
 

 

R-wave detection algorithms using adult
and fetal ECG signals
Master’s Thesis in Biomedical Engineering

IRIS ELFA SIGURDARDOTTIR

Department of Signals & Systems
Chalmers University of Technology
Gothenburg, Sweden 2013
Master Thesis EX044/2013





Abstract

Monitoring of the fetal heart rate during pregnancy and labor gives experienced clinicians
information about the physiological condition of the fetus. The heart rate is calculated
from the heartbeat interval and is updated for each heartbeat. Therefore, an accurate
and reliable algorithm for R-wave detection is crucial. R-wave detection is constantly
improving and therefore it is important for Neoventa to compare the performance of new
algorithms to the one currently implemented in fetal monitor STAN S31.

The aim of this project is to implement various algorithms and validate their perfor-
mance using adult and fetal ECG signals.

Within the current project, three different published algorithms were implemented, val-
idated and compared to the current algorithm in STAN S31. The result indicate that
the heartbeat detection performance in STAN S31 could be improved by replacing the
existing algorithms with a non-linear method previously published by Pan and Tompkins.
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1
Introduction

Cardiotocography (CTG) refers to the fetal heart rate (FHR) and uterine contraction
monitoring during labor. The heart rate monitoring during late pregnancy and labor
provides the experienced clinician information about the physiological condition of the
fetus that are needed to identify hypoxia which can lead to permanent brain damage or
even death [1].

Fetal electrocardiogram (FECG) is used when determining the FHR. Figure 1.1 shows
two cycles in the ECG. Each QRS complex refers to one heartbeat and to find the heart
rate, the RR-interval is calculated for each heart beat so the HR is updated for each
beat. From this information the HR in beats per minutes (bmp) is calculated [1].

Figure 1.1: Electrocardiogram of one heart beat
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1.1. OBJECTIVE CHAPTER 1. INTRODUCTION

Neoventa Medical manufactures STAN S31 that is a system used for fetal monitoring.
The system combines CTG and ST-analysis of the FECG. When hypoxia related abnor-
malities in the ST segment occurs, the system sends an alarm [1].

STAN S31 uses two methods for a heart rate measurement. Ultrasound transducers are
used on the mothers belly before the membranes rupture, and after rupture an electrode
is placed on the fetus scalp, to record the FECG [1].

The methods for R-peak detection from ECG signals are constantly improving and it
is important for Neoventa to compare the performance of new algorithms with the one
currently implemented in fetal monitor STAN S31.

1.1 Objective

The aim of this project is to investigate different algorithms for R- peak detection and
implement and validate suitable algorithms for FHR measurements. The project is done
in five steps which are the following:

• Research different R-peak detection algorithms

• Implement algorithms in Matlab

• Decide the criteria to validate the algorithms

• Validate the algorithms by using Massachusetts Institute of Technology/Beth Israel
Deaconess Medical Center (MIT/BIH) database and clinical data from Neoventa

• Implement the most suitable algorithm in C#

1.2 Delimitations

Many different algorithms have been investigated for R-peak detection and out of them
six were chosen for possible implementation, and they are all fundamentally different.
Three of these algorithms were chosen from a review paper by Köhler [2]. The paper
summarizes the performance of different algorithms when using adult ECG signal. The
other three algorithms were found when searching databases. All six algorithms seemed
promising in a way that all of them had high sensitivity and positive predictive value.
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2
Method

2.1 Literature Studies

Literature studies was performed to find suitable methods to implement in Matlab. Two
database were used, IEEE Xplore digital library and Springer link. In addition some
articles were provided by Neoventa. The search words used were ECG detection, QRS
detection, ECG Pan, ECG Afonso, ECG triangle, adaptive filter, R-wave detection,
filter-banks.

Table 2.1 shows the articles used as support for each implementation, the theory they
are based on and their authors.
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

Table 2.1: Algorithms that were chosen for a possible implementation

Name of the Paper Method Author Algorithm Number

QRS Detection Using Zero Cross
Count

Zero cross count Kohler 1

A Real Time QRS Detection Algo-
rithm

Filters and window inte-
gration

Pan and Tompkins 2

ECG Beat Detection Using Filter
Bank

Filter banks Afonso and Tompkins 3

DSP implementation of wavelet
transform for real time ECG wave
forms detection and heart rate anal-
ysis

Wavelet transform Bahoura x

A new approach of QRS complex de-
tection based on matched filtering
and triangle character analysis

Triangle characteristics Li and Yan x

Superiority Analysis of MLMS over
Adaptive Filtering Methods for
Hearth Arrhythmias Detection

Adaptive filter Khan and Billal x

When choosing the suitable algorithms for implementation there are two things that
need to be kept in mind:

1. Fundamentally different methods
2. Simple and easy implementation

When looking theoretically at an ECG signal it should be easy to distinguish the P-wave,
the QRS complex and the T-wave but that is not always the case in reality. Therefore
an R-wave detection algorithm has to be simple, robust and be able to distinguish the
R-wave when using various ECG signals.

2.2 Validation of Algorithms

For the validation of the algorithms the Massachusetts Institute of Technology/Beth
Israel Deaconess Medical Center (MIT/BIH) database was used for adults ECG signals
and records from Neoventa for a fetal ECG signals. To compare the performance and
accuracy of the algorithms, the sensitivity (Se) and positive predictive value (+P) were
calculated for all algorithms and for both adult and fetal ECG signal, see equations 2.1
and 2.2.

Se =
TP

TP + FN
(2.1)
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

+ P =
TP

TP + FP
(2.2)

where TP is the true positive, FN is the false negative and FP is the false positive.

2.2.1 Relation between frequency contents for adult and fetal ECG
signal

Since all three algorithms were designed for adult ECG signals, they had to be adjusted
to the fetal ECG signals. The frequency components for the QRS complex are different
for adult and fetal ECG signal and therefore the relation between the frequency contents
has to be explored. This can be done by looking at the QRS duration for both adult
and fetal ECG signal and the QRS frequencies are directly proportional to the QRS
duration. The QRS duration for the adult signal can not be over 120 ms [3] and for the
fetal ECG signal it is maximum 80 ms [4]. This gives the relation of the QRS duration:

QRSfetal
QRSadult

=
80ms

120ms
= 0.67 (2.3)

The frequency ratio is therefore:

ffetal
fadult

=
1

0.67
= 1.5. (2.4)

This means that the bandpass filter from algorithm 1 which is designed to have frequency
range of 18-35 Hz for the adult ECG signal, should be re-designed to have the frequency
range of 27-53 Hz for the fetal ECG signal. When looking at the frequency response of
the filter in algorithm 1, the upper and lower cut-off frequencies can be found by looking
at -3 dB.
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

Figure 2.1: Frequency response and the cut-off frequencies for the adult ECG signal

Figure 2.2: Frequency response and the cut-off frequencies for the fetal ECG signal

From figures 2.1 and 2.2 it can be seen that the lower cut-off frequency for the adult
ECG signal is 17 Hz and 23 Hz for the fetal ECG signal and the upper cut-off frequency
for the adult ECG signal is 36 Hz and 50 Hz for the fetal ECG signal. Calculating the
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

frequency ratio for both cases results in ratio of approximately 1.4. This means that is
it unnecessary to change the filters since changing the sampling rate from 360 Hz to 500
Hz will be sufficient to attain correct cut-off frequencies for the fetal ECG signal.

2.2.2 Adult ECG Signal

The MIT/BIH database contains 30 minutes long records from 48 adult patients which
were sampled at 360 Hz. The first 23 recordings contain randomly chosen signals and
the other 25 recordings have been chosen from patients with various arrhythmia [5].
Since the dataset contains different variations of ECG signals with known location of
the R-wave, the result will be accurate and they will show how robust and stable the
algorithms are.

Validation: Each recording contains the ECG signal and the location and amplitude
of the R-wave. It is therefore easy to calculate sensitivity and positive predictive values
by comparing the detected values from the algorithms to the given values in each dataset,
see figure 2.3. The detected values that were within ±20 ms from the given values in
the dataset were classified as a true positive (TP), the rest of the detected values were
classified as false positive (FP) and the rest of the given values from the dataset were
classified as false negative (FN).

Figure 2.3: Flow chart of the validation for the adult ECG signal

For each algorithm the focus was to look at the overall performance so the sensitivity
and positive predictive value were calculated from all 48 records in stead of calculating
the values for each record. The threshold value was changed 5 times for each algorithm
to see the effect on the sensitivity vs. positive predictive value.
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

2.2.3 Fetal ECG Signal

The data from Neoventa contains 30 min records obtained during birth of 82 children
This data contains the ECG signal and the R-wave detection from STAN S31, but the
correct location of the R-wave are unknown and therefore another method has to be
applied when estimating number of TP, FN and FP. Figure 2.4 shows a flowchart of the
method used for the estimation. The detection from STAN S31 are also evaluated with
the detections from the three algorithms.
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

Figure 2.4: Flow chart of the validation for the fetal ECG signal
9



2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

Validation: First step was to put all detections from all four algorithms into array a.
Array B contains array a, which has been sorted from lowest to highest value. From
there the differences between each values in B were calculated and the validation process
was split into two groups depending if there were four or three detection within 30 ms.
See figure 2.5 for an example of the first step in the validation.

Figure 2.5: Example of step 1 in the validation process for fetal ECG

Four detections: If four detections were found within 30 ms, a back search was
done to find which time belonged to which algorithm and the RR-interval was calcu-
lated. At that point there are four RR-interval arrays of same length n, one for each
algorithm. A new matrix RR, of size n x 4, was created using one RR-interval from each
algorithm. Each row is sorted from lowest to highest value and if the difference between
the first and the fourth value was less than 5 ms then the assumption was made that
those detection were TP for all four algorithms. See figure 2.6 for an example.
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2.2. VALIDATION OF ALGORITHMS CHAPTER 2. METHOD

Figure 2.6: Example of step 2 in the validation process for fetal ECG

If the difference was more than 5 ms then it was not a TP for all four algorithms but
if the difference between the first and the third or the second and fourth value was less
than 5 ms than it was a TP for those three algorithms belonging to those times and a
FP and FN for the fourth algorithm. Finally a back search was done to find out how
many TP, FN, FP each of the algorithm had. See figure 2.7 for an example.
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2.3. IMPLEMENTATION OF ALGORITHM 1 CHAPTER 2. METHOD

Figure 2.7: Example of step 3 in the validation process for fetal ECG

Three detections: If three detections were found within 30 ms, a back search was
done to find out which time belonged to which algorithms. From there four different
groups were made depending on which three algorithms had those detections. The same
logic was used as in steps 1-2 in figures 2.5 and 2.6 for the RR-interval like when there
were four detections but instead the RR matrix was of size n x 3.

The total number of TP, FN, FP and unknown detections were summed up. For all
extra detections the classification was unknown detections and they were eliminated
when calculating Se and +P.

2.3 Implementation of Algorithm 1

Algorithm 1 uses the zero crossing count method which is based on the signal constantly
crossing over the threshold when it changes signs and in this case the R-wave can be
located where the signal decreases its crossing. The block diagram of algorithm 1 can
be seen in figure 2.8 [6].

Figure 2.8: Block diagram for algorithm 1
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2.3. IMPLEMENTATION OF ALGORITHM 1 CHAPTER 2. METHOD

2.3.1 Preprocessing

The preprocessing steps involve using different filters and then the signal is nonlinearly
transformed. The amplitude is estimated and a high frequency sequence is added to
the signal and finally the zero crossing is detected and counted. Figure 2.9 shows how
the ECG signal looks after each preprocessing steps and table 2.2 shows the design
parameters for both adult and fetal ECG signal. Different threshold values were chosen
for the adult ECG signal to see if and then how it would affect the performance of the
algorithm.

Figure 2.9: Preprocessing steps for algorithm 1

Linear and nonlinear filters: The signal was first filtered with a 27 tap linear phase
finite impulse response (FIR) bandpass filter with cut-off frequencies at 18 Hz and 35 Hz
for the adult signal and 25 Hz and 49 Hz for the fetal signal. By doing this, the signal
to noise ratio was increased, but for even better signal quality the signal was nonlinearly
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2.3. IMPLEMENTATION OF ALGORITHM 1 CHAPTER 2. METHOD

Table 2.2: Design parameters for algorithm 1

Design Parameters Adult ECG Signal Fetal ECG Signal

Filter frequencies 18-35 Hz 35-49 Hz

λK 0.99 0.99

Gain c 4 4

λD 0.99 0.99

λΘ 0.99 0.97

p 0.94; 0.96; 0.98; 1; 1.02 1

transformed. Equation 2.5 shows the nonlinear transformed signal where xf (n) is the
filtrated signal [6].

y(n) = sign(xf (n)) · x2
f (n) (2.5)

High frequency sequence and amplitude estimation: A high frequency sequence
was added to the signal since the bandpass filter reduces the high frequency components.
Equation 2.6 shows the high frequency sequence and equation 2.7 shows the signal after
adding the sequence to the nonlinear transformed signal [6].

b(n) = (−1)n ·K(n) (2.6)

z(n) = y(n) + b(n) (2.7)

This was done to increase the number of zeros for the non QRS components. The
amplitude estimation is calculated from equation 2.8 where K(n) is the amplitude. The
value for the amplitude can not be too small since that will give noisy signal, and the
difference between the QRS and non QRS complex is too small for classification. On the
other hand, if the amplitude is too large, the number of zero crossing will be the same
for both QRS and non QRS complex. Ideally the values of the signal, D(n), should be
equal to the number of zero crossing during non QRS complex and less than the number
of zero crossing during QRS complex. Equation 2.8 shows K(n) where λK ∈ (0; 1) is the
forgetting factor and c is the constant gain [6].

K(n) = λKK(n− 1) + (1− λK)|y(n)| · c (2.8)

Detection and counting of zero crossing: For the zero crossing detection, equa-
tion 2.9 and 2.10 were used [6].

d(n) =

∣∣∣∣sign[z(n)]− sign[z(n− 1)]

2

∣∣∣∣ (2.9)

14



2.4. IMPLEMENTATION OF ALGORITHM 2 CHAPTER 2. METHOD

D(n) = λDD(n− 1) + (1− λD)d(n) (2.10)

Where λD ∈ (0; 1) is the forgetting factor [6].

2.3.2 Event and R-wave detection

To detect events an adaptive filter was implemented, using the featured signal. Equa-
tion 2.11 shows the threshold, where λΘ ∈ (0; 1) is the forgetting factor. [6]

Θ(n) = λΘ(n− 1) + (1− λΘ)D(n) (2.11)

The featured signal, D(n), was compared to the threshold, λΘ, to create events. One
event takes place during period when λΘ · p > D(n), where p is a weighing factor, and
therefore each event has a lower and an upper limit. If two event are within 83 ms for
adult signal and 60 ms for the fetal signal the two events are combined in one using the
lower limit from the first event and the upper limit from the second event [6].

For each event the minimum and the maximum were found from the magnitude of the
nonlinear transformed signal. If the minimum is much larger than the maximum then
the R-wave is set to location of the minimum. Otherwise the R-wave is at the location
of the maximum [6].

2.4 Implementation of Algorithm 2

Algorithm 2 uses different filters, squaring function and a moving window to bring out
the features in the ECG signal and then the R-wave is located. Figure 2.10 shows the
block diagram of algorithm 2.

Figure 2.10: Block diagram of algorithm 2

2.4.1 Preprocessing

The preprocessing steps are bandpass filter and differentiation, then the signal is squared
and finally a moving window integration is applied. Figure 2.11 shows the ECG signal
after each preprocessing steps and table 2.3 shows the design parameters for both the
adult and fetal ECG signal. Different threshold values were chosen for the adult ECG
signal to see if and then how it would effect the performance of the algorithm.
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2.4. IMPLEMENTATION OF ALGORITHM 2 CHAPTER 2. METHOD

Table 2.3: Values for algorithm 2

Design Parameter Adult ECG Signal Fetal ECG Signal

Filter bandwidth 5-10 Hz 7-14 Hz

Window 54 50

p 0.8, 1, 1.2, 3 and 5 1

Figure 2.11: Preprocessing steps for algorithm 2

Bandpass filter: The implemented bandpass filter is composed of a low pass and a
high pass filter, which are designed to reduce noise from muscles, the power line inter-
ference, baseline wander and T-wave interference. Equations 2.12 and 2.13 show the
transfer function and the difference equation for the low pass filter. The low pass filter
has a gain of 32 dB, a cutoff frequency around 10 Hz for adult ECG signal and 14 Hz
for the fetal ECG signal and a total delay of 5 samples [7].
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2.4. IMPLEMENTATION OF ALGORITHM 2 CHAPTER 2. METHOD

H(z) =
(1− z−6)2

(1− z−1)2
(2.12)

y(n) = 2y(n− 1)− y(n− 2) + x(n)− 2x(n− 6) + x(n− 12) (2.13)

The high pass filter was obtained by dividing the low pass filter from equation 2.12 with
its gain and then subtract it from the all pass filter Hall(z) = z−16. Equations 2.14
and 2.15 show the transfer function and the difference equation for the high pass filter.
The high pass filter has a gain of 32, a cutoff frequency of 5 Hz for the adult ECG signal
and 7 Hz for the fetal ECG signal and a total delay of 16 samples [7].

H(z) = 32z−16 − 1− z−32

1− z−1
=
−1 + 32z−16 − 32z−17 + z−32

1 + z−1
(2.14)

y(n) = −y(x− 1)− x(n) + 32x(n− 16)− 32x(n− 17) + x(n− 32) (2.15)

Derivative: After the signal had been filtered it was differentiated to get information
about the QRS complex slope. A five-point derivative was used where equations 2.16
and 2.17 show the transfer function and the difference equation. This gave a delay of
two samples [7].

H(z) =
−z−2 − 2z−1 + 2z1 + z2

8
(2.16)

y(n) =
−x(n− 2)− 2x(n− 1) + 2x(n+ 1) + x(n+ 2)

8
(2.17)

Squaring function: The signal was squared point by point using equation 2.18

y(n) = [x(n)]2 (2.18)

where x(n) is the derivate signal. This makes all points positive and the signal is non-
linearly amplified which emphasizes the higher frequencies [7].

Moving window integration: A moving window was implemented.

y(n) =
x(n− (N − 1)) + x(n− (N − 2)) + ...+ x(n)

N
(2.19)

Where N is the width of the integration window, and should be approximately the same
as the duration of the QRS complex which in this article was chosen to be 150 ms [7].
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2.5. IMPLEMENTATION OF ALGORITHM 3 CHAPTER 2. METHOD

2.4.2 Event and R-wave detection

For the R-wave detection a new approach was used [8] since the R-wave detection logic
in article [7] was too complicated for implementation.

A threshold was calculated from equation 2.20, where p is a weighing factor. Events
were located where the output of the moving window was higher than the threshold.
The lower and upper limit of each event were located and to find the R-wave the delay
of the bandpass filter had to be taken into consideration. For each event the maximum
was found and the location of it set as the R-wave [8]

threshold = p ·max(y(n)) ·mean(y(n)) (2.20)

where y(n) is the output of the moving window integration.

2.5 Implementation of Algorithm 3

Algorithm 3 uses filter banks which are used to divide the frequency range into sub
bands and then the signal is processed for all the sub bands. Figure 2.12 shows the
block diagram for algorithm 3.

Figure 2.12: Block diagram of algorithm 3

2.5.1 Preprocessing

Four FIR analysis filters with a length of 200 and a bandwidth of 5.6 Hz for the adult
ECG signal and 7.9 Hz for the fetal ECG signal. The signal was first filtered and then
down sampled by 32 for the adult ECG signal and by 44 for the fetal ECG signal.
Table 2.4 shows the values chosen for some design parameters. Equation 2.21 shows the

18



2.5. IMPLEMENTATION OF ALGORITHM 3 CHAPTER 2. METHOD

down sampled signal Wl(z), where Ul(z) is the sub band signal, Hl(z) is the analysis
filters, and X(z) is the input signal and M is the down samples rate [9]. Figure 2.13
shows the four filters used in the preprocessing step.

Figure 2.13: Preprocessing steps for algorithm 3

Table 2.4: Design Parameters for algorithm 3

Design Parameters Adult ECG Signal Fetal ECG Signal

Filter length 400 400

Down sample rate 32 44

Filter frequency range 5.6-28 Hz 7.9-39 Hz

threshold 1 / threshold 2 0.2/0.1; 0.7/0.3; 0.9/0.5; 1.2/0.9; 1.7/1.5 0.7/0.3

19



2.5. IMPLEMENTATION OF ALGORITHM 3 CHAPTER 2. METHOD

Wl(z) =
1

M

M−1∑
k=0

Ul(z
1/MW k) =

1

M

M−1∑
k=0

Hl(z
1/MW k)X(z1/MW k), l = 0,1,...,M − 1

(2.21)
Sub bands were combined to create features, Px, with a certain energy relating to the
QRS complex. Equations 2.22, 2.23 and 2.24 show how the three different features were
calculated. P1 has a frequency band of 5.6-22.4 Hz for the adult ECG signal and 7.9- 31
Hz for the fetal ECG signal, P2 a frequency band of 5.6-28 Hz for the adult ECG signal
and 7.9- 39 Hz for the fetal ECG signal and finally P3 has a frequency band of 11.2-28
Hz for the adult ECG signal and 15.7-39.2 Hz for the fetal ECG signal [9].

P1 =
3∑

l=1

|Wl(z)| (2.22)

P2 =

4∑
l=1

|Wl(z)| (2.23)

P3 =
4∑

l=2

|Wl(z)| (2.24)

These features were the input to a moving window integration (MWI) where two samples
were averaged at the sample rate [9].

The detection strength, Ds was calculated to determine if a peak was an R-wave or just
noise. Equation 2.25 shows how the detection strength was calculated, where Px is the
incoming feature, SL is the signal level and NL is the noise level [9] [10].

Ds =
Px −NL

SL −NL
(2.25)

Ds is set to zero if the features value is less than NL and to one if the value is higher
than SL. When the detection strength is higher than a certain threshold it is classified
as a peak and the history of the signal is updated for the feature value. If the detec-
tion strength is less than the threshold, it is classified as noise and the noise history is
updated [9] [10].

2.5.2 Event and R-wave detection

The event detection was divided into six levels to maximize the true positives (TP) and
minimize the false negatives (FN) and false positives (FP) [9].

Level 1: This level detects all peaks in the output of the MWI for feature P1. This
level has no threshold and therefore it detects most of the true beats but it has high
number of FP. Level 1 is the event detection and triggers further logic to reduce FP [9].
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2.5. IMPLEMENTATION OF ALGORITHM 3 CHAPTER 2. METHOD

Level 2: Level 2 is triggered when there is a peak in level 1 and it uses two channels
(Chan1 and Chan2) that operate simultaneously. The output of the MWI for P2 is
used in both channels but Chan1 has a threshold T1 = 0.08 and Chan2 has a threshold
T2 = 0.70. When level 2 is triggered the channels calculate the detection strength and
compare it to the thresholds. When Ds is higher than the threshold it is classified as an
R-wave and the history of the R-wave is updated. If Ds is lower than the threshold it is
classified as noise and the noise history is updated. Since Chan1 has a low threshold it
will classify some noise as R-wave but the R-wave will be classified correctly. Chan2 has
a higher threshold and therefore some R-wave will be classified as noise but the noise
will be classified correctly. In other words, Chan1 will have many FP but few FN and
Chan2 will have few FP but many FN [9] [10].

Level 3: This level uses the information in level 2 to classify what is a beat and what is
noise. Level 3 uses if-then-else rules for the classification. These rules give four possible
outcomes, if Chan1 and Chan2 classify an event as an R-wave then level 3 classifies it
as a beat. If neither Chan1 or Chan2 classify an event as a beat then level 3 classifies
it as noise. Since Chan2 has higher threshold and few FP, it’s detection is accurate,
and if there is a R-wave detection in Chan2 and not in Chan1 it is classified as a beat.
If Chan1 classifies a peak as a beat and not Chan2 the normalized detection strength
∆ii = 1,2 indicate which detection is more likely to be a beat. The logic for level 3 is
the following [9] [10]

Chan1
√

x x
√

Chan2
√

x
√

x

Outcome
√

x
√

∆1?∆2

where

∆1?∆2: if ∆1>∆2 then
√

, else x

∆1=(DS1-T1)/(1-T1)

∆2=(T2-DS2)/T2
√

is a beat and x is not a beat

Level 4: Level 4 uses feature P3 as a MWI input. This level updates the history of
beats detected in level 3 and re-evaluates the noise from level 3. All noise peaks from
level 3 are compared to threshold T4 = 0.30 and if their detection strength is greater than
the threshold their classification is changed to a beat and the noise history is updated.
This level reduces the FN and is more accurate than levels 1-3 [9] [10].

Level 5: Level 5 looks at the time between beats. If the time is longer than 1.5 · mean
of the beat distance, the algorithm does a search back to find any missed beats. If a new
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beat is found it’s detection strength is compared to a threshold, T5 = 0.2, if it is higher
then the beat and noise history are updated [9] [10].

Level 6: This level eliminates beats that are too close together. If their distance is less
than 250 ms the one with lower amplitude is eliminated and the beat history is updated.

2.6 Algorithm implemented in STAN S31

The algorithm implemented in STAN S31 uses two input signals; a scalp electrode to
scalp reference lead (FHR channel) and a scalp electrode to skin electrode lead (ECG
channel). The preprocessing step for both these signals include filters and the R-wave
detection uses template matching [11].

2.6.1 Preprocessing

In the preprocessing step a filter is applied to both inputs signal to remove unwanted
frequencies not belonging to the QRS complex [11].

2.6.2 Event and R-wave detection

For the R-wave detection a template selection is used on both the FHR and ECG channel
and the events from those are compared to each other to find which selection are true
R-waves [11].

Template selection: Two templates are used, one for each channel. The templates
are 50 ms wide and they reflect the shape of the QRS complex.The FHR channel is more
reliable then the ECG channel and therefore the template search is initiated at that
channel. From the FHR channel a template is selected and only when a FHR template
is selected the ECG template search begins [11].

FHR template selection: When selecting a template, a 2000 ms interval is
searched to make sure that the correct template is detected. The algorithm uses three
criteria when searching for the highest peak:

1. The amplitude has to be higher than 50 µV
2. The amplitude has to be lower than 2000 µV
3. No another peak within 250 ms that has half the amplitude or higher. This is done
to reduce the number of templates which are picked up by noise [11]

If a peak is found it is classified as a beat. Since the template search interval is 2000
ms there might be more than one peak inside the interval but the algorithm is only
interested in the latest peak. The template search is repeated in the interval, 200 ms
after the first peak detection to the end of the 2000 ms interval. If there is a peak within
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the later interval that has an amplitude of at least half the initially detected peak, the
new peak is selected as a beat [11].

ECG template selection: When at least four continuous beats are found when
using the FHR template and they all match in shape and amplitude, a mean value of
those template wide section is calculated and defined as a ECG template. The ECG
templates are picked up at the location of the FHR beat positions with no regards to
where the highest amplitude is located in the ECG channel [11].

Comparison to the ECG signal: When a template have been chosen, it is con-
stantly compared to the signal and yields in a three different DIFF signals [11]

1. FHR template compared to the FHR channel (DIFF FHR)
2. ECG template compared to the ECG channel (DIFF ECG)
3. Combination of DIFF FHR and DIFF ECG (DIFF COMBINED) [11].

Both DIFF FHR and DIFF ECG are calculated in the same way:

1. If a template is not selected the DIFF value will be set to INT MAX so it won’t
generate any heart beats.
2. The comparison between template and signal is made sensitive to difference in power
and offset, this is done to increase the precision. To normalize against difference in offset,
the average of the signal and template is calculated and then subtracted.
3. The power is calculated for both the template and the signal, as the sum of the
absolute values. If the difference between the power of the signal and the power of the
template is less than 50% or higher than 200% then the DIFF is set to INT MAX to
reject it. If the difference is within the range, the signal is made insensitive to difference
in power by re-scaling it by template power/signal power.
4. From there the diff value is calculated as the sum of squared differences between
template and signal, divided by the square of power of the template. This summing is
done over the template width. By dividing the sum with the power of the template the
DIFF value is made indifferent to the power of the signal and the same threshold can be
used no matter what the signal strength is [11].

The DIFF COMBINED is calculated as:

DIFF COMBINED =
DIFF FHR ·DIFF ECG

maximum threshold
(2.26)

The DIFF FHR and DIFF ECG signals represent how well the FHR and ECG templates
correlate to its respective signal. The DIFF COMBINED represents how well both theses
template correlate to their respective signals. Since a beat is usually represented in both
channels at the same time, there is an advantage to have a combined comparison [11].
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Beat detection: All of the DIFF signals are compared to a threshold value. If any of
the DIFF signals are lower then the threshold, that time is set as a possible beat [11].

Threshold values: The threshold contains four values; Block, low, medium and
high. Each DIFF value is compare with on of these four thresholds:

1. If a possible beat is too close (HR> 300 bpm) to a previous beat the block threshold
is used to prevent FP detection.
2. If a possible beat is too close (240 bpm<HR<300 bpm) and the threshold/DIFF
(FHR, ECG or COMBINED) that is being evaluated is not of the type that generated
the lase beat, the block threshold is used.
3. The medium threshold is always used after three consecutive RR-intervals.
4. If the possible beat yields in a HR that is ± 10 bpm from the last one, the high
threshold is used.
5. As a means to avoid situations presenting half or, if third HR the candidate HR cor-
responding to the current sample is one half, or one third the last HR detected, ±5 bpm,
the medium threshold is used. This only applies if the threshold/DIFF being evaluated
is the same as for the last beat being detected.
6. I all other cases the low threshold is used [11].

Rejection of a beat: There are some cases where a beat is rejected:

1. If the HR is higher than 240 bpm
2. If the HR is lower than 30 bpm
3. if the HR between the last HR and the new HR has increased more than 28 bpm
4. if the HR between the last HR and the new HR has decreased more than 1/3 times
the previous HR [11].
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3
Result

3.1 Adult ECG signal

The first validation of the algorithms was performed using adult ECG signals from the
MIT/BIH database which contains 48 recordings, each 30 minutes long. The focus was
to evaluate the overall performance of each algorithm by summing up numbers of TP,
FN and FP to calculate the sensitivity and the positive predictive value. The results can
be divided into two parts, first how the threshold effects the performance of the algo-
rithms and the second is to determine which algorithms performs best for the adult ECG
signal. These result are very accurate since the actual location of the R-waves are known.

For each algorithm the threshold value was changed 5 times to see if and then how it
affected the performance of the algorithms. Figure 3.1 shows a sensitivity vs. positive
predictive value graph with results from all four algorithms.
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Figure 3.1: Result for the adult ECG signal

From figure 3.1 it can be seen how different values for the threshold affect the sensitiv-
ity and positive predictive value. Increasing the thresholds results in a lower sensitivity
of the algorithms while the positive predictive value is around the same for all thresholds.

Table 3.1 shows the best obtained result for TP, FN and FP in each algorithm. From
those values SE, +P and the variance are calculated. It is very clear from both figure 3.1
and table 3.1 that algorithm 3 performs the best. It has the lowest SE but the highest
+P but when looking at figure 3.1 it is obvious the most accurate one when locating
R-waves for adult ECG signal while the algorithm implemented in STAN S31 is not
suited for adult R-wave detection. Table 3.1 shows the variance which gives indications
of how close the detected values from each algorithm are to the actual R-wave location.
Algorithm 3 has the lowest variance which means that its detected R-waves are closest
to the actual R-waves.
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Table 3.1: Best result for the adult ECG signal

Algorithm TP FN FP Se [%] +P [%] Variance

Algorithm 1 103073 6405 5465 94.15 94.96 3.04 · 10−5

Algorithm 2 102339 7139 7472 93.48 93.20 1.21 · 10−5

Algorithm 3 101677 7801 2416 92.87 97.68 6.65 · 10−6

STAN S31 73826 35652 3986 67.4 94.9 2.4 · 10−5

3.2 Fetal ECG signal

The second validation of the algorithms was performed by using fetal ECG signals from
Neoventa, which contains 82 records, each approximately 30 minutes long.The focus
was to evaluate the overall performance of each algorithm by summing up numbers of
TP, FN and FP to calculate the sensitivity and the positive predictive value. Since the
location of the R-waves are not known this validation will not be accurate. Only de-
tections that three or all four algorithms detect were evaluated, the rest was disregarded.

The results from the validation of the three algorithms plus STAN S31 using fetal ECG
signal are shown both in figure 3.2 and table 3.2. Figure 3.2 shows the sensitivity vs.
positive predictive values while table 3.2 also show the number of TP, FN and FP.

Table 3.2: Result for the fetal ECG signal

Algorihms TP FN FP Unknown detections Se [%] ] P [%]

Algorithm 1 283,074 3162 2138 21,051 98.90 98.25

Algorithm 2 284,178 2059 323 22,067 99.28 99.89

Algorithm 3 262,666 23,568 6809 26,965 91.77 97.47

STAN S31 267,902 18,310 1476 30,897 93.60 99.45
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Figure 3.2: Result for the fetal ECG signal

From both table 3.2 and figure 3.2 it can be seen that the algorithm 2 has the highest
sensitivity and positive predictive value. This gives an indication that algorithm 2 is
the most accurate of those four though the values of sensitivity and positive predictive
values are higher than in reality.
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4
Discussion

4.1 Obstacles in the project

This project was divided into three steps; Investigate different algorithms, implement
three of them and finally perform validation on two different types of ECG signals. When
working on this project there were some obstacles that had to be dealt with. The first
problem was when implementing the algorithms, the signal processing steps were easy
to follow from the articles but the R-wave detections were more complicated and often it
was unclear how the authors designed the R-wave detections. Therefore the algorithms
may not be exactly the same as in the articles. The second obstacle was when deciding on
how to perform the validation using the fetal ECG signal. Due to lack of time algorithm
2 was not implemented in C# like it was proposed in the aim.

4.2 Results

The validation process for the algorithms using two different type of signals are chosen
differently depending on what information exists. When using the adult ECG signal
the locations of the R-waves are known so the validation process is easily performed.
The second and more important validation using the fetal ECG signal is more complex
since the R-waves locations are not known. The most accurate way to determine TP,
FN and FP is to look at figures of the signal with the detections but that is unrealistic
since it is too time consuming. The validation process has to be easily performed and
automatic. That is why this validation process is chosen for the fetal ECG signal, even
though it will not give accurate information it will still give important information of
the performance of the algorithms. The values for the sensitivity and positive predictive
value are therefore higher than in reality, the number of unknown detection for each
algorithms are 10-14 % of total number of detection.
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When looking at the performance of all four algorithms for the adult signal it is inter-
esting to see how poorly the algorithm in STAN S31 performs while the other three
algorithms have high sensitivity and positive predictive value. By changing the thresh-
old value it can be seen that the algorithms are stable and robust since they all have
high performance rate for most threshold values. Changing the threshold gives lower
sensitivity but similar positive predictive value. For the fetal signal all four algorithms
have relatively good performance, all values for sensitivity and positive predictive value
are over 90 %.

When comparing the results from the two validations it is clear that the algorithms
perform differently with different type of signal. When looking at the adult ECG signal
algorithm 3 is the most accurate, but for the fetal ECG signal algorithm 2 has the highest
performance rate. There can be many reasons why the algorithms perform differently
with different types of signal. First thing to keep in mind is that the adult and fetal
ECG signal don’t look the same. The fetal ECG signal has lower amplitude then the
adult ECG signal and the amplitudes varies a great deal between different fetal ECG
signals. Secondly the threshold has a great impact on number of detection, algorithms 1
and 2 have adaptive threshold that adjusts to different types of signals while algorithm
3 has fixed thresholds for both the noise and the peaks. This means that is is harder to
find one fixed value that is going to work with different signals. Maybe if the threshold
in algorithm 3 was to be changed to adaptive threshold the algorithm would have higher
performance rate. The third reason is the filter. Each algorithm has different filter
bandwidth and for some reason the filter in algorithm 2 seems to be performing better
on the fetal ECG signal then the adult signal. Only algorithm 1 seems to be working
similar for both the signals.

The result of the validation using the adult signal can not be compared to the articles
since different criteria was chosen for this project. As an example in the article about
the zero cross count the authors used 75 ms interval when finding number of TP, FP and
FN while in this project the interval was 20 ms. [6] This will result in higher sensitivity
and positive predictive values in the article than in the project.
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5
Conclusion

In this project, three R-wave detection algorithms were implemented in Matlab and val-
idated for both adult and fetal ECG signal. Algorithm 3 has the best performance when
using adult ECG signal with Se of 92.87% and +P of 97.68%, but algorithm 2 has the
best performance when using fetal ECG signal with Se of 99.28% and +P of 99.89%.

When designing a R-wave detection algorithm, there are many factors that need to be
taken into a consideration but the first thing it to decide what theory the algorithm
should be based on. From there the preprocessing steps are decided but all methods
have some kind of bandpass filter implementation to eliminate noise and disturbance
from the body and surroundings. The frequency range of the QRS complex needs to
be explored to find which frequencies the signal should contain after the filtering. The
algorithm might contain more filtering steps but it would be convenient to square the
signal at some point to emphasize the R-wave and reduce unwanted parts of the signal.
For the event detection some kind of threshold is necessary. This threshold can be fixed
but it is better if the threshold adapts to the signal being processed since the signal don’t
look the same between people. When the events have been detected the R-wave can be
located by finding the maximum value in each event.
When comparing the performance of the algorithm in STAN S31 to the performance
of the other three algorithms it is obvious that the algorithm in STAN S31 could be
improved to get higher sensitivity. This could be done by replacing the algorithm with
a non-linear method previously published by Pan and Tompkins (algorithm 2).
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A
Appendix: Algorithm 1

f unc t i on [ RR time ] = f u n c t i o n 1 f e t a l ( ecg )

% The input i s the ecg s i g n a l

f s =500; % sampling f requency
A= 26 ; % f i l t e r ordar

%% Bandpass F i l t e r , 27 ;53 Hz
bandpass = f i r 1 (A, [ 5 / ( 0 . 5 ∗ f s ) 30/(0 .5∗ f s ) ] ) ; % bandpass f i l t e r
f i l t e r s i g n a l d e l a y=conv ( bandpass , ecg ) ;
f i l t e r s i g n a l=f i l t e r s i g n a l d e l a y (A/2 : l ength ( f i l t e r s i g n a l d e l a y )−A/ 2 ) ;

%% Nonl inear Transform o f S i gna l
non l in ea r = s i gn ( f i l t e r s i g n a l ) . ∗ f i l t e r s i g n a l . ˆ 2 ;

%% High Frequency Sequence
K = ze ro s ; % timevarying amplitude
lambda = 0 . 9 9 ; % f o r g e t t i n g f a c t o r : lamda [ 0 : 1 ]
ga in = 4 ; % constant gain

f o r j =1: l ength ( non l in ea r )−1
K( j +1)= lambda∗K( j )+(1−lambda )∗ gain ∗abs ( non l in ea r ( j +1)) ;
end

b=ze ro s ;
f o r j =1: l ength ( non l in ea r )
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b( j )=(−1)ˆ j ∗K( j ) ;
end

%% Adding high f requency sequence to the n o i s e e c g
new s igna l = non l inea r+b ’ ;

%% Detect ion and count ing o f ze ro c r o s s i n g s
d=ze ro s ;
f o r j = 1 : l ength ( new s igna l )−1

d( j +1) = 0.5∗ abs ( s i gn ( new s igna l ( j +1))− s i gn ( new s igna l ( j ) ) ) ;
end

lambda2 =0.99; % smooths the s i gna l , h igher va lue −> smoother s i g n a l
D = ze ro s ;
f o r j =1: l ength ( new s igna l )−1

D( j +1)= lambda2∗D( j )+(1− lambda2 )∗d( j +1);
end

%% Event d e t e c t i o n
lambda3 = 0 . 9 7 ; % c o n t r o l l s the thresho ld , lower −> c l o s e r to s i g n a l
th r e sho ld = ze ro s ;
f o r j =1: l ength ( new s igna l )−1

th re sho ld ( j+1)= lambda3∗ th r e sho ld ( j )+(1− lambda3 )∗D( j +1);
end

%% Find a l l p l a c e s where D i s g r e a t e r than thr e sho ld
% a l l p l a c e s where D i s sma l l e r then thre sho ld −> negat ive
% a l l p l a c e s where D i s l a r g e r then thre sho ld −>p o s i t i v e

p o s i t v i e= ze ro s ;
negat ive = ze ro s ;

f o r j = 1 : l ength (D)
i f D( j ) < th r e sho ld ( j )

p o s i t i v e ( j ) = 1 ;
e l s e

negat ive ( j )=1;
end

end

% l o c a t i o n o f every p lace where D>th r e sho ld and D<thresho ld , t h i s markst
% the po in t s o f lower and upper t h r e s h o l d s −> every po int where the
% thre sho ld and D c r o s s over each other .
[ pk1 l o c s p o s ] = f i n d ( p o s i t i v e ) ;
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[ pk2 l o c s n e g ]= f i n d ( negat ive ) ;

% p o s i t i v e and negat ive d i f f e r e n c e o f the l o c a t i o n s
d i f f e r e n c e p o s=d i f f ( l o c s p o s ) ;
d i f f e r e n c e n e g=d i f f ( l o c s n e g ) ;

% Remove a l l va lue s where the d i f f e r e n c e i s 1 .
ind pos=f i n d ( d i f f e r e n c e p o s >1);
ind neg=f i n d ( d i f f e r e n c e n e g >1);

% Find the upper and lower l i m i t f o r a l l p o s s i b l e QRS segment i n t e r v a l .
uppe r l im i t=l o c s p o s ( ind pos ) ;
l o w e r l i m i t=l o c s n e g ( ind neg ) ;

% Making a l l p o s s i b l e events
f o r j =1: l ength ( uppe r l im i t )

event ( j , : ) = [ l o w e r l i m i t ( j ) uppe r l im i t ( j ) ] ;
end

% Calcu la te the d i s t anc e between two events and i f the d i s t anc e i s too
% c l o s e then the events are grouped toge the r where the lower l i m i t be longs
% to the f i r s t one and the upper l i m i t be longs to the l a s t one
n=1;
f o r j =1: l ength ( event )−1

d i s t e v e n t (n)=event ( j +1,1)− event ( j , 2 ) ;
n=n+1;
i f d i s t e v e n t ( j )<=30

new event ( j , : ) = [ l o w e r l i m i t ( j ) uppe r l im i t ( j +1) ] ;

e l s e
new event ( j , : )= event ( j , : ) ;
new event ( l ength ( event ) , : )= event ( l ength ( event ) , : ) ;

end
end

n=1;
f o r j =1: l ength ( new event)−1

new di s t event (n)=new event ( j +1,1)−new event ( j , 2 ) ;
n=n+1;
i f new di s t event ( j )<20

new new event ( j , : ) = [ new event ( j , 1 ) new event ( j +1 ,2 ) ] ;
e l s e

new new event ( j , : )= new event ( j , : ) ;
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new new event ( l ength ( new event ) , : )= new event ( l ength ( new event ) , : ) ;
end

end

% f i n d i n g events that have been repeated
f o r j =1: l ength ( new new event)−1

i f new new event ( j ,2)==new new event ( j +1 ,2)
new new event ( j +1 ,:)=0;

end
end

% Remove a l l the z e ro s
zeroRows = any ( new new event==0, 2 ) ;
new new event ( zeroRows , : ) = [ ] ;

% Repeat the s tep to make sure that the events are not repeated
f o r j =1: l ength ( new new event)−1

i f new new event ( j ,2)==new new event ( j +1 ,2)
new new event ( j +1 ,:)=0;

end
end

zeroRows = any ( new new event==0, 2 ) ;
new new event ( zeroRows , : ) = [ ] ;

f o r j =1: l ength ( new new event )
e v e n t s i z e ( j )=new new event ( j ,2)−new new event ( j , 1 ) ;
f i n a l e v e n t ( j , : )= new new event ( j , : ) ;
i f e v e n t s i z e ( j )<30

f i n a l e v e n t ( j , : ) = 0 ;
end

end

zeroRow = any ( f i n a l e v e n t ==0 ,2);
f i n a l e v e n t ( zeroRow , : ) = [ ] ;

%% Find the min and max value f o r n o n l i e a r s i g n a l at each i n t e r v a l
abs max=ze ro s ;
abs min=ze ro s ;
f o r j =1: l ength ( f i n a l e v e n t )
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abs max ( j )=abs (max( non l in ea r ( f i n a l e v e n t ( j , 1 ) : f i n a l e v e n t ( j , 2 ) ) ) ) ;
abs min ( j )=abs ( min ( non l in ea r ( f i n a l e v e n t ( j , 1 ) : f i n a l e v e n t ( j , 2 ) ) ) ) ;

end

% I f abs min i s much l a r g e r than abs max then the R peak i s l o ca t ed at
% abs min but otherwi se the R peak i s l o ca t ed at abs max
RR amp=ze ro s ;
f o r j =1: l ength ( f i n a l e v e n t )

i f abs min ( j ) − abs max ( j ) > 0 .4
RR amp( j )=abs min ( j ) ;

e l s e
RR amp( j )=abs max ( j ) ;

end
end

% Find the l o c a t i o n o f the peaks
abs non l i n ea r=abs ( non l in ea r ) ;
RR location=ze ro s ;
f o r j =1: l ength (RR amp)

RR loc ( j )= f i n d ( abs non l i n ea r ( f i n a l e v e n t ( j , 1 ) : f i n a l e v e n t ( j ,2))==RR amp( j ) ) ;
end

f o r j =1: l ength (RR amp)
RR location ( j )= f i n a l e v e n t ( j ,1)+ RR loc ( j ) ’ ;

end

RR location=RR location ’ ;
RR loc time=(RR location )/ f s ∗10ˆ3 ;

RR amp=abs non l i n ea r ( RR location ) ;

% e ra s e va lue s that are too c l o s e
RR time=RR location ;
n=1;
f o r j =1: l ength ( RR location )−1

i f RR location ( j +1)−RR location ( j )<250∗10ˆ−3∗500
i f RR amp( j )<RR amp( j +1)

RR time ( j )=0;
e l s e

RR time ( j +1)=0;
end

end
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end

% R−wave l o c a t i o n
RR time=RR time ( RR time ˜=0);

% R−wave l o c a t i o n in ms
RR time=RR time∗10ˆ3/ f s ;
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Appendix: Algorithm 2

f unc t i on [ RR time ] = f u n c t i o n 2 f e t a l ( ecg )

% Input s i g n a l i s the ecg s i g n a l

f s =500; % Samplinga f requency
N = length ( ecg ) ; % S igna l l ength

%% Low Pass F i l t e r
% delay = 5 samples
% D i f f e r n e c e equat ion o f low pass f i l t e r / c o e f f i c i e n t s a1 and b1
% c u t o f f f requency i s 14 Hz , gain i s 36 and delay i s 10 ms
% Trans fer func t i on : H( z)= (1−zˆ−6)ˆ2/(1−zˆ−1)ˆ2
a1 = [ 1 −2 1 ] ;
b1 = [ 1 0 0 0 0 0 −2 0 0 0 0 0 1 ] ;

l p s i g n a l = f i l t e r ( b1 , a1 , ecg ) ;
l p s i g n a l = l p s i g n a l /max( abs ( l p s i g n a l ) ) ; % Normalize

%% High Pass F i l t e r
% delay = 16 samples
% D i f f e r n e c e equat ion o f high pass f i l t e r / c o e f f i c i e n t s a2 and b2
% c u t o f f f requency i s 7 Hz , ga in i s 32 and delay i s 80 ms
%
a2 = [ 1 −1];
b2 = [−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] ;
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hp s i g na l = f i l t e r ( b2 , a2 , l p s i g n a l ) ;
hp s i g na l = hp s i g na l /max( abs ( h p s i g na l ) ) ; % Normalize

%% Der ivate
% delay = 2 samples
h=[−1 −2 0 2 1 ] / 8 ;

d e r i v a t i v e=conv ( hp s igna l , h ) ;
d e r i v a t i v e = d e r i v a t i v e (2+[1 :N ] ) ; % Correc t ing de lay o f two samples
d e r i v a t i v e = d e r i v a t i v e /max( abs ( d e r i v a t i v e ) ) ; % Normalize

%% Squaring
squar ing = d e r i v a t i v e . ˆ 2 ;
squar ing = squar ing /max( abs ( squar ing ) ) ; % Normalize

%% Moving−Window I n t e g r a t i o n
width = 50 ; % Number o f samples in the width (150 ms window )
h2 = ones (1 , width +1)/( width +1); % Impulse reponse

moving window = conv ( squar ing , h2 ) ; % Apply f i l t e r
moving window = moving window ( width /2+[1:N ] ) ; % Correc t ing de lay o f 15 samples
moving window = moving window/max( abs ( moving window ) ) ;

% QRS d i f f e r e n t than pan tompkins
max window = max( moving window ) ;
mean window = mean( moving window ) ;
th r e sho ld = mean window∗max window ;
y = ( moving window>th r e sho ld ) ’ ;

l e f t = f i n d ( d i f f ( [ 0 y ])==1);
r i g h t = f i n d ( d i f f ( [ y 0])==−1);

l e f t=l e f t −(5+16); % cance l de lay o f the low and high pass f i l t e r
r i g h t=r ight −(5+16); % cance l de lay o f the low and high pass f i l t e r

R loc=ze ro s ;
R value=ze ro s ;

f o r j =1: l ength ( l e f t )
i f l e f t ( j )<1;

l e f t ( j )=1;
end
i f r i g h t ( j )> l ength ( ecg )
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r i g h t ( j ) = length ( ecg ) ;
end

[ R value ( j ) R loc ( j ) ] = max( ecg ( l e f t ( j ) : r i g h t ( j ) ) ) ;
R loc ( j )=R loc ( j )−1+ l e f t ( j ) ; % adding o f f s e t

end

RR loc=R loc ( f i n d ( R loc ˜=0)) ;

RR amp=ecg ( RR loc ) ;
RR time=RR loc ;
n=1;
f o r j =1: l ength ( RR loc)−1

i f RR loc ( j +1)−RR loc ( j )<250∗10ˆ−3∗500
i f RR amp( j )<RR amp( j +1)

RR time ( j )=0;
e l s e

RR time ( j +1)=0;
end

end
end

% R−wave l o c a t i o n
RR time=RR time ( RR time ˜=0);

% R−wave l o c a t i o n in ms
RR time=RR time ∗10ˆ3/500;
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C
Appendix: Algorithm 3

Parts o f the a lgor i thm are obta ined by us ing the f r e e so f tware in [ 1 0 ] .

f unc t i on [ RR time ] = f u n c t i o n 3 f e t a l ( ecg )

% Input s i g n a l i s the ecg s i g n a l
f s =500;
data=ECG;
N=400;

%% F i l t e r banks
Bw=5.625; %f i l t e r bandwidth
Bwn=1/( f s /2)∗Bw;
M=32; %downsampling ra t e

k1 =.002;
h1=f i r 1 (N, [ Bwn−k1 2∗Bwn+k1 ] ) ;
h2=f i r 1 (N, [ 2 ∗Bwn−k1 3∗Bwn+k1 ] ) ;
h3=f i r 1 (N, [ 3 ∗Bwn−k1 4∗Bwn+k1 ] ) ;
h4=f i r 1 (N, [ 4 ∗Bwn−k1 5∗Bwn+k1 ] ) ;

w1=conv ( data , h1 ) ;
w2=conv ( data , h2 ) ;
w3=conv ( data , h3 ) ;
w4=conv ( data , h4 ) ;

y2=downsample (w1 , 3 2 ) ;
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y3=downsample (w2 , 3 2 ) ;
y4=downsample (w3 , 3 2 ) ;
y5=downsample (w4 , 3 2 ) ;

%% Features
P1=sum ( [ abs ( y2 ) abs ( y3 ) abs ( y4 ) ] , 2 ) ;
P2=sum ( [ abs ( y2 ) abs ( y3 ) abs ( y4 ) abs ( y5 ) ] , 2 ) ;
P4=sum ( [ abs ( y3 ) abs ( y4 ) abs ( y5 ) ] , 2 ) ;

a1 =[0 ; P1 ] ;
a2 =[0 ; P2 ] ;
a3 =[0 ; P4 ] ;

b1=[P1 ; 0 ] ;
b2=[P2 ; 0 ] ;
b3=[P4 ; 0 ] ;

c1=[a1 , b1 ] ;
c2=[a2 , b2 ] ;
c3=[a3 , b3 ] ;

FL1=sum( c1 , 2 ) / 2 ;
FL2=sum( c2 , 2 ) / 2 ;
FL4=sum( c3 , 2 ) / 2 ;

%% Level 1 [ 1 ]
[ EventsL1 amp EventsL1 ]= f indpeaks (FL1 ) ;

%% Level 2 [ 1 ]
meanL1=sum(FL2( EventsL1 ) , 1 )/ l ength ( EventsL1 ) ;
NL=meanL1−meanL1 ∗ 0 . 1 ; %Star t Noise Leve l
SL=meanL1+meanL1 ∗ 0 . 1 ; %Star t S igna l Leve l
th re sho ld1 =0.08; %Threshold d e t e c t i o n block 1
thre sho ld2 =0.7 ; %Threshold d e t e c t i o n block 2
[ SignalL21 , Noise1 , DS1 , Class1 ]= d e t e c t i o n b l o c k (FL2 , EventsL1 ,NL, SL , thre sho ld1 ) ;
[ SignalL22 , Noise2 , DS2 , Class2 ]= d e t e c t i o n b l o c k (FL2 , EventsL1 ,NL, SL , thre sho ld2 ) ;

%% Level 3 [ 1 ]
ClassL3 = [ ] ;
f o r i =1: l ength ( EventsL1 )

C1=Class1 ( i ) ;
C2=Class2 ( i ) ;
i f C1==1
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i f C2==1
ClassL3 =[ ClassL3 1 ] ; %C l a s s i f i c a t i o n as S igna l

e l s e
de l t a1 =(DS1( i )− th re sho ld1 )/(1− th re sho ld1 ) ;
de l t a2 =(thresho ld2−DS2( i ) )/ thre sho ld2 ;
i f de l ta1>de l ta2

ClassL3 =[ ClassL3 1 ] ; %C l a s s i f i c a t i o n as S igna l
e l s e

ClassL3 =[ ClassL3 0 ] ; %C l a s s i f i c a t i o n as Noise
end

end
e l s e

i f C2==1;
ClassL3 =[ ClassL3 1 ] ; %C l a s s i f i c a t i o n as S igna l

e l s e
ClassL3 =[ ClassL3 0 ] ; %C l a s s i f i c a t i o n as Noise

end
end

end
SignalL3=EventsL1 ( f i n d ( ClassL3 ) ) ; %S igna l Leve l 3
NoiseL3=EventsL1 ( f i n d ( ClassL3 ==0)); %Noise Leve l 3
%% Level 4 [ 1 ]
th r e sho ld =0.3 ;
VSL=(sum(FL4( SignalL3 ) , 1 ) ) / l ength ( SignalL3 ) ;
VNL=(sum(FL4( NoiseL3 ) , 1 ) ) / l ength ( NoiseL3 ) ;
SL=(sum(FL4( SignalL3 ) , 1 ) ) / l ength ( SignalL3 ) ; %I n i t i a l S i gna l Leve l
NL=(sum(FL4( NoiseL3 ) , 1 ) ) / l ength ( NoiseL3 ) ; %I n i t i a l Noise Leve l
S ignalL4 = [ ] ;
NoiseL4 = [ ] ;
DsL4 = [ ] ; %Detect ion s t r ength Leve l 4
f o r i =1: l ength ( EventsL1 )

Pkt=EventsL1 ( i ) ;
i f ClassL3 ( i )==1; %C l a s s i f i c a t i o n a f t e r Leve l 3 as S i gna l

SignalL4 =[ SignalL4 , EventsL1 ( i ) ] ;
SL=h i s t o r y (SL , FL4( Pkt ) ) ;
Ds=(FL4( Pkt)−NL)/(SL−NL) ; %Detect ion s t r ength
i f Ds<0

Ds=0;
e l s e i f Ds>1

Ds=1;
end
DsL4=[DsL4 Ds ] ;

e l s e %C l a s s i f i c a t i o n a f t e r Leve l 3 as Noise
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Ds=(FL4( Pkt)−NL)/(SL−NL) ;
i f Ds<0

Ds=0;
e l s e i f Ds>1

Ds=1;
end
DsL4=[DsL4 Ds ] ;
i f Ds>th r e sho ld %new c l a s s i f i c a t i o n as S igna l

SignalL4 =[ SignalL4 , EventsL1 ( i ) ] ;
SL=h i s t o r y (SL , FL4( Pkt ) ) ;

e l s e %new c l a s s i f i c a t i o n as Noise
NoiseL4=[NoiseL4 , EventsL1 ( i ) ] ;
NL=h i s t o r y (NL, FL4( Pkt ) ) ;

end
end

end

%% Level 5
%i f the time between two RR complexes i s too long => go back and check the
%events again with lower th r e sho ld
SignalL5=SignalL4 ;
NoiseL5=NoiseL4 ;
pe r i od s=d i f f ( S ignalL4 ) ;
M1=100;
a=1;
b=1/(M1)∗ ones (M1, 1 ) ;
meanperiod=f i l t e r (b , a , pe r i od s ) ; %mean o f the RR i n t e r v a l s
SL=sum(FL4( SignalL4 ) )/ l ength ( SignalL4 ) ;
NL=sum(FL4( NoiseL4 ) )/ l ength ( NoiseL4 ) ;
th r e sho ld =0.2 ;
f o r i =1: l ength ( pe r i od s )

i f p e r i od s ( i )>meanperiod ∗1 .5 %i f RR−i n t e r v a l i s to long
i n t e r v a l l=SignalL4 ( i ) : S ignalL4 ( i +1);
c r i t i c a l=i n t e r s e c t ( i n t e r v a l l , NoiseL4 ) ;
f o r j =1: l ength ( c r i t i c a l )

Ds=(FL4( c r i t i c a l ( j ))−NL)/(SL−NL) ;
i f Ds>th r e sho ld %C l a s s i f i c a t i o n as S igna l

SignalL5=union ( SignalL5 , c r i t i c a l ( j ) ) ;
NoiseL5=se txo r ( NoiseL5 , c r i t i c a l ( j ) ) ;

end
end

end
end
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%% Upsample
S igna ln=conver s ion ( data , FL2 , SignalL5 ,M,N, f s ) ;

%%
RR amp=data ( S igna ln ) ;
RR amp=abs (RR amp ) ;
RR time=Signa ln ;

f o r j =1: l ength ( RR time)−1
i f RR time ( j +1)−RR time ( j )<250∗10ˆ−3∗ f s

i f RR amp( j )<RR amp( j +1)
RR time ( j )=0;

e l s e
RR time ( j +1)=0;

end

end
end

% R−wave l o c a t i o n
RR time=RR time ( RR time ˜=0);

QRS=RR time∗10ˆ3/ f s ;

%% sub func t i ons

func t i on [ S igna l , Noise , VDs, Class ]= d e t e c t i o n b l o c k (mwi , Events ,NL, SL , th r e sho ld )

% d e t e c t i o n b l o c k − computation o f one d e t e c t i o n block
%
% [ Signa l , Noise , VDs, Class ]= d e t e c t i o n b l o c k (mwi , Events ,NL, SL , th r e sho ld )
%
% INPUT
% mwi Output o f the MWI
% Events Events o f Leve l 1 ( s ee [ 1 ] )
% NL I n i t i a l Noise Leve l
% SL I n i t i a l S i gna l Leve l
% thre sho ld Detect ion th re sho ld ( between [ 0 , 1 ] )
%
% OUTPUT
% Signa l Events which are computed as S igna l
% Noise Events which are computed as Noise
% VDs Detect ion s t r ength o f the Events
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% Class C l a s s i f i c a t i o n : 0=noise , 1=s i g n a l

S i gna l = [ ] ;
Noise = [ ] ;
VDs= [ ] ;
Class = [ ] ;
sumsignal=SL ;
sumnoise=NL;
f o r i =1: l ength ( Events )

P=Events ( i ) ;
Ds=(mwi(P)−NL)/(SL−NL) ; %Detect ion s t r ength
i f Ds<0

Ds=0;
e l s e i f Ds>1

Ds=1;
end
VDs=[VDs Ds ] ;
i f Ds>th r e sho ld %C l a s s i f i c a t i o n as S igna l

S i gna l =[ S i gna l P ] ;
Class =[ Class ; 1 ] ;
sumsignal=sumsignal+mwi(P) ;
SL=sumsignal /( l ength ( S igna l )+1); %Updating the S igna l Leve l

e l s e %C l a s s i f i c a t i o n as Noise
Noise =[ Noise P ] ;
Class =[ Class ; 0 ] ;
sumnoise=sumnoise+mwi(P) ;
NL=sumnoise /( l ength ( Noise )+1); %Updating the Noise Leve l

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ pnew]= conver s i on ( data , FL2 , pold ,M,N, f s )

% conver s ion − s e t s the f i d u c i a l po in t s o f the downsampled S igna l on the
% samplepo ints o f the o r i g i n a l S i gna l
%
% [ pnew]= conver s i on ( data , FL2 , pold ,M,N, f s )
%
% INPUT
% data Or i g ina l ECG Signa l
% FL2 Feature o f Leve l 2 [ 1 ]
% pold o ld f i d u c i a l po in t s
% M M downsampling ra t e
% N f i l t e r order
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% f s sample ra t e
%
% OUTPUT
% pnew new f i d u c i a l po in t s
%

Signa ln=pold ;
P=M;
Q=1;
FL2res=resample (FL2 ,P,Q) ; %Resampling
nans1=isnan ( data ) ;
nans=f i n d ( nans1==1);
data ( nans)=mean( data ) ; %Replaces NaNs in S igna l
f o r i =1: l ength ( S igna ln )

S igna ln1 ( i )=Signa ln ( i )+(M−1)∗( S igna ln ( i )−1);
end
%−−−−−−−−−−−−−−−−−−− Sets the f i d u c i a l po in t s on the maximum of FL2
Signa ln2=Signa ln1 ;
S igna ln2=Signaln2 ’ ;
i n t =2∗M; %Window length f o r the new f i d u c i a l po int
range =1: l ength ( FL2res ) ;
f o r i =1: l ength ( S igna ln2 )

s t a r t=Signa ln2 ( i )− i n t /2 ;
i f s t a r t <1

s t a r t =1;
end
stop=Signa ln2 ( i )+ i n t /2 ;
i f stop>l ength ( FL2res )

stop=length ( FL2res ) ;
end
i n t e r v a l l=s t a r t : stop ; %i n t e r v a l
FL2int=FL2res ( i n t e r v a l l ) ;
pkt=f i n d ( FL2int==max( FL2int ) ) ; %Se t t i ng po int on maximum of FL2
i f l ength ( pkt)==0 % i f pkt = [ ] ;

pkt=Signa ln2 ( i )− s t a r t ;
e l s e

pkt=pkt ( 1 ) ;
end
delay=N/2+M;
Signa ln3 ( i )=pkt+Signa ln2 ( i )− i n t /2−delay ; %f i d u c i a l po in t s accord ing to FL2

end
%Sets the f i d u c i a l po in t s on the maximum or minimum
%of the s i g n a l
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Bw=5.625;
Bwn=1/( f s /2)∗Bw;
Wn=[Bwn 5∗Bwn ] ;
N1=32;
b=f i r 1 (N1 ,Wn, ’ bandpass ’ ) ;
S f= f i l t f i l t (b , 1 , data ) ; %F i l t e r e d S igna l with bandwidth 5.6−28 Hz
beg=round (1 . 5∗M) ;
f i n =1∗M;
f o r i =1: l ength ( S igna ln3 )

s t a r t=Signa ln3 ( i )−beg ;
i f s t a r t <1

s t a r t =1;
end
stop=Signa ln3 ( i )+ f i n ;
i f stop>l ength ( Sf )

stop=length ( Sf ) ;
end
i n t e r v a l l=s t a r t : stop ; %Window f o r the new f i d u c i a l po int
S f i n t=abs ( detrend ( Sf ( i n t e r v a l l ) , 0 ) ) ;
pkt=f i n d ( S f i n t==max( S f i n t ) ) ; %Se t t i ng po int on maximum of S f i n t
i f l ength ( pkt)==0 %i f pkt = [ ] ;

pkt=Signa ln3 ( i )− s t a r t ;
e l s e

pkt=pkt ( 1 ) ;
end
pkt=pkt ( 1 ) ;
S igna ln4 ( i )=pkt+Signa ln3 ( i )−beg−1;

end
S igna l=Signaln4 ’ ; %New f i d u c i a l po in t s accord ing to the o r i g i n a l s i g n a l

cutbeg inn ing=f i n d ( Signa l<N) ; %Cutting out the f i r s t po in t s because o f i n i t i a l t r a n s i e n t o f the f i l t e r in polyphase imp
f p o i n t s b=S igna l ( cutbeg inn ing ) ;
cutend=f i n d ( Signa l>l ength ( data)−N) ; %Cutting out the l a s t po in t s
f p o i n t s e=S igna l ( cutend ) ;
pnew=se txo r ( S igna l , [ f p o i n t s b ; f p o i n t s e ] ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on yn=h i s t o r y (ynm1 , xn )

% h i s t o r y − computes y [ n]=(1− lambda )∗x [ n]+lambda∗y [ n−1]
%
% yn=h i s t o r y (ynm1 , xn )

lambda =0.8; %f o r g e t t i n g f a c t o r

49



APPENDIX C. APPENDIX: ALGORITHM 3

yn=(1−lambda )∗xn+lambda∗ynm1 ;
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