

exp

{
−s0

∫ t

0

{∆(t′ − θ) [1− χ2(ω1, ω2, t
′ − θ, t′)] + ∆(θ − t′) [1− χ1(ω2, t

′)]} dt′
}
, (2.39)

where

χ2(ω1, ω2, t
′ − θ, t′) =

∫ +∞

−∞
exp {ı ω1 ϕ(x, t′ − θ) + ı ω2 ϕ(x, t′)} w(x) dx (2.40)

and

χ1(ω2, t
′) =

∫ +∞

−∞
exp {ı ω2 ϕ(x, t′)} w(x) dx. (2.41)

For our purposes, the density function of the asymptotically stationary distribution is
relevant:

lim
t→∞

p2(y1, y2, t− θ, t) = p
(st)
2 (y1, y2, θ). (2.42)

If the characteristic function of (2.42) exists then it is given by

lim
t→∞

π2(ω1, ω2, t− θ, t) = π
(st)
2 (ω1, ω2, θ) =

10



exp

{
−s0

∫ ∞
θ

[1− χ2(ω1, ω2, t
′ − θ, t′)] dt′ − s0

∫ θ

0

[1− χ1(ω2, t
′)] dt′

}
. (2.43)

The covariance function and the cumulants can be determined from the logarithm of the
characteristic function

Φ
(st)
2 (ω1, ω2, θ) = ln π

(st)
2 (ω1, ω2, θ) =

s0

∫ ∞
θ

[χ2(ω1, ω2, t
′ − θ, t′)− 1] dt′ + s0

∫ θ

0

[χ1(ω2, t
′)− 1] dt′. (2.44)

Let η
(st)
t denote the stationary expectation at an arbitrary time instant t (note that notation

of time is the same for both the non-stationary and stationary cases).
The following expressions can be written down for the expected values:

E
{
η
(st)
t−θ

}
=

1

ı

[
∂Φ

(st)
2 (ω1, ω2, θ)

∂ω1

]
ω1=ω2=0

= s0

∫ ∞
θ

∫ +∞

−∞
ϕ(x, t′ − θ)w(x) dx dt′ =

s0

∫ ∞
0

∫ +∞

−∞
ϕ(x, t)w(x) dx dt, (2.45)

and

E
{
η
(st)
t

}
=

1

ı

[
∂Φ

(st)
2 (ω1, ω2, θ)

∂ω2

]
ω1=ω2=0

=

s0

∫ ∞
θ

∫ +∞

−∞
ϕ(x, t′)w(x) dx dt′ + s0

∫ θ

0

∫ +∞

−∞
ϕ(x, t′)w(x) dx dt′ =

s0

∫ ∞
0

∫ +∞

−∞
ϕ(x, t)w(x) dx dt. (2.46)

The result is trivial since the expectation of a stationary process is constant, independent of
time. The same holds for the variance, which is given by

D2
{
η
(st)
t−θ

}
= −

[
∂2Φ

(st)
2 (ω1, ω2, θ)

∂ω2
1

]
ω1=ω2=0

=

s0

∫ ∞
θ

∫ +∞

−∞
[ϕ(x, t′ − θ)]2 w(x) dx dt′ = s0

∫ ∞
0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt, (2.47)

and

D2
{
η
(st)
t

}
= −

[
∂2Φ

(st)
2 (ω1, ω2, θ)

∂ω2
2

]
ω1=ω2=0

=

s0

∫ ∞
θ

∫ +∞

−∞
[ϕ(x, t′)]

2
w(x) dx dt′ + s0

∫ θ

0

∫ +∞

−∞
[ϕ(x, t′)]

2
w(x) dx dt′ =

s0

∫ ∞
0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt. (2.48)
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For the covariance function Cov
{
η
(st)
t−θ, η

(st)
t

}
, one can immediately write

Cov
{
η
(st)
t−θ, η

(st)
t

}
= −

[
∂2Φ

(st)
2 (ω1, ω2, θ)

∂ω1 ∂ω2

]
ω1=ω2=0

=

s0

∫ ∞
θ

∫ +∞

−∞
ϕ(x, t′ − θ)ϕ(x, t′)w(x) dx dt′ =

s0

∫ ∞
0

∫ +∞

−∞
ϕ(x, t)ϕ(x, t+ θ)w(x) dx dt, (2.49)

From this it follows that the correlation function is given as

Corr
{
η
(st)
t−θ, η

(st)
t

}
= Corr

{
η
(st)
t , η

(st)
t+θ

}
= Rst(θ) =

∫ ∞
0

∫ +∞

−∞
ϕ(x, t)ϕ(x, t+ θ)w(x) dx dt∫ ∞

0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt

. (2.50)

It is worth mentioning that if ϕ(x, t) = x f(t) then one has

Rst(θ) =

∫ ∞
0

f(t) f(t+ θ) dt∫ ∞
0

[f(t)]2 dt

. (2.51)

Hence the autocorrelation function of the stationary signal is independent of the distribution
function of the random variable ξ. The properties of the correlation are solely determined by
the deterministic function f(x). As an illustration, one can note that if f(t) = exp {−αt},
one has

Rst(θ) = e−α|θ|.

Remark It can be easily shown that Eq. (2.44) is not necessary for the derivation of the
autocorrelation function Rst(θ). To this end, define the random function

ζ
(st)
t = η

(st)
t + η

(st)
t−θ,

and the deterministic function corresponding to the realisation of the random variable ξ = x

g(x, t) = ϕ(x, t) + ϕ(x, t− θ)

Taking into account the relationship ϕ(x, t) = 0 if t < 0, then, first, according to (2.20) one
can write

D2
{
ζ
(st)
t

}
= s0

∫ ∞
0

∫ +∞

−∞
[g(x, t)]2 w(x) dx dt =

12



2 s0

∫ ∞
0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt+ 2 s0

∫ ∞
θ

∫ +∞

−∞
ϕ(x, t)ϕ(x, t− θ)w(x) dx dt; (2.52)

further, it is seen that

D2
{
ζ
(st)
t

}
= D2

{
η
(st)
t + η

(st)
t−θ

}
= 2 s0 [1 +Rst(θ)]

∫ ∞
0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt. (2.53)

Thus one obtains

Rst(θ) =

∫ ∞
θ

∫ +∞

−∞
ϕ(x, t)ϕ(x, t− θ)w(x) dx dt∫ ∞

0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt

=

∫ ∞
0

∫ +∞

−∞
ϕ(x, t+ θ)ϕ(x, t)w(x) dx dt∫ ∞

0

∫ +∞

−∞
[ϕ(x, t)]2 w(x) dx dt

, (2.54)

which is the same as (2.50). For mixed moments higher than second order, use of (2.44) is
necessary.

2.3. Non-negative detector signals

In the forthcoming we will only deal with processes of the form ϕ(x, t) = x f(t) where
f(t) is a deterministic signal function. We will also assume that the realizations x of the
random variable ξ, as well as the signal function f(t) take only non-negative real values.
With the signal forms assumed in the concrete work, with one exception, this means that
the arrival of a particle to the detector incurs a jump of the signal level with the value x.
In this case, i.e. when the detector signals are non-negative, it is practical to consider the
Laplace-transform of the density function p(y, t|0, t0), defined in (2.5) as

p̃(s, t|0, t0) =

∫ ∞
0

e−sy p(y, t|0, t0) dy (2.55)

as the characteristic function. Introducing the transforms

h̃(s, t) =

∫ ∞
0

e−sy h(y, t) dy and w̃(s) =

∫ ∞
0

e−sx w(x) dx, (2.56)

from (2.14) we obtain

p̃(s, t|0, t0) = exp

{
−
∫ t−t0

0

s(t− t′)
[
1− h̃(s, t′)

]
dt′
}
, (2.57)

where h̃(s, t′) is defined as

h̃(s, t′) =

∫ ∞
0

exp {−s f(t′)x)} w(x) dx = w̃[sf(t′)]. (2.58)

13



To simplify the further considerations let us choose

s(t− t′) = s0 and t0 = 0

and use the notation
p̃(s, t|0, 0) = p̃(s, t). (2.59)

From equation (2.57) one immediately obtains

p̃(s, t) = exp

{
−s0

∫ t

0

[
1− h̃(s, t′)

]
dt′
}

= exp

{
−s0

∫ t

0

{1− w̃[sf(t′)]} dt′
}
. (2.60)

For the case when

lim
t→∞

∫ t

0

[
1− h̃(s, t′)

]
dt′ <∞,

the Laplace-transform
lim
t→∞

p̃(s, t) = p̃st(s) =

exp

{
−s0

∫ ∞
0

[
1− h̃(s, t)

]
dt

}
= exp

{
−s0

∫ ∞
0

{1− w̃[sf(t)]} dt
}

(2.61)

exists, from which it follows that there exists a asymptotically stationary signal level η(st)

with a density function
pst(y) = L−1 {p̃st(s)} . (2.62)

Even in this case, for the determination of the cumulants it is practical to use the logarithm
of the Laplace-transform p̃st(s) of the density function pst(y):

g̃st(s) = ln p̃st(s) = s0

∫ ∞
0

[
h̃(s, t)− 1

]
dt, (2.63)

where
h̃(s, t) = w̃[sf(t)].

2.4. Signal discrimination

Often one needs to know the intensity nst(V ) of the events which occur when the signal
level jumps above a certain level V from a value y ≤ V . In the stationary case, this is
obviously given by

nst(V ) = s0

∫ V

0

pst(y) [1−W (V − y)] dy, (2.64)

whose Laplace-transform is

ñst(s) = s0
1− w̃(s)

s
p̃st(s). (2.65)

One can illustrate the physical meaning of the intensity nst(V ) by defining the process
being in state L when η(st) ≤ V and its state U when η(st) ≥ V . The level V is usually called
the threshold. The function nst(V ) gives the intensity of the jumps from state L to state U.
It can be expected that nst(V ) is small both for low and high threshold values, since the
density function pst(y) is close to zero for both cases. From this it follows that the intensity
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nst(V ) has a maximum at a threshold value Vmax. It is worth noting that the noise mixed to
the useful signal can only be reduced by using a threshold chosen by practical considerations.
This threshold is obviously greater than the threshold Vmax, corresponding to the maximum
of the intensity nst(V ).

In many cases the value of the jump ξ can be assumed to be constant, i.e.

P {ξ ≤ x} = W (x) = ∆

(
x− 1

µ

)
, (2.66)

hence one has

nst(V ) = s0 [Pst(V )− Pst(V − 1/µ)] , (2.67)

since ∫ V

0

pst(y) ∆

(
V − y − 1

µ

)
dy =

∫ V−1/µ

0

pst(y) dy = Pst(V − 1/µ).

It will be seen that in the case of a constant jump, the determination of the density function
pst(y) from the Laplace-transform p̃st(s) is not an easy task. The problems encountered will
be shown for the pulse shape f(t) = e−αt.

In order to study the characteristics of the detector signal functions in more detail, in the
next subsection we perform detailed calculations for rectangular, exponential and triangular
pulse functions f(t).

3. Rectangular pulses

In this case the particles, arriving at the detector according to a Poisson process, generate
a signal with a constant width T0 and random height ξ. Two different realisations of such
a pulse are shown on Fig. 1. For simplicity, assume an exponential distribution of the
amplitudes, i.e.

Ξ=x1

Ξ=x2

T0

Figure 1: Illustration of the rectangular pulses with random heights.

P {ξ ≤ x} = W (x) = 1− e−µx. (3.1)

Since

f(t) = ∆(T0 − t), (3.2)
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from (2.60) one obtains

p̃(s, t) = exp

{
−s0

∫ t

0

s∆(T0 − t′)
s∆(T0 − t′) + µ

}
dt′. (3.3)

Thus one arrives at

p̃(s, t) =


exp

{
s0 t
(

µ
s+ µ − 1

)}
, if t ≤ T0,

exp
{
s0 T0

(
µ

s+ µ − 1
)}

, if t > T0.

(3.4)

Using the relationship

L−1
{

exp

{
a

s+ b

}}
= δ(y) +

√
a

y
e−by I1 (2

√
a y) , (3.5)

one obtains

p(y, t) =


e−s0t e−µy

[
δ(y) +

√
s0tµ
y I1 (2

√
s0tµy)

]
, if t ≤ T0,

e−s0T0 e−µy

[
δ(y) +

√
s0T0µ
y I1

(
2
√
s0T0µy

)]
, if t > T0.

(3.6)

It is notable that p(y, t) converges rather fast to the asymptotically stationary density func-
tion pst(y) with increasing t. As the second part of (3.6) shows, the sum of the individual
signals of particles arriving according to a homogeneous Poisson process with intensity s0
has a stationary distribution already for t > T0.

From the Laplace transform (3.4) we can get immediately the expected value of the sum
of detector pulses at time t as

E {η(t)} = −
[
∂ ln p̃(s, t)

∂s

]
s=0

=
s0
µ

[t∆(T0 − t) + T0 ∆(t− T0)] (3.7)

and its variance as

D2 {η(t)} =

[
∂2 ln p̃(s, t)

∂s2

]
s=0

= 2
s0

µ2 [t∆(T0 − t) + T0 ∆(t− T0)] . (3.8)

It is also worth noting that the Fano factor for this case is equal to

F =
2

µ
, (3.9)

where 1/µ is the expected value of the pulse jump. It is seen that the Fano factor does not
depend on time.

For the illustration of the signal discrimination in stationary case, we shall calculate the
intensity nst(V ) of particle arrivals which induce a jump of the signal from a level y ≤ V to
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t

ΗHtL

V

T0=1, s0=1 Μ=0.5

Figure 2: A possible realization of the sum of signals in an arbitrary time interval.

a signal level higher than V . Fig. 2. shows a possible realization of the sum of pulses within
a stationary time interval. The red dots mark the particles which induce the jump of the
signal level from a state y ≤ V to above the threshold V . By using Eq. (2.64) we obtain

nst(V ) = s0

∫ V

+0

e−µ(V−y) pst(y) dy, (3.10)

where

pst(y) = e−s0T0 e−µy

[
δ(y) +

√
s0T0µ

y
I1

(
2
√
s0T0µy

)]
.

From this it follows that

nst(V ) = s0 e
−s0T0 e−µV

∫ V

0

[
δ(y) +

√
s0T0µ

y
I1

(
2
√
s0T0µy

)]
dy =

s0 e
−s0T0 e−µV I0

(
2
√
s0T0µV

)
, (3.11)

where I0(x) is the modified Bessel function of order zero. The dependence of the intensity
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Figure 3: Dependence of the intensity nst(V ) on the signal threshold V at two different input intensities s0.

nst(V ) on the threshold V is shown in Fig. 3 for two different values of µ and at two different
input intensities s0. It is seen how the values of µ and s0 influence the dependence of the
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Figure 4: Dependence of the output intensity nst(V ) on the input intensity s0 for two different values of µ
and at two different threshold values V .

output intensity nst(V ) on the threshold value V . In order to show the influence of the
input intensity s0 on the output intensity nst(V ), in Fig. 4 it is plotted the dependence of
nst(V ) on s0 at two threshold values V . One concludes that the mean amplitude 1/µ of the
rectangular signal must be chosen very carefully.

4. Exponential pulses

We will treat now the case when the pulses have exponential decay shape, the initial
values of which being the realizations of the random variable ξ. For simplicity, assume again
exponential distribution of the amplitudes

P {ξ ≤ x} = W (x) =

∫ x

0

w(x′) dx′ = 1− e−µx,

where 1/µ is expectation of the starting amplitude of a single signal. Fig. 5. shows two
possible pulses with α = 2.

Ξ=x1

Ξ2=x2

Α=2

Figure 5: Exponential pulses generated by incoming particles.

Since one now has
f(t) = e−αt, (4.1)

the probability density of the signal induced by one particle is given as

h(y, t) =

∫ ∞
0

δ
(
y − xe−αt

)
w(x) dx (4.2)
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whose Laplace transform

h̃(s, t) =

∫ ∞
0

e−sy h(y, t) dy (4.3)

can be written as

h̃(s, t) =

∫ ∞
0

exp
{
−s x e−αt

}
w(x) dx = µ

∫ ∞
0

exp
{
−s x e−αt

}
e−µx dx. (4.4)

From this one immediately obtains

h̃(s, t) =
µ

µ+ s e−αt
. (4.5)

Using (2.60) yields the Laplace transform of the density function p(y, t) as

p̃(s, t) = exp

{
−s0

∫ t

0

[
1− µ

µ+ s e−αv

]
dv

}
= exp

{
−s0

∫ t

0

s e−αv

µ+ s e−αv
dv

}
. (4.6)

Accounting for the identity

s e−αv

µ+ s e−αv
= − 1

α

d ln
(
µ+ s e−αv

)
dv

,

Eq. (4.6) can be written as

p̃(s, t) = exp

{
s0
α

ln
µ+ s e−α1t

µ+ s

}
=

(
µ+ s e−αt

µ+ s

)s0/α
. (4.7)

It is immediately seen that

p̃(0, t) =

∫ ∞
0

p(y, t) dy = 1.

From (4.7) it is also obvious that a stationary density function exists with the Laplace
transform

lim
t→∞

p̃(s, t) = p̃st(s) =

(
µ

µ+ s

)s0/α
. (4.8)

Eq. (4.7) can be rewritten as

p̃(s, t) =

[
1−

(
1− e−αt

) s

s+ µ

]q
, (4.9)

where

q =
s0
α
> 0. (4.10)

If q is not an integer and the following inequality holds:

(
1− e−αt

) ∣∣∣∣ s

s+ µ

∣∣∣∣ < q,
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then (4.9) is identical with the absolute convergent series

p̃(s, t) = 1 +
∞∑
k=0

(−1)k
q(q − 1) · · · (q − k + 1)

k!

(
1− e−αt

)k ( s

s+ µ

)k
(4.11)

in which, according to Erdélyi [10]

(−1)k q(q − 1) · · · (q − k + 1) =
Γ(−q + k)

Γ(−q)
. (4.12)

It can be shown that

L−1
{

sk

(s+ µ)k

}
= δ(y)− µe−µy L(1)

k−1(µy), (4.13)

where L−1 stands for the operator of the inverse Laplace transform and L
(1)
k−1(µy) is the so

called generalized Laguerre polynomial. It is shown in Erdélyi’s ”Tables of Integral Trans-
forms Volume 1” [11] that∫ ∞

0

e−rx L
(1)
k−1(x) dx = L̃

(1)
k−1(r) =

k−1∑
j=0

(r − 1)k−1−j

rk−j
, (4.14)

which can be written as

L̃
(1)
k−1(r) =

1

r − 1

k−1∑
j=0

(
r − 1

r

)k−j
=

1

r

k−1∑
j=0

(
r − 1

r

)j
= 1−

(
1− 1

r

)k
. (4.15)

By the substitution

r =
s+ µ

µ
and x = µy,

one arrives at ∫ ∞
0

e−sy µe−µy L
(1)
k−1(µy) dy = 1− sk

(s+ µ)k
, (4.16)

from which (4.13) immediately arises. Using this relationship, the inverse Laplace transform
of (4.11) can be written as

p(y, t) = δ(y)

[
1 +

∞∑
k=1

Γ(−s0/α + k)

Γ(−s0/α) Γ(k + 1)
(1− e−αt)k

]
−

µ e−µy
∞∑
k=1

Γ(−s0/α) + k)

Γ(−s0/α) Γ(k + 1)
L
(1)
k−1(µy) (1− e−αt)k. (4.17)

Fig. 6. shows the dependence of the of the density function p(y, t) on the parameter αt for
q = s0/α = 0.8, for three different signal levels. It is interesting to note that the density
function becomes constant relatively fast; in the present case the stationary behaviour is
already reached for αt ≈ 5.
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Figure 6: Dependence of the density function p(y, t) on the time parameter αt at three signal levels and at
q = s0/α = 0.8.
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Figure 7: Dependence of the density function p(y, t) on the time parameter αt at three signal levels for
q = s0/α = 2.

If q = s0/α is a positive integer, then expression (4.17) cannot be used. One has to return
to Eq. (4.9) and use the rearrangement

p̃(s, t) = 1−
q∑

k=1

(
q

k

)
(−1)k−1

(
1− e−αt

)k sk

(s+ µ)k
. (4.18)

From this one obtains

p(y, t) = δ(y)

[
1−

q∑
k=1

(
q

k

)
(−1)k−1 (1− e−αt)k

]
+

µ e−µy
q∑

k=1

(
q

k

)
(−1)k−1 L

(1)
k−1(µy) (1− e−αt)k, (4.19)

which does not contain singular Gamma functions. Fig. 7. shows the dependence of the
density function p(y, t) on the parameter αt for q = s0/α = 2, for three different signal levels.
One finds again that the density function is close to stationary already at αt ≈ 5.

We will now investigate the properties of the stationary signal sequence. The Laplace
transform (4.8) of the density function pst(y) can easily be inverted. One obtains

pst(y) =
(µy)

s0
α
−1

Γ (s0/α)
e−µy µ, (4.20)
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which shows that the stationary distribution of the sum of exponential pulses is given by

Pst(y) =

∫ y

0

pst(y
′) dy′ =

Γ (s0/α)− Γ (µy, s0/α)

Γ (s0/α)
, (4.21)

in which

Γ (µy, s0/α) =

∫ ∞
µy

v
s0
α
−1

Γ (s0/α)
e−v dv

is the incomplete Gamma function.

t

ΗHtL

V
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Figure 8: A possible realization of the sum of signals in stationary case in an arbitrary time interval.

Fig. 8 shows a possible realization of the exponential pulse train in the stationary state.
The red dots mark the particles which induce a jump of the signal level to above the threshold
V from a level under V . By using (2.65) we obtain the Laplace transform

ñst(s) = s0
1− w̃(s)

s
p̃st(s) = s0

1

µ+ s

(
µ

µ+ s

)s0/α
, (4.22)

whose inverse is given as

nst(V ) = s0
(µV )

s0
α

Γ (s0/α + 1)
e−µV . (4.23)

Fig. 9 shows the dependence of the intensity nst(V ) on the threshold V for two different
values of the parameter µ. It is seen that the intensity nst(V ) has a distinct maximum at
the threshold

Vmax =
s0
αµ

.

The knowledge of this maximum could be important for the design of the detector electronics.
The expectation and the variance, important for practical applications, will now be cal-

culated for both the non-stationary and the stationary case. From the logarithm of the
Laplace transform (4.7) one obtains

−
[
d ln p̃(s, t)

ds

]
s=0

= E {η(t)} =


s0
αµ (1− e−αt) , if t ≤ ∞,

s0
αµ, if t =∞,

(4.24)
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Figure 9: Dependence of the intensity nst(V ) on the signal threshold V .

and [
d2 ln p̃(s, t)

ds2

]
s=0

= D2 {η(t)} =


s0
αµ2 (1− e−2αt) , if t ≤ ∞,

s0
αµ2 , if t =∞.

(4.25)

For illustration, the Fano factor for this case is also given. It reads as

F =


1
µ (1 + e−αt) , if t ≤ ∞,

1
µ, if t =∞.

(4.26)

For didactic purposes consider the special case when the random variable ξ is constant,
i.e. its density function is given as w(x) = δ(x− x0). From (4.2) one has

h(y, t) =∫ ∞
0

δ
[
y − xe−αt

]
w(x) dx =

∫ ∞
0

δ
[
y − xe−αt

]
δ(x− x0) dx = δ

[
y − x0 e−αt

]
, (4.27)

whose Laplace transform is obtained as

h̃(s, t) = exp
[
−s x0 e−αt

]
. (4.28)

Substituting into (2.61) yields

p̃st(s) = exp

{
−s0

∫ ∞
0

[
1− h̃(s, t)

]
dt

}
= exp

{
−s0

∫ ∞
0

[
1− exp

[
−s x0 e−αt

]]
dt

}
,

from which one obtains

g̃st(s) = ln p̃st(s) = s0

∫ ∞
0

[
exp

(
−s x0 e−αt

)
− 1
]
dt. (4.29)
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Introducing the variable
u = e−αt

one arrives at

g̃st(s) = ln p̃st(s) = −s0
α

∫ 1

0

1− e−s x0 u

u
du. (4.30)

Using the known relationship∫ 1

0

1− e−s x0 u

u
du = C + lnx0 s+

∫ ∞
x0

e−s u

u
du

will yield, accounting for (4.30), the result

p̃st(s) = exp

[
−s0
α

(
C + lnx0 s+

∫ ∞
x0

e−s u

u
du

)]
=

exp

(
−s0
α

∫ ∞
x0

e−s u

u
du

)
(
x0 e

C s
)s0/α . (4.31)

From (4.29), one can immediately determine the expectation and the variance of η(st). One
obtains

E
{
η(st)

}
= s0

x0
α

and D2
{
η(st)

}
= s0

x20
2α

, (4.32)

whereas the Fano factor equals F = x0/2.

t

Ηt

HstL

mean current » 1.35

Figure 10: Simulation of the stationary current η
(st)
t of the ionization chamber as a function of time, with

exponentially decaying pulses of unit initial value.

Fig. 10. shows the time dependence of the stationary current η
(st)
t of the ionisation

chamber, when the current is formed by exponentially decaying pulses of unit initial value.
For this case one has

E
{
η
(st)
t

}
≈ 1.35 and D2

{
η
(st)
t

}
≈ 0.58.

Calculation of the inverse Laplace transform of (4.31) is rather laborious. Let us write
p̃st(s) in the following, absolute convergent, infinite series:

p̃st(s) =
1(

x0 e
C
)s0/α

{
1

ss0/α
+
∞∑
n=1

(−1)n
1

n!

(s0
α

)n 1

ss0/α

(∫ ∞
x0

e−s u

u
du

)n}
. (4.33)

For the sake of simplicity, let us introduce the notations:

s0
α

= a, eC = γ and x0 = b. (4.34)
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The first member of the r.h.s. in (4.33) can be immediately inverted. One obtains that

f
(st)
1 (x) =

1

(b γ)a
L−1

{
1

sa

}
=

1

Γ(a)

xa−1

(b γ)a
, (4.35)

and by using the convolution theorem, the inversion of the second member can be written in
the form

− a

(b γ)a
L−1

{
1

sa

∫ ∞
b

e−su

u
du

}
= − a

(b γ)a Γ(a)

∫ x

0

(x− u)a−1 h1(u) du, (4.36)

where

h1(u) = L−1
{∫ ∞

b

e−su

u
du

}
=

∆(u− b)
u

, (4.37)

consequently

f
(st)
2 (x) = − a

(b γ)a
L−1

{
1

sa

∫ ∞
b

e−su

u
du

}
= − a

(b γ)a Γ(a)

∫ x

b

(x− u)a−1 h1(u) du. (4.38)

The (4.37) is obvious, since∫ ∞
0

e−su h1(u) du =

∫ ∞
0

e−su
∆(u− b)

u
du =

∫ ∞
b

e−su

u
du.

The third member is nothing else, than

a2

2! (b γ)a
L−1

{
1

sa

(∫ ∞
b

e−su

u
du

)2
}

=
a2

2! (b γ)a Γ(a)

∫ x

0

(x− u)a−1 h2(u) du, (4.39)

where

h2(u) =

∫ u

0

h1(u− v)h1(v) dv =

∫ u

0

∆(u− v − b) ∆(v − b)
(u− v) v

dv. (4.40)

From the inequality
b ≤ v ≤ u− b,

it follows the equation∫ u

0

∆(u− v − b) ∆(v − b)
(u− v) v

dv =

∫ u−b

b

1

(u− v) v
dv = h2(u), (4.41)

which is non-zero when u > 2 b, hence

f
(st)
3 (x) =

a2

2! (b γ)a
L−1

{
1

sa

(∫ ∞
b

e−su

u
du

)2
}

=

a2

2! (b γ)a Γ(a)

∫ x

2 b

(x− u)a−1 h2(u) du. (4.42)
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Following this treatment, by induction it can be proved that the inverse Laplace transform
of the (n+ 1)th member in the series (4.33) is given by the formula

f
(st)
n+1(x) =

an

n! (b γ)a
L−1

{
1

sa

(∫ ∞
b

e−s u

u
du

)n}
=

an

n! (b γ)a Γ(a)

∫ x

n b

(x− u)a−1 hn(u) du, (4.43)

where

hn(u) =

∫ u−(n−1)b

b

hn−1(u− v)

v
dv (4.44)

which is corresponding to the rule expressed by (4.41). Obviously, hn(u) is non-zero when
u > n b.

After replacing back in the formula (4.43) the original values of the quantities a, γ, and
b given by (4.34), one obtains the inverse Laplace-transform of (4.33) in the following form:

pst(x) =

1(
x0 e

C
)s0/α

Γ(s0/α)

xs0/α−1 +

[x/x0]∑
n=1

(−1)n (s0/α)n

n!

∫ x

nx0

(x− u)s0/α−1 hn(u) du

 , (4.45)

where [x/x0] is the largest integer less or equal to x/x0. This follows from the inequality
x > nx0 which defines the maximal value of the summing index in (4.45). In order to
determine the density function pst(x), the first task is solving the recursive equation

hn(u) =

∫ u−(n−1)x0

x0

hn−1(u− v)

v
dv (4.46)

with the starting function

h1(u) =
1

u
∆(x− x0).

It follows immediately, that

h2(u) =

∫ u−x0

x0

dv

(u− v) v
= 2

ln

(
u

x0
− 1

)
u

∆(u− 2x0), (4.47)

but the following step brings about already a too complex expression, namely

h3(u) =
1

6u

{
π2 + 24 ln

x0
u− 2x0

ln
x0

u− x0
−

12 Poly ln

[
2, 1 +

x0
x0 − u

]
+ (4.48)

12 Poly ln

[
2,

x0
u− x0

]
+ 12 Poly ln

[
2, 2− u

x0

]}
∆(u− 3x0).
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Figure 11: Probability density function of the stationary current η
(st)
t of the ionization chamber with expo-

nentially decaying pulses of constant x0 = 1 amplitude with three different s0/α parameter values.

Surprisingly, the next step results in such a monster formula for h4(x) which is unreasonable
to write down.

By using the Mathematica code the dependence of the stationary density function pst(x)
on x has been calculated in the case of constant x0 = 1 amplitude for three different s0/α
parameter values. In Figure 11 one can see that the value of the ratio s0/α sensitively influ-
ences the shape of pst(x). This sensitivity has to be taken into the count by the construction
of the detector electronics.

5. Triangular pulses

As an exercise, in this section pulses with right triangle shape will be studied. The base
of the triangles will be a constant time duration T0 whereas their height is a random variable
denoted by ξ.

5.1. First version

Consider first the case when the random variable ξ is uniformly distributed in the interval
[0, a]. Fig. 12 shows two possible triangle pulses when a = 1.

Ξ=x2

Ξ=x1

T0 T0

Figure 12: Pulses of rectangular triangles generated by incoming particles in the case of a = 1.

Since now one has

f(t) =

(
1− t

T0

)
∆(T0 − t), (5.1)
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the density function of the signal is equal to

h(y, t) =

∫ a

0

δ [y − xf(t)]
dx

a
, (5.2)

whose Laplace transform

h̃(s, t) =

∫ ∞
0

e−sy h(y, t) dy (5.3)

reads as

h̃(s, t) =

∫ a

0

exp

{
−sx

(
1− t

T0

)
∆(T0 − t)

}
dx

a
=

1− exp

{
−sa

(
1− t

T0

)
∆(T0 − t)

}
sa

(
1− t

T0

)
∆(T0 − t)

=

1− exp

{
−sa

(
1− t

T0

)}
sa

(
1− t

T0

) ∆(T0 − t) + ∆(t− T0) =

1−

1−
1− exp

{
−sa

(
1− t

T0

)}
sa

(
1− t

T0

)
 ∆(T0 − t). (5.4)

Substituting this into equation (2.60) we obtain

p̃(s, t) = exp

−s0
∫ t

0

1−
1− exp

{
−sa

(
1− v

T0

)}
sa

(
1− v

T0

)
 ∆(T0 − v) dv

 , (5.5)

from which the distribution of the random function η(t) and its moments can be determined.
Derive now the stationary form p̃st(s) of the Laplace transform (5.5) of the distribution

function p(y, t). Introducing the notation

1− v

T0
= x

and taking into account the effect of the Haeviside function ∆(T0 − v), we obtain

p̃st(s) = exp

{
−s0 T0

∫ 1

0

(
1− 1− e−sax

sax

)
dx

}
.

To calculate the integral in the exponent one can use the known relationship∫ 1

0

1− e−u

u
du−

∫ ∞
1

e−u

u
du = C,

where C = 0.5772 · · · is the Euler constant. With u = sax, one has

dx =
du

sa
.
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With this from the above we arrive at

C =

∫ 1/sa

0

1− e−sax

x
dx−

∫ ∞
1/sa

e−sax

x
dx =

∫ 1

0

1− e−sax

x
dx+

∫ 1/sa

1

1− e−sax

x
dx−

∫ ∞
1

e−sax

x
dx+

∫ 1/sa

1

e−sax

x
dx =∫ 1

0

1− e−sax

x
dx−

∫ ∞
1

e−sax

x
dx− ln s a,

from which we finally get

p̃st(s) = exp

{
−s0 T0

(
1− 1

sa

∫ 1

0

1− e−sax

x
dx

)}
=

exp

{
−s0 T0 +

s0 T0
sa

[C + ln sa + Z(sa)]

}
, (5.6)

where

Z(sa) =

∫ ∞
1

e−sax

x
dx =

∫ ∞
sa

e−x
′

x′
dx′ = −Ei(−sa).

From the logarithm of the Laplace transform (5.6),

ln p̃st(s) = −s0T0 +
s0 T0
sa

[C + ln sa + Z(sa)] = g̃st(s) (5.7)

one can calculate the cumulants of the stationary signal η(st). However, the determination
of the density function pst(y) from the function p̃st(s) is a challenging task, with which we
will not concern in this work.

5.1.1. Expectation and variance

For the determination of the expectation and the variance of η(t) it appears to be practical
to use the following “ad hoc” method instead of the usual standard procedure. Define the
function

R(a) = 1− 1− e−a

a
(5.8)

which can be considered as the distribution function of a non-negative random variable a.
For the calculation of the cumulants, the use of the logarithm of Laplace transform p̃(s, t) is
expedient:

g̃(s, t) = ln p̃(s, t) = −s0
∫ t

0

R

[
sa

(
1− v

T0

)]
∆(T0 − v) dv. (5.9)

From this the expectation is derived as

E {η(t)} = −
[
∂g̃(s, t)

∂s

]
s=0

= s0

∫ t

0


∂R

[
sa

(
1− v

T0

)]
∂s


s=0

∆(T0 − v) dv, (5.10)
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whereas the variance is given by the formula

D2 {η(t)} =

[
∂2g̃(s, t)

∂s2

]
s=0

= s0

∫ t

0


∂2R

[
sa

(
1− v

T0

)]
∂s2


s=0

∆(T0 − v) dv. (5.11)

Since [
∂R(sb)

∂s

]
s=0

=
b

2
and

[
∂2R(sb)

∂s2

]
s=0

=
b2

3
,

where

b = a

(
1− v

T0

)
,

from (5.10) and (5.11) we obtain

E {η(t)} =


1
2 s0ta

(
1− 1

2
t
T0

)
, if t ≤ T0,

1
4 s0T0a, if t > T0

(5.12)

and

D2 {η(t)} =


1
9 s0T0a

2

[
1−

(
1− t

T0

)3]
, if t ≤ T0,

1
9 s0T0a

2, if t > T0.

(5.13)

It is seen that the stationary state is reached already at the time t = T0. In this case the
Fano factor is equal to

F =

(
2

3

)2

a. (5.14)

5.2. Second version

Consider now the case when the random variable ξ is exponentially distributed, i.e.

P {ξ ≤ y} = 1− e−µy.

Then one has

h̃(s, t) = µ

∫ ∞
0

e−xsf(t) e−µx dx =
µ

sf(t) + µ
, (5.15)

where

f(t) =

(
1− t

T0

)
∆(T0 − t).

The Laplace transform

p̃(s, t) =

∫ ∞
0

e−sy p(y, t) dy
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of the probability density p(y, t) reads as

p̃(s, t) = exp

{
s0

∫ t

0

[
µ

sf(t′) + µ
− 1

]
dt′
}

= exp

{
−s0

∫ t

0

sf(t′)

sf(t′) + µ
dt′
}
,

from which, by using the form of f(t) given above, one arrives at

g(s, t) = ln p̃(s, t) = −s0
∫ t

0

s (T0 − t′) ∆(T0 − t′)
s (T0 − t′) ∆(T0 − t′) + µT0

dt′. (5.16)

For t ≤ T0 one has

ln p̃(s, t) = −s0
∫ t

0

[
1− µT0

s (T0 − t′) + µT0

]
dt′ =

−s0
{
t+

µT0
s

[ln (s (T0 − t) + µT0)− ln(sT0 + µT0)]

}
=

−s0t− ln

[
s (T0 − t) + µT0
sT0 + µT0

]s0T0µ
s

= −s0t+ ln

[
(s+ µ)T0

s (T0 − t) + µT0

]s0T0µ
s

, (5.17)

from which one immediately obtains

p̃(s, t) = e−s0t
[

(s+ µ)T0
s (T0 − t) + µT0

]s0T0µ
s

. (5.18)

Since p̃(0, t) = 1, one can show that the following relationship holds:

lim
s→0

[
sT0 + µT0

s (T0 − t) + µT0

]s0T0µ
s

= es0t.

For this we have to perform the rearrangement

[
sT0 + µT0

s (T0 − t) + µT0

]s0T0µ
s

=

[
1 +

st

(s+ µ)T0 − st

]s0T0µ
s

=

[
1 +

s0t

s0(T0 − t) + s0T0µ/s

]s0T0µ
s

,

from which it is seen that

lim
s→0

[
1 +

s0t

s0(T0 − t) + s0T0µ/s

]s0T0µ
s

= es0t.

The calculation of the inversion of the Laplace transform p̃(s, t) in (5.18) appears to be a
hard task. We disregard from the approximate calculations here.
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For t > T0 from (5.16) one obtains

g(s, t) = ln p̃(s, t) = −s0T0 − ln

[
µ

s+ µ

]s0T0µ
s

, (5.19)

which is also the stationary solution since it does not depend on the variable t. Hence,
introducing the notations

g(s, t) = gst(s), and p̃(s, t) = p̃st(s)

for t larger than T0 one obtains from (5.19) the result

p̃st(s) = exp

−s0 T0 + ln

(
1 +

s

µ

)s0T0µ
s

 . (5.20)

This can be written in a form which is more suitable for the calculation of the cumulants as

ln p̃st(s) = −s0 T0 + ln

(
1 +

s

µ

)s0T0µ
s

. (5.21)

For better readability, use the notations

s0T0µ

s
= x, and thus

s

µ
=
s0T0
x

,

with which it is easy to prove the relationship

lim
s→0

(
1 +

s

µ

)s0T0µ
s

= es0T0 .

It is seen that (
1 +

s

µ

)s0T0µ
s

=

(
1 +

s0T0
x

)x
,

which, for s→ 0, that is for x→∞, obviously converges to es0T0 .

5.2.1. Expectation and variance

From (5.17) and (5.21) with Mathematica one can easily calculate the expectation and
variance of η(t) and η(st) :

E {η(t)} =


s0t
(

1− 1
2
t
T0

)
1
µ, if t ≤ T0,

1
2 s0T0

1
µ, if t > T0,

(5.22)

and

D2 {η(t)} =


2 s0T0

(
1− t

T0
+ 1

3
t2

T 2
0

)
1
µ2 , if t ≤ T0,

2
3 s0T0

1
µ2 , if t > T0.

(5.23)
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6. Conclusions and open questions

In this report the theory of the Campbell method and that of the so-called higher order
Campbelling techniques was given for several random pulse shapes. Also the question of the
threshold crossing frequency was addressed. Explicit results were derived for a few selected
deterministic pulse shapes with random amplitudes of two different distributions.

It was shown that a pre-requisite of applying the Campbell method is that the particle
arrivals to the detector constitute a Poisson process, and their responses are independent.
In the reality these conditions are usually not fulfilled.

It appears therefore interesting to raise the question whether it is possible to define
a theoretical model and calculate the distribution function of the detector signal if the
individual responses are not independent. A further open question is whether interaction
between the charges generated by the ionising particles, in the present case by the fission
products, can be modelled by response functions, characterized by probability distributions.
Some of these questions will be addressed in further work.

The majority of publications in this field in the past few years show that the authors
usually seek only the mean current of the chamber with different Monte Carlo codes, but
they do not concern with simple models capable of supplying exact results. The explicit
results presented in this report can serve to benchmark the accuracy of the higher order
moments of the Monte Carlo simulation results.
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