
Chalmers Publication Library

A BDD-Based Approach for Designing Maximally Permissive Deadlock Avoidance
Policies for Complex Resource Allocation Systems

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Fei, Z. ; Reveliotis, S. ; Miremadi, S. (2013) "A BDD-Based Approach for Designing
Maximally Permissive Deadlock Avoidance Policies for Complex Resource Allocation
Systems".

Downloaded from: http://publications.lib.chalmers.se/publication/186774

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/186774

1

A BDD-Based Approach for Designing Maximally
Permissive Deadlock Avoidance Policies for

Complex Resource Allocation Systems
Zhennan Fei, Spyros Reveliotis, Senior Member, IEEE, Sajed Miremadi, Knut Åkesson, Member, IEEE

Abstract—In order to develop a computationally efficient
implementation of the maximally permissive deadlock avoidance
policy (DAP) for complex resource allocation systems (RAS), a
recent approach focuses on the identification of a set of critical
states of the underlying RAS state-space, referred to as minimal
boundary unsafe states. The availability of this information en-
ables an expedient one-step-lookahead scheme that prevents the
RAS from reaching outside its safe region. The work presented
in this paper seeks to develop a symbolic approach, based on
binary decision diagrams (BDDs), for efficiently retrieving the
minimal boundary unsafe states from the underlying RAS state-
space. The presented results clearly demonstrate that symbolic
computation enables the deployment of the maximally permissive
DAP for complex RAS with very large structure and state-spaces
with limited time and memory requirements. Furthermore, the
involved computational costs are substantially reduced through
the pertinent exploitation of the special structure that exists in
the considered problem.
Note to Practitioners – A key component of the real-time control
of many flexibly automated operations is the management of the
allocation of a finite set of reusable resources among a set of
concurrently executing processes so that this allocation remains
deadlock-free. The corresponding problem is known as deadlock
avoidance, and its resolution in a way that retains the sought
operational flexibilities has been a challenging problem due to
(i) the inability to easily foresee the longer-term implications
of an imminent allocation and (ii) the very large sizes of the
relevant state spaces that prevent an on-line assessment of
these implications through exhaustive enumeration. A recent
methodology has sought to address these complications through
the off-line identification and storage of a set of critical states
in the underlying state space that renders efficient the safety
assessment of any given resource allocation. The results presented
in this paper further extend and strengthen this methodology
by complementing it with techniques borrowed from the area
of symbolic computation; these techniques enable a more com-
pressed representation of the underlying state spaces and of the
various subsets and operations that are involved in the pursued
computation.

Index Terms—Resource Allocation Systems, Discrete Event
Systems, Deadlock Avoidance, Maximal Permissiveness, Super-
visory Control Theory, Binary Decision Diagrams.

I. INTRODUCTION

DEADLOCK avoidance for sequential, complex resource
allocation systems (RAS) is a well-established problem

in the discrete event systems (DES) literature [1], [2]. In

Z. Fei, K. Åkesson and S. Miremadi are with the Automation Research
Group, Department of Signals and Systems, Chalmers University of Technol-
ogy, SE-412 96, Gothenburg, Sweden, e-mail: zhennan@chalmers.se.

S. Reveliotis is with the School of Industrial & Systems Engineering,
Georgia Institute of Technology, e-mail: spyros@isye.gatech.edu.

its basic positioning, this problem concerns the coordinated
allocation of the system resources to a set of concurrently exe-
cuting processes so that every process can eventually proceed
to its completion. In particular, by utilizing the information
about the current allocation of the system resources and
the available knowledge about the structure of the executing
process types, the applied control policy avoids the visitation
of RAS states from which deadlock is inevitable. From an
application standpoint, the need for deadlock avoidance arises
in many contemporary technological systems, including the
material flow control of flexibly automated production systems
[3], [4], [5], the traffic management of unmanned discrete
material handling systems [6], [7], [8], the traffic control of
railway and urban monorail transport systems [9], and the
lock allocation that takes place among the various threads of
parallelized computer programs [10], [11].

Preferably, deadlock avoidance should be carried out in the
maximally permissive manner. The computation of the max-
imally permissive deadlock avoidance policy (DAP) for any
given RAS can be based, in principle, on standard synthesis
procedures borrowed from DES supervisory control theory
(SCT) [12], [13]. These procedures express the underlying
resource allocation dynamics as a finite state automaton (FSA),
and subsequently they “trim” this automaton with respect to
(w.r.t.) the state where the underlying RAS is depleted of any
processes; i.e., this empty state defines the initial as well as
the target state for any successful operational cycle of the
considered RAS.

Yet, although the SCT framework provides a rigorous base
for modeling, analyzing and eventually controlling the RAS
dynamics, the computational complexity for the synthesis of
the maximally permissive DAP is an NP-hard task for the
majority of RAS behavior [1], [14]. Hence, significant effort
has been expended over the past years to provide DAPs that
are computationally tractable and remain efficient w.r.t. the
criterion of maximal permissiveness. In many cases, this effort
has been facilitated by the adoption of additional modeling
formalisms that connect more explicitly the representation
of the system behavior to the underlying system structure,
and they are, thus, more compact and more amenable to
processing during the synthesis phases. Petri Nets (PNs) [15]
have been a particularly popular modeling framework in the
aforementioned line of research, while some representative
works of this research line are those presented in [3], [5],
[16], [17] and [18]. Another line of research has sought to
combine the representational and computational strengths of

zhennan@chalmers.se
spyros@isye.gatech.edu

2

the existing modeling frameworks in a synergistic manner. In
[19], the authors compute the maximally permissive DAP in
the FSA modeling framework, and subsequently they seek to
translate the outcome of this computation in the PN modeling
framework using concepts and tools from the theory of regions
[20]. Such an approach is frequently limited, however, by the
large size of the resulting PNs, and, also, by the potential
inability of the PN framework to provide an effective rep-
resentation of the target policy. Hence, more recently, works
like those presented in [21], [22], [23] and [24] have sought
to represent the maximally permissive DAP, that is originally
computed in the FSA modeling framework, through other
representations that might be more parsimonious than the PNs
generated by the theory of regions, and more capable to encode
the maximally permissive DAP across the entire spectrum of
the considered RAS. In [24], which is one of the primary
inspirations for the work presented in this paper, an FSA-
based approach was presented where the deployment of the
maximally permissive DAP is based on the identification and
the efficient storage of a set of critical states, referred to as the
minimal boundary unsafe states of the underlying state-space.
These critical states define the boundary between the safe and
unsafe subspaces, where, in the considered problem context,
state safety is defined as co-accessibility w.r.t. the empty RAS
state. A tentative transition is considered to be unsafe if the
resulting state is greater than or equal, component-wise, to
one of the minimal boundary unsafe states. Furthermore, the
results of [25] complement the work of [24] by introducing an
algorithm that enumerates all the minimal unsafe states while
avoiding the complete enumeration of the RAS state-space.
More specifically, the algorithm of [25] retrieves the minimal
unsafe states through a localized computation that starts from
the minimal RAS deadlocks and backtraces the RAS dynamics
until it has retrieved all the minimal unsafe states lying on the
boundary between the safe and unsafe subspaces.

While the approaches discussed above take advantage of the
structure and particular properties of the underlying RAS, a
different line of work has sought to develop the maximally
permissive DAP through a symbolic computation that uses
the concept of the binary decision diagram (BDD) [26],
[27]. A BDD is an efficient data structure, which, under the
right conditions, can reach logarithmic compression of the
involved state-spaces [27]. However, the effective deployment
of BDD-based representations in supervisory control is still a
non-trivial task. Some specific endeavors made towards this
direction are presented in [28], [29], [30], [31], [32] and
[33]. In [33], an efficient BDD-based approach was developed
for modeling and controlling general DES represented in the
modeling framework of the Extended Finite Automata (EFA)
[34]. An EFA is an ordinary FSA extended with integer
variables. The richer structure and semantics that are provided
by these variables enable the representation of the modeled
behavior in a conciser manner than the ordinary FSA. Hence,
the approach in [33] employs the EFA model for the initial
representation of the plant behavior and the control specifica-
tions, and subsequently it uses BDDs for the computation and
representation of the underlying state-space. Finally, control
synthesis is carried out according to the standard perspectives

provided by the classical SCT [12], [13], but in the symbolic
context of the BDD-based representation.

Motivated by the above approaches and remarks, in this
paper, we propose a BDD-based approach for the efficient de-
velopment of the maximally permissive DAP of the considered
RAS. In particular, we first show how the considered RAS can
be recast into a compact EFA model without losing any infor-
mation necessary for solving the deadlock avoidance problem.
Secondly, we present a series of symbolic algorithms for
computing the minimal boundary unsafe states from the BDD-
based representation of the underlying state-space. The BDD
containing the minimal unsafe states, that results from the
aforementioned computations, is eventually converted through
the algorithm presented in [35] into a TRIE data structure
similar to that employed for the storage of this information
in [24].1 Hence, eventually, the maximally permissive DAP
can be implemented through the one-step-lookahead control
scheme detailed in [24]; we refer to that work for the relevant
implementational details.

The presented developments provide two different algo-
rithms for computing the boundary unsafe states between the
safe and unsafe subspaces. The first algorithm is an extension
of that presented in [33], and it involves a reachability and
co-reachability analysis of the underlying state-space, in order
to compute the trim of the underlying FSA. Once the safe
states have been computed, a reachability analysis is carried
out one more time in order to identify and extract the boundary
unsafe states. The second algorithm leverages the structural
and the computational perspectives regarding the RAS (un-
)safety developed in [24] and [25]. More specifically, the
algorithm employs the following two-stage computation: In
the first stage, all the deadlock states are identified and
computed from the symbolically represented state-space. In
the second stage, the deadlock states are used as starting
points for a search procedure over the RAS state-space that
identifies all the boundary unsafe states. Finally, in both of the
aforementioned approaches, a third symbolic algorithm is used
to identify and remove non-minimal elements from the set of
the boundary unsafe states. The proposed symbolic approaches
have been implemented and integrated into Supremica [36], a
tool for analysis of DES. The experimental results reveal that
the proposed symbolic computation enables the deployment of
the maximally permissive DAP for complex RAS with very
large structure and state-spaces, with limited time and memory
requirements. Furthermore, the involved computational costs
can be substantially reduced through the pertinent exploitation
of the special structure that exists in the considered problem.

The rest of the paper is organized as follows: Section II
provides necessary preliminaries used throughout the paper.
Section III first illustrates, through an example, how a RAS can
be recast into the corresponding EFA model, and subsequently
it outlines a complete procedure for constructing an EFA
that will represent the resource allocation dynamics of any
instantiation of the considered RAS. Section IV presents the
symbolic algorithms for computing the deadlock states and

1But, as already explained, in [24], the informational content of this TRIE
data structure is obtained through enumerative techniques that employ a more
conventional representation of the underlying RAS dynamics.

3

the minimal boundary unsafe states that were described in
the previous paragraph. Section V presents some experimen-
tal results that demonstrate and assess the efficacy of the
proposed algorithms, and, finally, Section VI concludes the
paper by summarizing the contributions and outlining some
future work. Furthermore, due to space considerations, an elec-
tronic supplement with some material supporting the presented
developments but not deemed as absolutely necessary for a
solid understanding of the paper results, is provided at [37].2

Closing the discussion of this introductory section, we also
notice, for completeness, that preliminary, abridged versions
of some parts of the results that are provided in the manuscript
were presented in [39], [40].

II. PRELIMINARIES

A. Resource Allocation Systems and the corresponding prob-
lem of Deadlock Avoidance

We start our technical developments by providing a formal
characterization of the RAS class that is considered in this
work.
Definition II.1: For the purposes of this work, a resource
allocation system (RAS) is a 4-tuple Φ = 〈R, C,P,A〉 where:
• R = {R1, . . . , Rm} is the set of the system resource

types.
• C : R → Z+ – where Z+ is the set of strictly positive

integers – is the system capacity function, characterizing
the number of identical units from each resource type
available in the system. Resources are assumed to be
reusable, i.e., each allocation cycle does not affect their
functional status or subsequent availability, and therefore,
C(Ri) ≡ Ci constitutes a system invariant for each Ri.

• P = {J1, . . . , Jn} denotes the set of the system process
types supported by the considered system configuration.
Each process type Jj , for j = 1, . . . , n, is a compos-
ite element itself; in particular, Jj = 〈Sj ,Gj〉, where
Sj = {Ξj1, . . . ,Ξj,l(j)} denotes the set of processing
stages involved in the definition of process type Jj , and
Gj is an acyclic digraph that defines the sequential logic
of process type Jj . The node set of Gj is in one-to-
one correspondence with the processing-stage set Sj , and
each directed path from a source node to a terminal node
of Gj corresponds to a possible execution sequence (or
“process plan”) for process type Jj . Also, given an edge
e ∈ Gj linking Ξjk to Ξjk′ , we define e.src ≡ Ξjk and
e.dst ≡ Ξjk′ , i.e., e.src and e.dst denote respectively the
source and the destination nodes of edge e.

• A :
⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is the resource allo-

cation function, which associates every processing stage
Ξjk with the resource allocation request A(j, k) ≡ Ajk.
More specifically, each A(j, k) is an m-dimensional
vector, with its i-th component indicating the number of
resource units of resource type Ri necessary to support
the execution of stage Ξjk. Furthermore, it is assumed
that Ajk 6= 0, i.e., every processing stage requires at least
one resource unit for its execution. Finally, according

2An alternative source of this supplementary material, that also provides
additional context for this entire research, is [38].

to the applying resource allocation protocol, a process
instance executing a processing stage Ξjk will be able to
advance to a successor processing stage Ξjk′ , only after it
is allocated the resource differential (Ajk′ −Ajk)+; and
it is only upon this advancement that the process will
release the resource units |(Ajk′ − Ajk)−|, that are not
needed anymore.3

The “hold-while-waiting” protocol that is described in the
last part of Definition II.1, when combined with the arbitrary
nature of the process routes and the resource allocation re-
quests that are supported by the considered RAS model, can
give rise to resource allocation states where a set of processes
are waiting upon each other for the release of resources that
are necessary for their advancement to their next processing
stage. Such persisting cyclical-waiting patterns are known as
(partial) deadlocks in the relevant literature, and to the extent
that they disrupt the smooth operation of the underlying sys-
tem, they must be recognized and eliminated from the system
behavior. The relevant control problem is known as deadlock
avoidance, and as remarked in the introductory section, a
natural framework for its investigation is that of SCT [12],
[13]. More specifically, in an FSA-based representation of the
RAS dynamics, deadlocks appear as states containing a set of
activated process instances and no feasible process-advancing
events. Hence, assuming that the desired outcome of any run
of this FSA is the access of the state where all processes
have successfully completed and the underlying RAS is idle
and empty of any active processes, the presence of deadlock
states can be perceived as blocking behavior. Therefore, in
the context of SCT, effective deadlock avoidance translates
to the development of the maximally permissive non-blocking
supervisor for the RAS-modeling FSA, that will confine the
RAS behavior in the “trim” of this FSA, i.e., to the subspace
consisting of the states that are reachable and co-reachable to
the RAS idle and empty state.

In the relevant RAS theory, states that are co-reachable
to the RAS idle and empty state are also characterized as
safe, and, correspondingly, states that are not co-reachable are
characterized as unsafe. Furthermore, it is evident from the
above discussion that of particular interest in the implementa-
tion of the maximally permissive non-blocking supervisor for
the considered RAS are those transitions leading from safe to
unsafe states, since their effective recognition and blockage
can prevent entrance into the unsafe region. The unsafe states
that result from such problematic transitions are known as
the boundary unsafe states in the relevant literature. Also, for
reasons that will be explained in the sequel, the entire set of the
boundary unsafe states can be effectively recognized from its
minimal elements. Hence, the main subject of this work boils
down to the employment of symbolic methods for the effective
and efficient computation of the minimal boundary unsafe
states for any instantiation of the RAS class of Definition II.1.

Closing this introductory discussion on the RAS structure
and the corresponding problem of deadlock avoidance that
are considered in this work, we want to notice that the RAS
class introduced in Definition II.1 is known as the class of
Disjunctive/Conjunctive (D/C-) RAS in the relevant literature

3We remind the reader that (x)+ = max{0, x} and (x)− = min{0, x}.

4

[1]. This class allows for routing flexibility in the sequential
logic of the various processes and arbitrary resource allocation
requests associated with the various processing stages. On the
other hand, this RAS class does not allow for internal cycling
in the process routes, merging and/or splitting operations, and
any form of uncontrollable behavior. Nevertheless, while we
have opted to restrict the subsequent discussion to the class
of D/C-RAS for reasons of simplicity and specificity, the
algorithms developed herein are straightforwardly extensible to
broader RAS classes that exhibit many of the aforementioned
behavioral attributes. We shall return briefly to this issue in
the closing discussion of Section VI.

B. Extended Finite Automata
An extended finite automaton (EFA) [34] is an augmentation

of the ordinary FSA model with integer variables that are
employed in a set of guards and are maintained by a set
of actions. A transition in an EFA is enabled if and only if
its corresponding guard is true. Once a transition is taken,
updating actions on the set of variables may follow. By
utilizing these two mechanisms, an EFA can represent the
modeled behavior in a conciser manner than the ordinary FSA
model.
Definition II.2: An Extended Finite Automaton (EFA) over a
set of model variables v = (v1, . . . , vn) is a 5-tuple E =
〈Q,Σ,→, s0, Q

m〉 where:
• Q : L×D is the extended finite set of states. L is the finite

set of the model locations and D = D1× . . .×Dn is the
finite domain of the model variables v = (v1, . . . , vn).

• Σ is a nonempty finite set of events (also known as the
alphabet of the model).

• → ⊆ L × Σ × G × A × L is the transition relation,
describing a set of transitions that take place among the
model locations upon the occurrence of certain events.
However, these transitions are further qualified by G,
which is a set of guard predicates defined on D, and by
A, which is a collection of actions that update the model
variables as a consequence of an occurring transition.
Each action a ∈ A is an n-tuple of functions (a1, . . . , an),
with each function ai updating the corresponding variable
vi.

• s0 = (`0, v0) ∈ L×D is the initial state, where `0 is the
initial location, while v0 denotes the vector of the initial
values for the model variables.

• Qm ⊆ Lm×Dm ⊆ Q is the set of marked states. Lm ⊆ L
is the set of the marked locations and Dm ⊆ D denotes
the set of the vectors of marked values for the model
variables.

In the following, we shall use the notation ` σ→g/a `
′ as an

abbreviation for (`, σ, g, a, `′) ∈→. Also, the symbol ξ will be
used to denote neutral actions that do not update the value of
the corresponding variables; i.e., if ai = ξ, action ai does not
update the variable vi in v.

In the EFA modeling framework, the synchronization of two
EFAs is formally defined through the operation of the extended
full synchronous composition (EFSC) of these EFAs.
Definition II.3: Let Ek = 〈Qk,Σk,→k, s

k
0 , Q

m
k 〉, with k =

1, 2, be two EFAs with a common variable set v =

(v1, . . . , vn). The extended full synchronous composition of
E1 and E2 is defined as

E1||E2 = 〈Q1||2,Σ1 ∪ Σ2,→1||2, (s
1
0, s

2
0), Qm1||2〉

where Q1||2 : L1 × L2 × D, Qm1||2 : Lm1 × Lm2 × Dm, s1
0 =

(`10, v
1
0) and s2

0 = (`20, v
2
0) with v1

0 = v2
0 , and the conditional

transition relation →1||2 defined as follows:
• For σ ∈ Σ1 ∩ Σ2, (`1, `2)

σ→g/a (´̀
1, ´̀

2) if
∃ `1

σ→g1/a1
´̀
1 ∈ →1, ∃ `2

σ→g2/a2
´̀
2 ∈ →2 s.t.

– g = g1 ∧ g2,
– ∀vi ∈ v, the action function ai of a is defined as

ai =

a1
i if ∃v |= g s.t. a1

i (v) = a2
i (v)

a1
i if a1

i 6= ξ and a2
i = ξ

a2
i if a1

i = ξ and a2
i 6= ξ

ξ if a1
i = ξ and a2

i = ξ

• For σ ∈ Σ1\Σ2, 〈`1, `2〉
σ→g/a 〈´̀1, ´̀

2〉 if
`1

σ→g/a
´̀
1 ∈ →1 and `2 = ´̀

2;
• For σ ∈ Σ2\Σ1, 〈`1, `2〉

σ→g/a 〈´̀1, ´̀
2〉 if

`2
σ→g/a

´̀
2 ∈ →2 and `1 = ´̀

1.
Note that when two action functions a1

i and a2
i update

vi to different values, they are considered as conflicting and
we assume that no transition will occur. Furthermore, for the
entire EFSC operation to be feasible, EFAs E1 and E2 must
agree on the pricing of their common variables in their initial
states s1

0 and s2
0. The EFSC operator is both commutative and

associative, and, thus, it can be extended to handle an arbitrary
number of EFAs.

C. Binary Decision Diagrams
Binary decision diagrams (BDDs) [27] are a memory-

efficient data structure used to represent Boolean functions as
well as to perform set-based operations. To present the basic
BDD theory employed in this work, in the following, we set
B ≡ {0, 1}. Also, for any Boolean function f : Bn → B,
in n Boolean variables X = (x1, . . . , xn), we denote by
f |xi=0(resp. 1) the Boolean function that is induced from
function f by fixing the value of variable xi to 0 (resp.
1). Then, a BDD-based representation of f is a graphical
representation of this function that is based on the following
identity:

∀xi ∈ X, f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1) (1)

More specifically, (1) enables the representation of the
Boolean function f as a single-rooted acyclic digraph with
two types of nodes: decision nodes and terminal nodes. A
terminal node can be labeled either 0 or 1. Each decision
node is labelled by a Boolean variable and it has two outgoing
edges, with each edge corresponding to assigning the value of
the labeling variable to 0 or to 1. The value of function f for
any given pricing of the variable set X is evaluated by starting
from the root of the BDD and at each visited node following
the edge that corresponds to the selected value for the node-
labeling variable; the value of f is the value of the terminal
node that is reached through the aforementioned path.

The size of a BDD refers to the number of its deci-
sion nodes. A carefully structured BDD can provide a more

5

compact representation for a Boolean function f than the
corresponding truth table and the decision tree; frequently, the
attained compression is by orders of magnitude.

From a computational standpoint, the power of BDDs lies
in the efficiency that they provide in the execution of binary
operations. Let f and f ′ be two Boolean functions of X . Then,
it should be evident from (1) that a binary operator ⊗ between
(the BDDs representing) f and f ′ can be recursively computed
as

f⊗f ′ = [¬x∧(f |x=0⊗f ′|x=0)]∨ [x∧(f |x=1⊗f ′|x=1)] (2)

where x ∈ X . If dynamic programming is used, the compu-
tation implied by (2) can have a complexity of O(|f | · |f ′|)
where |f | and |f ′| are the sizes of (the BDDs representing) f
and f ′.

A particular operator that is used extensively in the fol-
lowing is the existential quantification of a function f over
its Boolean variables. For a variable x ∈ X , the existential
quantification of f is defined by ∃x.f = f |x=0∨f |x=1. Also,
if X̄ = (x̄1, . . . , x̄k) ⊆ X , then ∃X̄.f is a shorthand notation
for ∃x̄1.∃x̄2. . . .∃x̄k.f . In plain terms, ∃X̄.f denotes all those
truth assignments of the variable set X\X̄ that can be extended
over the set X̄ in a way that function f is eventually satisfied.

EFA encoding through BDDs. To represent an EFA E
by a Boolean function, different sets of Boolean variables are
employed to encode the locations, events and integer variables.
For the encoding of the state set Q : L× D, we employ two
Boolean variable sets, denoted by XL and XD = XD1 ∪ . . .∪
XDn , to respectively encode the two sets L and D. Then, each
state q = (`, v) ∈ Q is associated with a unique satisfying
assignment of the variables in XL ∪ XD. Given a subset Q̄
of Q, its characteristic function χQ̄ : Q→ {0, 1} assigns the
value of 1 to all states q ∈ Q̄ and the value of 0 to all states
q /∈ Q̄.4 The symbolic representation of the transition relation
→ relies on the same idea. A transition is essentially a tuple
〈`, v, σ, `′, v′〉 specifying a source state q = (`, v), an event
σ, and a target state q′ = (`′, v′). Formally, we employ the
variable sets XL and XD to encode the source state q, and a
copy of XL and XD, denoted by X́L and X́D, to encode the
target state q′. In addition, we employ the Boolean variable
set XΣ to encode the alphabet of E, and we associate the
event σ with a unique satisfying assignment of the variables
in XΣ. Then, we identify the transition relation → of E with
the characteristic function

∆(〈q, σ, q′〉) =

{
1 if ` σ→g/a `

′ ∈ →, v |= g, v′ = a(v)
0 otherwise

That is, ∆ assigns the value of 1 to 〈q, σ, q′〉 if there exists a
transition from ` to `′ labelled by σ, the values of the variables
at ` satisfy the guard g, i.e., v |= g, and the values of the
variables v′ at `′ are the result of performing action a on v.

III. MODELING THE CONSIDERED RAS AS AN EFA
This section provides a straightforward procedure for the

development of the EFA modeling the behavior of the RAS

4In the rest of this document, we shall use interchangeably the original
name of a set Q and its characteristic function, χQ, in order to refer to this
set.

J2 : Ξ21

R1

Ξ22

R2

Ξ23

R3

Ξ24

R4

J1 : Ξ11

R4

Ξ12

R2 ∧R3

Fig. 1: The RAS configuration considered in Example III.1.

encompassed in Definition II.1. For the sake of simplicity
and clarity, in the following we motivate and illustrate this
procedure by developing the EFA model for a simple RAS
instance that will be used as an expository example for all
the key results of this manuscript. A more formal description
of the procedure can be found in the electronic supplement
to this paper that is provided at [37]. Also, in the last part
of the section, some additional remarks elaborate on the
informational content of the generated EFA, and on its (proper)
interpretation in the context of the algorithmic procedures that
are the main theme of this work.

Example III.1: The RAS considered in this example is
shown in Fig.1, and it comprises two process types J1 and
J2. Each process type is defined as a sequence of processing
stages; the stages of process type J1 are denoted by Ξ11

and Ξ12, while the stages of process type J2 are denoted
by Ξ21,Ξ22,Ξ23 and Ξ24. The set of the system resource
types is R = {R1, R2, R3, R4}, with capacities Ci = 1 for
i = 1, 2, 3, 4. In the depicted RAS, stage Ξ12 of process
type J1 requests one unit from each of the resource types
R2 and R3 to properly support its execution. On the other
hand, stage Ξ11 of process type J1, and all stages of process
type J2, request only one unit from a single resource type;
the corresponding resource types are depicted in Fig.1 next to
each of these stages.

Next, we focus on the development of an EFA modeling
the behavior of process type J1. An EFA model for process
type J2 can be developed and interpreted similarly.

Declaration of the resource variables. For each resource
type Ri ∈ R, i = 1, 2, 3, 4, of the considered RAS, we intro-
duce a resource variable vRi to trace the number of available
(or free) units of Ri. The domain of vRi is {0, . . . , Ci}, where
Ci is the capacity of Ri and, for this example, it is equal
to one. Furthermore, since, under proper RAS operation, the
initial and the target states correspond to the RAS empty state,
we set the initial and the marked value of each variable vRi
equal to Ci.

Representation of the process sequential logic by a
single-location EFA. Next, we proceed to build an EFA that
captures the evolution of any process instance from process
type J1 through its various processing stages. The EFA model
constructed at this phase concerns only the representation
of the routing possibilities of these process instances, and it
does not address the relevant resource allocation function; this
function will be modeled in a subsequent phase.

As indicated in Fig. 2, the constructed EFA has only one
location, and its two transitions correspond to the process-
initiation (or loading – 〈load, Ξ11〉) and the process-advancing

6

J1

〈Load, Ξ11〉
g : vR4 ≥ 1;

a : v11 := v11 + 1;

vR4 := vR4 − 1

〈Ξ11, Ξ12〉
g : v11 ≥ 1 ∧

vR2 ≥ 1 ∧ vR3 ≥ 1

a : v11 := v11 − 1;

vR4 := vR4 + 1

Fig. 2: The EFA modeling process type J1.

(〈Ξ11, Ξ12〉) events that appear in the sequential logic of process
type J1. On the other hand, since a process instance that has
reached its final stage can always leave the system without
posing any further resource requests, the process-termination
(or unloading) event is modeled only implicitly through the
event 〈Ξ11, Ξ12〉 that models the process access to its terminal
stage. Furthermore, we define a set of instance variables,
vij , that count the number of process instances executing at
the corresponding processing stages Ξij that are explicitly
recognized by the model; hence, for this example, only one
instance variable, v11, is defined. By making use of this
instance variable, we can construct the necessary guards and
actions for the EFA transitions. As depicted in Fig. 2, the
guards determine whether a process-advancing event can take
place, on the basis of the process availability at the originating
stage. Upon the occurrence of such an event, the corresponding
actions update accordingly the number of the process instances
at the involved stages.5

Representation of the resource allocation function and
its induced dynamics. Fig. 2 also shows the role of the
resource allocation variables in the EFA that models the
complete behavior of process type J1. More specifically, the
resource allocation requests that are posed by the various
processing stages, are modeled by additional guards and
actions associated with the corresponding EFA transitions;
these guards and actions are highlighted by a boxing frame in
Fig. 2. As a more concrete example, consider the transition
labeled by 〈Ξ11, Ξ12〉 in the EFA depicted in Fig. 2. To
execute this transition, the associated guard requires not only
the presence of an available process instance at stage Ξ11,
but also the availability of a free unit from each of the
resource types R2 and R3. Similarly, upon the execution of
this transition, besides the updating of the number of process
instances at stage Ξ11, the augmented version of the relevant
action function updates also the resource variables to reflect

5 As already discussed, the considered EFA model for process type J1
does not avail of a variable v12 since it is assumed that a process instance
reaching stage Ξ12 is (eventually) unloaded from the system, without the need
for any further resource allocation action. However, we should further clarify
that the omission of the terminal stage Ξ12 from the developed EFA model is
justified on the assumption that these EFA models of the RAS process types,
and the corresponding analysis that is pursued in this paper, focus only on the
issue of deadlock avoidance. Terminal processing stages cannot be involved in
the formation of deadlock, and therefore, they do not necessitate an explicit
consideration. It is implicitly assumed, though, that the system (controller)
keeps track of the physical presence of any active process instances in these
terminal stages and of any temporary blocking effects that are incurred by
this presence. From a more methodological standpoint, the omission of the
terminal processing stages from the developed EFA models is in line with
the “projection” operation that eliminates a subset of processing stages in the
DAP synthesis methods that are presented in [23], [41].

properly the new resource allocation state. For this example,
since stage Ξ12 is the terminal stage of process type J1,
and the unloading event is only implicitly modeled through
event 〈Ξ11, Ξ12〉, the relevant action function simply releases
the previously allocated unit of resource R1.

The general modeling procedure. Generalizing from the
previous example, the basic procedure that converts a given
RAS instance Φ = 〈R, C,P,A〉 to the corresponding EFA
E(Φ) modeling the dynamics of Φ, can be summarized
by the following three stages: (i) The procedure starts by
defining the set of resource variables {vR1, . . . , vRm} that
monitor the numbers of available units of the resource types
R = {R1, . . . , Rm} during the evolution of the resource
allocation state of Φ. (ii) Subsequently, the sequential logic
of each process type Jj in P is modeled by a single-location
EFA Ej . To capture the execution of a single process instance
of Jj , a set of variables, vjk, is defined and utilized to construct
the necessary guards and actions. These variables are in one-
to-one correspondence with the non-terminal stages Ξjk in the
corresponding set Sj , and each of them traces the number of
process instances that are executing the corresponding pro-
cessing stage. The domain of integer values for each instance
variable vjk is defined as {0, . . . , θjk}, and the minimum value
of 0 is, both, the initial and the marked value for each vjk. On
the other hand, the maximum value θjk that is associated with
instance variable vjk can be set to any upper bound for the
number of process instances that can simultaneously execute
processing stage Ξjk. Such a bound, that is implied by the
capacities of the resource types utilized by processing stage
Ξjk, can be easily computed as follows:

θjk = min
i
{
⌊ Ci
Ajk[i]

⌋
: Ajk[i] > 0}. (3)

(iii) Finally, in order to represent the dynamics of the re-
source allocation that takes place at the different processing
stages of Jj , the EFA Ej are augmented with the resource
variables {vR1, . . . , vRm}, and the guards and actions of the
transitions of Ej are extended to consider and maintain the
information that is contained in these new variables. Regarding
the maintenance of the resource variables, the augmented EFA
implement the following logic: If the executed transition in Ej
corresponds to the process-initiating event 〈Jj loading, Ξjk〉,
then it is adequate to merely allocate the resources that are
necessary for the execution of the initial processing stage
Ξjk. On the other hand, if the transition-labeling event is
an event 〈Ξjk, Ξjk′〉 advancing an already initiated process
instance from its current stage Ξjk to a subsequent stage Ξjk′ ,
the detailed updating of the resource variables depends on
whether stage Ξjk′ is a terminal stage for process type Jj . If
it is, there is no need for (explicitly) allocating the resources
requested by the executing instances at stage Ξjk′ , and the
corresponding updating of the resource variables only releases
the resources allocated to the advancing process instance while
at stage Ξjk. On the other hand, if stage Ξjk′ is non-terminal,
we also need to explicitly allocate the necessary resource
units for the execution of this stage, updating accordingly the
corresponding resource variables. The reader is referred to [37]
for a more formal description of this entire procedure.

7

Some further remarks. Closing this section on the rep-
resentation of the considered RAS dynamics in the EFA
modeling framework, we need to elaborate further on the
way that these dynamics are captured by the generated EFA
E(Φ), since these elaborations provide necessary context for
the algorithms that are developed in the following section.

We begin this discussion by noticing that every legitimate
resource allocation state of the considered RAS must adhere
to the restrictions that are imposed by the limited capacities of
the system resources. In the representation of the EFA E(Φ),
these restrictions are expressed by the following constraints
on the pricing of the model variables vjk, j = 1, . . . , n, k =
1, . . . , l(j), and vRi, i = 1, . . . ,m:

∀i ∈ {1, . . . ,m}, vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = Ci (4)

In (4), we have taken into consideration the fact that
terminal processing stages are not explicitly accounted for in
the considered EFA model (for the reasons explained earlier).
From a more technical standpoint, the constraints of (4) can
be perceived as a set of (resource-induced) invariants that
must be observed by the dynamics of the EFA E(Φ) in
order to provide a faithful representation of the actual RAS
dynamics. Hence, in the following, we shall characterize a
state s of the EFA E(Φ) with a variable vector v satisfying
the constraints of (4), as a feasible state. Furthermore, the
reader can easily verify that any execution of the EFA E(Φ)
that starts from some feasible state s and evolves the state
according to the transition-firing logic that is encoded in this
automaton, maintains the state feasibility.6 In particular, since
the initial state s0 of the considered EFA has vjk = 0, ∀j, k,
and vRi = Ci, ∀i, s0 is a feasible state, and all the states
that are reachable from it (known as the reachable state space
of E(Φ)) are also feasible. This last remark implies that the
EFA E(Φ) provides, indeed, a faithful representation of the
dynamics of the underlying RAS Φ.

On the other hand, the specification of the state set Q as
Q = L×

⊗
iD(vRi)×

⊗
j,k D(vjk), where the domain sets

D(v) of the various variables v are determined as described in
the previous paragraphs, implies that Q may contain infeasible
states, as well. Since these states remain unreachable in any
proper execution of E(Φ), they do not compromise the analyt-
ical power of this model regarding the traced RAS dynamics.
Yet, these states might still be a nuisance in the computations
that are effected by the presented algorithms, since they might
encumber these computations with excursions to state regions
that are irrelevant to the actual system dynamics. Whenever
this problem arises, it can be addressed by “filtering” the
relevant state subsets with the characteristic function χF that
expresses state feasibility in the BDD-based representational
context; this function can be constructed as follows: First, the
invariants of (4) are collectively expressed by the following
Boolean function

m∧
i=1

(
vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = Ci
)
. (5)

6A formal proof of this fact can be easily constructed as an inductive
argument that is based on the length of the executed trace.

Then, χF is defined by the BDD that collects the binary
representations of all the value sets for the variables vRi and
vjk that satisfy the Boolean function of (5). As a more concrete
example, the instantiation of (5) for the example RAS of Fig. 1
is as follows:

1 ∗ v11 + vR4 = 1 ∧ 1 ∗ v21 + vR1 = 1 ∧
1 ∗ v22 + vR2 = 1 ∧ 1 ∗ v23 + vR3 = 1. (6)

Given a RAS instance Φ and the distinct EFA E1, . . . , En
that model the resource allocation dynamics of the RAS
process types J1, . . . , Jn, we shall denote by ∆1, . . . ,∆n the
corresponding symbolic representations of those EFA. The
resource allocation dynamics generated by RAS Φ can be for-
mally expressed by the extended full synchronous composition
(EFSC) that composes the aforementioned EFA to the “plant”
EFA E = E1|| . . . ||En. More specifically, in view of the above
discussion on the infeasible states that might be contained in
the EFA Ej , the actual dynamics of the considered RAS Φ
are modeled by the subspace of the composed EFA E that
is reachable from the (composed) initial state s0. A symbolic
representation of E will be denoted by ∆E, and it can be
perceived as a symbolic representation of the underlying RAS
state-space (although containing all the “impurities” that were
discussed earlier). ∆E can be systematically obtained from
∆1, . . . ,∆n by using the approach introduced in [33]; the
discussion of this approach is beyond the scope of this work,
and, thus, we refer to [33] for the details.

Finally, as it will be revealed in the following, the com-
putations pursued in this work do not require the explicit
representation of the event set Σ = Σ1 ∪ . . . ∪ Σn. Hence, to
reduce the number of Boolean variables employed by ∆E, in
the following we will suppress from ∆E the Boolean variable
set XΣ

E , that represents Σ. In addition, since the locations of
the considered EFA do not convey any substantial information
other than characterizing the various process types as model
entities with a distinct behavior modeled by the corresponding
EFA, ∆E can be further compressed by suppressing the
Boolean variable set XL

E = XL
1 ∪ . . . ∪ XL

n , as well. The
elimination of the aforementioned sets of variables from
∆E is technically effected through the following existential
quantification:

∆E := ∃(XΣ
E ∪XL

E).∆E (7)

In the rest of this work, when we refer to the plant model ∆E

we shall imply the output of the operation performed in (7).
Example III.2: Fig. 3 depicts the dynamic behavior encoded

by the EFA E(Φ) that was developed for the RAS instance in
Example III.1, using the BDD-related concepts that were dis-
cussed in the previous paragraph. The depicted state transition
diagram (STD) includes only the RAS feasible states that are
reachable from the initial state of E(Φ), and furthermore, it
considers only those states that are modeled explicitly in this
EFA through the pricing of the corresponding model variables.
As it can be seen in Fig. 3, the considered STD involves
sixteen (16) states, denoted by si, where i = 0, . . . , 15.
Each state is described by eight components that correspond
to the values of the instances variables v11, v21, v22, v23 and
the resource variables vR1, vR2, vR3, vR4 of the EFA E(Φ).

8

0000 1111

s0

1000 1110

s1

0100 0111

s2

1100 0110

s3

0001 1101

s4

1010 1010

s5

1001 1100

s6

1110 0010

s7

1101 0100

s8

1011 1000

s9

1111 0000

s10

0101 0101

s11

0110 0011

s12

0011 1001

s13

0010 1011

s14

0111 0001

s15
〈load, Ξ11〉 〈Ξ11, Ξ12〉

〈load, Ξ21〉

〈load, Ξ11〉 〈Ξ11, Ξ12〉

〈load, Ξ21〉

〈Ξ21, Ξ22〉

〈Ξ23, Ξ24〉

〈load, Ξ11〉 〈Ξ22, Ξ23〉
〈load, Ξ21〉

〈load, Ξ21〉

〈Ξ22, Ξ23〉 〈Ξ21, Ξ22〉
〈load, Ξ21〉

〈Ξ23, Ξ24〉

〈load, Ξ11〉

〈load, Ξ21〉

〈Ξ21, Ξ22〉

〈Ξ22, Ξ23〉

〈Ξ23, Ξ24〉

〈load, Ξ21〉

〈load, Ξ11〉

〈Ξ23, Ξ24〉

〈load, Ξ11〉

〈load, Ξ21〉

〈Ξ22, Ξ23〉

〈load, Ξ11〉

〈load, Ξ11〉

〈Ξ21, Ξ22〉

Fig. 3: The state transition diagram (STD) modeling the RAS dynamics encoded by the EFA E(Φ) that was developed for
Example III.1.

States depicted in red are unsafe. Furthermore, for reasons
that will become clear in the following, the transitions in the
depicted STD are partitioned into two subsets that collect re-
spectively the transitions corresponding to “process initiation”
(or “loading”) and “process advancement” events. These two
subsets of transitions are depicted respectively as dashed and
solid transitions in the STD of Fig. 3.

IV. COMPUTING THE MINIMAL BOUNDARY UNSAFE
STATES

In this section, we present a series of symbolic algorithms
for the computation of the set of minimal boundary unsafe
states in the considered RAS. As remarked in Section I, the
presented developments provide two different algorithms for
retrieving all the boundary unsafe states within the underlying
RAS state-space, and an additional algorithm for identifying
and removing non-minimal elements from this set. The pre-
sented algorithms assume the availability of an appropriately
constructed BDD ∆E that is a valid representation of the
composed EFA E = E1|| . . . ||En and has been compressed
through the existential quantification expressed in (7). On the
other hand, as it will be revealed in the sequel, during their
computation, the algorithms establish and maintain the feasi-
bility of the various extracted states (where state feasibility is
defined by (5)).

A. An extension of the standard SCT synthesis algorithm for
the computation of reachable boundary unsafe states

The first algorithm for the computation of the RAS bound-
ary unsafe states that is developed in this work is depicted
in Algorithm 1, and it constitutes an adaptation of the
general algorithm that has been developed by the SCT for
supporting maximally permissive non-blocking supervision.
More specifically, given the symbolic representation of the
composed transition relation ∆E that is defined by (7), and
the corresponding characteristic function χ{s0} representing
the initial and marked state of EFA E,7 Algorithm 1 computes
the characteristic function of the reachable boundary unsafe
state set, χRB , through the following symbolic operations.

The algorithm starts with the computation of a symbolic rep-
resentation of the reachable state set χR, through the forward
search depicted in Lines 1-6. For that, the algorithm employs
two characteristic functions χRpre and χRcur to respectively
represent (i) the state set χR already reached at the beginning
of each iteration of the forward-search process, and (ii) the set
of states that can be reached from the current elements of χR
through a single transition of ∆E. The reachable state set χR
keeps expanding with the new states entering χRcur

at each
iteration, until no new reachable state can be computed. At
Line 5, the operation [X́D → XD] denotes the replacement
of all variables of X́D by those of XD, so that the reachable

7Since the Boolean variable set representing the locations of the original
EFA ∆E has been existentially quantified, s0 is just equal to the vector of
the initial (and also the marked) values for the variables.

9

Algorithm 1: Symbolic computation of the reachable
boundary unsafe states
Input: ∆E and χ{s0}
Output: χRB

1 χR := χ{s0}
2 repeat // compute the set of reachable states, χR
3 χRpre := χR
4 χRcur := ∃XD.(χR ∧∆E)

5 χR := χRpre ∨ (χRcur [X́D → XD])

6 until χR = χRpre

7 χC := χ{s0}
8 repeat // compute the set of co-reachable states, χC
9 χCpre

:= χC

10 χCcur := ∃X́D.(χC [XD → X́D] ∧∆E)

11 χC := χCpre ∨ χCcur

12 until χC = χCpre

13 χRC := χR ∧χC // compute the reachable ∧ safe state set
// finally, compute the set of boundary unsafe states, χRB

14 ∆B̂ := χRC ∧∆E

15 χB̂ := (∃XD.∆B̂)[X́D → XD]

16 χRB := χB̂ ∧ ¬χC

states identified at each iteration are eventually represented by
XD and the forward search can continue. The characteristic
function of the co-reachable state set, denoted by χC , can be
computed in a similar manner. The corresponding backward
search is depicted in Lines 7-12 of Algorithm 1.

As remarked in Section II-A, in the RAS literature, co-
reachable states are also referred to as safe states, and states
that are not co-reachable are characterized accordingly as
unsafe. The set B of boundary unsafe states can be formally
expressed as B ≡ {u | ∃ s → u in ∆E s.t. s ∈ χC and u /∈
χC}. Having obtained the characteristic functions χR and χC ,
the characteristic function of the reachable safe state set, χRC ,
can be obtained through the conjunction depicted at Line 13.
On the other hand, to compute the characteristic function of
the reachable boundary unsafe state set χRB , Algorithm 1 first
retrieves from ∆E all the transitions with their source state
belonging to χRC . The set of these retrieved transitions is
denoted by ∆B̂ , and its computation is carried out in Line 14
of the algorithm. Subsequently, Line 15 collects in χB̂ the set
of the target states of the transitions extracted in ∆B̂ . Finally,
in Line 16, the characteristic function χRB is computed by
removing from set χB̂ all the safe states, i.e., all those states
that also belong in χC .

It is clear from the above discussion that Algorithm 1
terminates in finite time. Also, since this algorithm relies
extensively on standard procedures developed by SCT for
establishing maximally permissive non-blocking supervision,
a formal proof for its correctness can be based on arguments
provided in the corresponding SCT literature, and we refer to
that literature for the relevant details (c.f., for instance, [12],
[13], [33]).

Example IV.1: As a concrete example, we apply Algorithm 1

to the STD depicted in Fig. 3. The transitions of the STD are
symbolically represented in the BDD ∆E(J1)||E(J2), where
E(J1) and E(J2) are the EFA modeling the process types
J1 and J2 of the RAS instance depicted in Fig. 1. Starting
with χR := {s0}, the computation of Lines 2-6 will return
the set χR containing all of the sixteen reachable states s0

– s15. On the other hand, the set χC obtained from the
computation in Lines 7-12 will contain all the safe states
s0 – s4, s11 – s15 depicted in Fig. 3, and possibly some
additional safe but unreachable states (not depicted in Fig. 3).
The subsequent conjunction of χC with χR in Line 13 filters
out the unreachable safe states from χC ; i.e., the returned set
χRC contains only the reachable and safe states s0 – s4, s11

– s15 depicted in Fig. 3.8 Finally, the algorithm operations in
Lines 14-16 will return the set χRB containing the states s5 –
s10, i.e., all the reachable and unsafe states depicted in Fig. 3,
since all these states can be reached from some reachable safe
state in χRC in one transition.

B. An alternative algorithm for the computation of feasible
boundary unsafe states

In this subsection, we present an alternative symbolic al-
gorithm that decomposes the computation of the boundary
unsafe states into two stages. In the first stage, all the deadlock
states w.r.t. the advancement events in the considered RAS
are identified and computed from the symbolic representation
of the state space, ∆E. In the second stage, the deadlock
states are used as starting points for a search procedure over
∆E that identifies all the boundary unsafe states. The entire
computation is formally expressed by Algorithm 2, that works
with the BDDs of ∆E and the characteristic function χF ,9

and returns the characteristic functions χFD and χFB that
constitute respective symbolic representations of the sets of
the feasible deadlock states and the feasible boundary unsafe
states. In general, the set χFB obtained from the presented
algorithm may include some states that are not reachable
from the initial state s0; i.e., in general, χRB 6= χFB but
χRB ∧ χFB = χRB . Hence, the presence of any additional
states in the set χFB does not impede the implementation
of the maximally permissive DAP by means of this set and
the one-step-lookahead logic that was outlined in the earlier
parts of this manuscript. Furthermore, for reasons that will
become clear in the following, it is pertinent to assume that the
characteristic function ∆E is partitioned in the characteristic
functions ∆A and ∆L that collect respectively the transitions
in ∆E corresponding to process advancement and process
loading events; obviously, ∆E = ∆A ∨ ∆L. The rest of this
section elaborates on the various phases of the computation

8In fact, the EFA E(Φ) corresponding to the RAS considered in this
example does not contain any feasible unreachable states. This can be estab-
lished by noticing that in the considered RAS class, any feasible unreachable
states essentially result by “swapping” (i.e., simultaneously advancing) process
instances that are in deadlock. But in the semantics of the EFA E(Φ) of
Section III, any deadlock must involve some process instance of type J1,
and the aforementioned swapping of these process instances implies their
immediate unloading from the system.

9We remind the reader that χF was introduced in the closing part of
Section III and it characterizes the feasibility of the various states encountered
in ∆E w.r.t. the resource-induced invariants of (4).

10

Algorithm 2: Symbolic computation of the boundary unsafe states
Input: ∆E (as ∆A ∨∆L) and χF
Output: χFB
/* Compute the feasible deadlock states χFD */

1 χT :=
(
∃XD. (∆A ∨∆L)

)
[X́D → XD] // χT collects the target states in the transitions of ∆E;

2 χE := ∃X́D. ∆A // χE contains the states of ∆A that enable advancement events;
3 χD := χT ∧ ¬χE ∧ ¬χ{s0} // χD is the set of deadlock states w.r.t. advancement events, including infeasible states;
4 χFD := χD ∧ χF // χFD is the set of feasible deadlock states w.r.t. advancement events;

/* Compute the feasible boundary unsafe states χFB from χFD */
5 χUnew

:= χFD, χU := χFD,∆Ûpre
:= 0 // initialization;

6 repeat
7 ∆Û := χUnew

[XD → X́D] ∧∆A // ∆Û contains the transitions in ∆A where the target states belong to χUnew
;

8 χSÛ := ∃X́D. ∆Û // χSÛ contains the source states of ∆Û ;
9 ∆SA := χSÛ ∧∆A // ∆SA contains the transitions in ∆A where the source states belong to χSÛ ;

10 χNU := ∃X́D. (∆SA ∧ ¬∆Û ∧ ¬∆Ûpre
) // χNU contains the states in χSÛ that are not qualified as

// unsafe states at the current iteration;
11 χUcur

:= χSÛ ∧ ¬χNU // χUcur
contains the unsafe states at the current iteration;

12 χUnew := χUcur ∧ ¬χU // χUnew contains the newly computed unsafe states, which are used for the next iteration;
13 χU := χU ∨ χUcur

// χU accumulates the unsafe states in χUcur
;

14 ∆Ûpre
:= (∆Ûpre

∨∆Û) ∧ ¬χUcur
// ∆Ûpre

is updated by first adding the transitions in ∆Û and then
// removing the transition with the source states in χUcur

;
15 until χUnew = 0

16 ∆B := χU [XD → X́D] ∧∆E // ∆B contains the transitions with the target states belonging to χU ;
17 ∆SB := ∆B ∧ (¬χU) // ∆SB contains the transitions in ∆B where the source states are safe states;

18 χFB := (∃XD. ∆SB)[X́D → XD] // χFB is obtained by extracting the set of target states of ∆SB;

that is depicted in Algorithm 2, and establishes formally its
correctness.

Identification of the feasible deadlock states. The sym-
bolic operations for the computation of the characteristic
function χFD are depicted in Lines 1-4 of Algorithm 2, and
they can be described by the following two steps:
1) The first step consists of Lines 1-3 in Algorithm 2 and it
computes the characteristic function χD of all the (partial)
deadlock states in ∆E, i.e., those states that are different
from the initial state s0 and they do not enable any process-
advancing events. This function is computed by first extracting
into the characteristic function χT all the target states from
∆A ∨ ∆L (i.e. from ∆E) and in the characteristic function
χE all the states that enable process-advancing events. Sub-
sequently, χD is computed as the elements of χT that are not
in χE (i.e., they do not enable any process-advancing events)
or the initial state s0.
2) Since χD is computed from the entire set of transitions
that is contained in ∆E, it might contain deadlock states that
are infeasible (i.e., they violate the resource-induced invariants
of (4)). The presence of these infeasible states in χD would
increase unnecessarily the computational cost of the second
stage of the considered algorithm, that utilizes the identified
deadlock states as starting points for the identification of the
additional set of deadlock-free unsafe states. Hence, in the last
step of the first stage of Algorithm 2, the obtained state set

χD is filtered through its conjunction with the characteristic
function χF in order to obtain the set of feasible deadlock
states; this set is represented by the characteristic function
χFD.

Example IV.2: The application of Lines 1-4 of Algorithm 2
to the BDDs ∆A and ∆L corresponding to the STD depicted
in Fig. 3, will return the BDD of feasible deadlock states,
χFD, that includes the states s6, s9 and s10. Indeed, it can be
clearly seen in the depicted STD that no solid edges emanate
from these three states; i.e., these states enable no process-
advancing events. The reader should also notice that states s6
and s9 do enable process-loading events; but these events do
not contribute to the progress of the already initiated process
instances, and they only aggravate an already problematic
situation. Finally, we also remind the reader that, according to
Footnote 8, the EFA E(Φ) corresponding to this example does
not contain any feasible unreachable states, and therefore, the
aforementioned three states is the entire content of the state-set
encoded by the BDD χFD that is returned at Line 4.

Computation of the feasible boundary unsafe states.
Having obtained the set χFD of the feasible deadlock states,
the algorithm proceeds with the symbolic computation of the
feasible boundary unsafe states in the RAS state-space ∆E.
These states are collected in the characteristic function χFB ,
which is computed in Lines 5-18 of Algorithm 2. A detailed
description of this computation is as follows:

11

1) At this phase of the computation, Algorithm 2 employs
the set U in order to collect all the identified unsafe states.
Furthermore, at each iteration, the set Unew defines the set
of the unsafe states that are to be processed at that iteration,
through one-step-backtracking in ∆A, in an effort to reach
and explore new states. The corresponding symbolic repre-
sentations for these two sets, denoted by χU and χUnew

, are
initialized to χFD. Finally, we also define the transition set
Ûpre ≡ {(s, u) ∈ ∆A | u ∈ U ∧ s /∈ U}; i.e., during the
entire search process, Ûpre contains the transitions of ∆A

where the target states belong to U while the source states
have also transitions to states that currently are not in U . The
characteristic function of Ûpre is initialized to zero.
2) During the main iteration of the executed search process, the
algorithm first extracts all the states that can be reached from
the unsafe state set Unew by tracing backwards some process-
advancing transition in ∆A. This computation is performed
in Lines 7-8 of the algorithm, with the extracted states repre-
sented by the characteristic function χSÛ . Also, the backtraced
transitions of ∆A are represented by the characteristic function
∆Û .
3) Subsequently, Algorithm 2 tries to resolve which of the
states collected in χSÛ can be classified as unsafe. This
resolution is performed in Lines 9-11 of the algorithm. More
specifically, the algorithm first collects in the transition set
∆SA all those process-advancing transitions of ∆A that em-
anate from states in χSÛ . Subsequently, it removes from ∆SA

those transitions that are known to lead to unsafe states,
namely the transitions that are also in ∆Û and in Ûpre. The
source states for any transitions remaining in ∆SA after this
last operation are collected in χNU ; these are states that have
transitions leading to states currently not in U , and therefore,
they cannot be classified as unsafe (at least in this iteration).
On the other hand, the complement of χNU w.r.t. the overall
set of extracted states χSÛ must contain states with all their
emanating transitions leading to unsafe states, and therefore,
they are themselves unsafe; these states are identified and
collected in set χUcur

in Line 11.
4) Lines 12-14 perform the necessary updates so that all the
critical data structures represent correctly the current outcome
of the ongoing search process. Hence, Line 12 removes from
χUcur any states that have already been classified as unsafe in
the previous iterations; the remaining states are the elements
of Unew for the next iteration. Line 13 adds to the set
U the newly identified unsafe states, and finally, Line 14
updates the transition set Ûpre; this last update is performed
by initially adding to Ûpre all the transitions in ∆Û (i.e., the
transitions that were backtraced during the current iteration),
and subsequently removing those transitions with source states
identified as unsafe.
5) The iteration described in items (2-4) above terminates
when no new unsafe states can be identified by the algorithm.
At this point, Algorithm 2 proceeds to extract the boundary
unsafe states from set χU . For that, at Line 16, the algorithm
computes from ∆E all the transitions with the target states
belonging to the unsafe state set χU ; the relevant transition set
is denoted by ∆B. Next, at Line 17, the algorithm retrieves
from ∆B the transition set ∆SB, where the source states of the

included transitions are safe states. Finally, χFB is obtained
by extracting the target states from ∆SB and performing the
replacement of X́D by XD.

Example IV.3: In the context of the example STD of Fig. 3,
the backward search of Algorithm 2 in order to identify all the
deadlock-free unsafe states, implemented by Lines 6-15, will
start from the identified deadlock states s6, s9 and s10, and it
will be performed on the solid transitions of this STD, i.e., on
transitions corresponding to process-advancing events. More
specifically, at the first iteration of this search, states s5 and
s8 are reached by respectively backtracing from states s6 and
s9, and they are classified as unsafe since the backtraced tran-
sitions leading to these states are the only process-advancing
transitions emanating from them. The second iteration sets
χUnew ; = {s5, s8}, and it tries to backtrace through process-
advancing transitions from these two states, in quest of new
unsafe states. Indeed, this backtracing from state s8 exposes
the unsafety of state s7. On the other hand, state s3 that
is reached through the backtracing from state s5 cannot be
claimed as unsafe, since s3 also avails of transition (Ξ11,Ξ12)
leading to state s2, which is not included in the current set of
unsafe states. The backward search terminates after the third
iteration since the attempt to backtrace from state s7 – i.e.,
the contents of the set χUnew in this iteration – through some
process-advancing transitions fails to reach any states at all
(and therefore, there are no newly identified states with all of
their process-advancing transitions leading to the unsafe states
that were identified during the first two iterations). Finally,
Algorithm 2 proceeds to extract the boundary unsafe states.
Since, in this example, all unsafe states s5 – s10 can be reached
from the safe subspace through a single transition, the resulting
state set χFB contains all states s5 – s10. It is also important
to notice that, in the considered example, we were able to
identify correctly all the unsafe states without visiting at all
the safe states s0 – s2, s4 and s11 – s15; even for this small
example, this unvisited area constitutes more than 50% of the
entire state space.

Correctness analysis. To prove the effectiveness of Algo-
rithm 2 w.r.t. the penultimate objective of the implementa-
tion of the maximally permissive DAP through the one-step-
lookahead scheme that was outlined in the earlier parts of this
manuscript, we need to show that (i) the algorithm terminates
in a finite number of steps, (ii) the returned set χFB contains
all the feasible boundary unsafe states, and furthermore, (iii)
χFB does not contain any feasible safe state.

The finiteness of Algorithm 2 depends on whether the
backward search performed in Lines 6-15 can terminate in
a finite number of iterations. We notice that the termination
of this search is determined by the set of the new unsafe
states, χUnew

, computed at each iteration; if χUnew
is empty,

the backward search terminates. We also notice that the set
χUnew will finally be empty during the search, since the set
of states in ∆A is finite. Hence, Algorithm 2 terminates in a
finite number of steps.

The next theorem establishes the correctness of Algorithm
2, by establishing items (ii) and (iii) in the above list.

Theorem IV.1. The set χFB returned by Algorithm 2 pos-
sesses the following properties:

12

1) It contains only feasible states.
2) It contains all the feasible boundary unsafe states in the

underlying RAS state-space.
3) It contains no feasible non-boundary unsafe state.
4) It contains no safe state.

Proof: Due to space considerations, here we provide a
sketch for the proof of Theorem IV.1. A complete correctness
analysis for Algorithm 2, including a more formal proof for
the above theorem, can be found in the electronic supplement
of [37].

The technical analysis of Algorithm 2 begins by establish-
ing that the characteristic function χFD, obtained from the
symbolic operations performed in Lines 1-4 of Algorithm 2,
identifies correctly the feasible deadlock states in the EFA that
is represented by the employed BDD ∆E.

Furthermore, since the transitions that are encoded by the
EFA ∆E observe the invariants of (4), and the set χFD that
is obtained in the first computational phase of Algorithm
2 contains only feasible deadlock states, it follows that all
the states that are reached by Algorithm 2 during its second
phase of backward search, are also feasible. This last remark
establishes the first result of Theorem IV.1.

To show the validity of the remaining clauses of Theo-
rem IV.1, we first establish that the set U maintained by
Algorithm 2 will contain, upon the algorithm termination, all
the feasible unsafe states and no feasible safe states of ∆E.

Hence, to show that U will contain all the feasible unsafe
states of ∆E, we first notice that the finite and acyclic nature
of the paths that define the execution logic of the various
process types in the considered RAS class, imply that the
subspace that is reached from any unsafe state u following
only transitions in ∆A has a finite, acyclic structure. This
remark, when combined with the presumed unsafety of state u,
further implies that every path in ∆A that emanates from state
u is an acyclic path that terminates at some feasible deadlock
state. Let ζ denote the longest length of these paths, where
the length of a path is defined by the number of the involved
transitions. Then, the inclusion in the set U of unsafe states
u with ζ = 1 results immediately from the basic operations
in the backtracing iteration of Algorithm 2 and the already
established fact that the algorithm recognizes successfully all
the feasible deadlocks during its first phase. The inclusion in
the set U of unsafe states u with ζ > 1 can be addressed by
an inductive argument on ζ.

On the other hand, the fact that the state set U does not
contain any feasible safe states of ∆E can be established
by a simple induction on the number of iterations that are
performed by the algorithm, while considering the role that is
played by the set Ûpre in the algorithm computations.

In view of the above results, to obtain result #2 of Theo-
rem IV.1 it suffices to show that the construction of the set
FB in Lines 16-18 of Algorithm 2 retains all the boundary
feasible unsafe states in U . But this can be easily checked
from the facts that (a) the transition set ∆B contains all the
transitions with target states in set U , while (b) the transition
set ∆SB is obtained from ∆B by removing only transitions
with source states in U (and therefore, unsafe, according to
the previous discussion).

Result #3 of Theorem IV.1 is also inferred from the con-
struction of the set ∆SB from the set ∆B through the removal
of all those transitions with source states in U , upon noticing
that U contains all the feasible unsafe states of ∆E.

Finally, Result #4 of Theorem IV.1 is obtained from the
facts that the state set U does not contain any feasible safe
states and all the transitions in the set ∆B have target states
in U .

C. Computing the minimal boundary unsafe states

An important implication of the invariants of (4) is that,
at any feasible state of the RAS state-space, the values of
the resource variables vRi can be induced from the values of
the instance variables vjk. In other words, any feasible state
s of the considered RAS can be uniquely determined only
by the specification of its instance variables vjk. Hence, one
can obtain a more compact symbolic representation of the set
of feasible boundary unsafe states, χFB , that is computed by
Algorithm 2, by eliminating from the elements of χFB the
values that correspond to the variables vRi.10 Letting XR

denote the Boolean variables representing the values of the
resource variables vRi, i = 1, . . . ,m, this elimination can be
performed through the following existential quantification:

χFB := ∃XR. χFB . (8)

The compressed representation of the set χFB that is
obtained through (8) becomes even more important when
noticing that, according to [41], state unsafety is a monotone
property in this representation. More specifically, given any
two feasible boundary unsafe states u1, u2 represented ac-
cording to the logic of (8), we consider the ordering relation
“≤” on them that is defined by the application of this relation
componentwise; i.e.,

u1 ≤ u2 ⇐⇒ (∀k = 1, . . . ,K, u1[k] ≤ u2[k]), (9)

where u1[k] and u2[k] are the values of the k-th instance
variable for u1 and u2. Furthermore, we use the notation ‘<’
to denote that condition (9) holds as strict inequality for at
least one component vk ∈ {v1, . . . , vK}. It is shown in [41]
that if state u1 is unsafe and state u2 satisfies u1 ≤ u2, then
state u2 is also unsafe. Hence, under the state representation
of (8), the set FB can be effectively defined by the subset
of its minimal elements, a realization that leads to ever
greater economies regarding the storage and processing of the
relevant information. We shall denote this subset by FB, i.e.,
FB ≡ {u ∈ FB | @u′ ∈ FB s.t. u′ < u}.

In the rest of this section we present an algorithm
for computing the characteristic function of the set FB
from the characteristic function χFB obtained in (8).
Before we proceed with the discussion of this algo-
rithm, we need to introduce two auxiliary BDD sets,
collectively denoted by {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and

10We notice, however, that the presence of the variables vRi during the
execution of Algorithm 2 is instrumental for ensuring some of the properties
that were established in Theorem IV.1, especially Property 1. Also, while
we carry out the subsequent discussion in the context of the set FB that is
returned by Algorithm 2, similar remarks and techniques apply to the set RB
that is returned by Algorithm 1.

13

Algorithm 3: Symbolic computation of the minimal boundary unsafe states
Input: χFB , {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and {∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}
Output: χFB

1 ∆EQ := ∆=(ṽ1, v1) ∧ . . . ∧∆=(ṽK , vK) // ∆EQ represents the set of pairs, which represents each state 〈v1, . . . , vK〉
// by respectively using the Boolean variable sets X̃D and XD;

2 ∆GE := ∆≥(ṽ1, v1) ∧ . . . ∧∆≥(ṽK , vK) // ∆GE represents the set of pairs, which associate each state 〈v1, . . . , vK〉
// represented X̃D with its equal and dominant states, represented by XD;

3 ∆GT := ∆GE ∧ ¬∆EQ // ∆GT is the set of pairs where each state is associated with its dominant states;
4 ∆BGT := χFB [XD → X̃D] ∧∆GT // ∆BGT collects the pairs in ∆GT with the first elements as

// the feasible boundary unsafe states;
5 χGB := ∃X̃D. ∆BGT // χGB collects the states that are larger (component wise) than the states in χFB;
6 χFB := χFB ∧ ¬χBG // remove from χFB all the non-minimal states, which belong to the set χBG;

{∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}, which will be useful for
identifying state dominances, according to (9), by the proposed
algorithm. Each pair ∆=(ṽk, vk) and ∆≥(ṽk, vk) pertains
to the corresponding instance variable vk, and it can be
constructed as follows:

∆=(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧XDk(vk)

)
(10)

∆≥(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧

∨
∀v′k≥vk

XDk(v′k)
)

(11)

In (10) and (11), X̃Dk(vk) denotes the symbolic repre-
sentation of the value of k-th variable vk using a new set
of Boolean variables denoted by X̃Dk , while XDk(vk) and
XDk(v′k) denote the symbolic representations of the values
vk and v′k, of the same instance variable, using the set of the
Boolean variables XDk that represent the instance variable
vk in the original BDD ∆E. From a conceptual standpoint,
∆≥(ṽk, vk) associates each value vk with all those values
v′k ∈ Dk that are greater than or equal to vk while ∆=(ṽk, vk)
merely associates each value vk with itself.

Taking as input the feasible boundary unsafe state set
χFB and the aforementioned auxiliary BDDs, the sym-
bolic computation of the minimal feasible boundary unsafe
states is formally expressed by Algorithm 3. Specifically,
in Lines 1-2, Algorithm 3 constructs two BDDs, respec-
tively denoted by ∆EQ and ∆GE , by performing the con-
junction operation on {∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)} and
{∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)}. The characteristic function
∆EQ associates each state 〈v1, . . . , vK〉 with two different
symbolic representations using the Boolean variable sets X̃D

and XD, while ∆GE associates each state 〈v1, . . . , vK〉,
represented by X̃D, with a set of states, represented by XD,
which are larger than or equal to 〈v1, . . . , vK〉. Subsequently,
the symbolic computation performed at Line 3 of Algorithm 3
removes all the associations of ∆EQ from ∆GE and the
resulting set is denoted by ∆GT . Line 4 of Algorithm 3
computes the characteristic function ∆BGT which associates
each state in χFB with the corresponding dominant states, and,
subsequently, Line 5 extracts all these dominant states into the
set χGB . Finally, the set of minimal feasible boundary unsafe
states, χFB , is obtained in Line 6 by removing from χFB the
states in χGB .

The next theorem is a formal statement of the correctness
of Algorithm 3, and a complete proof for it can be found in
the electronic supplement of [37].

Theorem IV.2. The characteristic function χFB returned by
Algorithm 3 recognizes correctly the minimal elements of χFB .

Example IV.4: The application of the operation
of Eq. 8 to the BDD χFB that was obtained in
Example IV.3, returns the BDD χFB that encodes
the following vector set: FB = {1010(s5),
1001(s6), 1110(s7), 1101(s8), 1011(s9), 1111(s10)} (i.e.,
in this new representation, the boundary unsafe states are
described only by the values of their instance variables).
It can be easily checked that among those five boundary
unsafe states, s5 and s6 are the minimal ones according to
the ordering relation of Eq. 9, and they are indeed the states
that are returned by Algorithm 3 when applied in the context
of the considered example.

We close the discussion on the computation of the minimal
boundary unsafe states by noticing that the computed BDD
χFB can be turned into an integer decision diagram (IDD), i.e.,
another acyclic graph that provides a compressed representa-
tion of the set of minimal boundary unsafe states while storing
the components of these states in the more standard decimal
representation. This conversion can be performed through
the corresponding algorithm presented in [35]. Furthermore,
the obtained IDD representation of the minimal boundary
unsafe states is equivalent to the TRIE data structure that is
used for the storage of this target set in [24], and therefore,
its availability enables the eventual implementation of the
maximally permissive DAP through the one-step-lookahead
scheme detailed in that paper.

V. COMPUTATIONAL RESULTS AND EVALUATION

The EFA-based modeling procedure for the considered
RAS and the collection of the symbolic algorithms for the
computation of their minimal boundary unsafe states that
were developed in this work, have been implemented in the
DES software tool Supremica [36]. The program is written
in Java and it uses JavaBDD [42] with BuDDy as the BDD
library. In this section, we report the results from a series of

14

computational experiments11 in which we applied the symbolic
algorithms of Section IV on a number of randomly generated
instantiations of the RAS class that was defined in Section II.
Each of the generated instances is further specified by:

• The number of resource types in the system; the range
of this parameter is between 3 and 16.

• The capacities of the resource types in the system; the
range of this parameter is between 1 and 4.

• The number of process types in the system; the range of
this parameter is between 3 and 5.

• The number of processing stages in each process; the
range of this parameter was between 3 and 16. Fur-
thermore, in order to remain consistent with the RAS
structure defined in Section II, no processing stage has a
zero resource-allocation vector.

• The structure of the process graphs Gi and the resource
request vectors supported by the resource allocation func-
tion A. In terms of the structure of Gi, the generated ex-
amples contain RAS instances where all processes follow
simple linear flows, as well as RAS instances where some
processes possess routing flexibility (Disjunctive RAS).
In terms of the resource request vectors, our examples
contain RAS instances with either single-type resource
allocation or conjunctive resource allocation (Conjunctive
RAS).

Table I reports a representative sample of the results ob-
tained in our experiments. The first section in the table is for
RAS instances with simple linear process flows and single-
unit resource allocation (from a single resource type) for each
processing stage. The second section is for RAS instances
with simple linear process flows and conjunctive resource
allocation for each processing stage. Finally, the last section
of the table is for RAS instances with conjunctive resource
allocation for each processing stage, but also routing flexibility.
In the experiments, first we constructed the necessary BDDs
modeling the underlying EFA for the aforementioned RAS
instances, then we applied Algorithms 1 and 2 to these BDDs
to obtain all the boundary unsafe states, and subsequently we
applied Algorithm 3 to remove the non-minimal unsafe states
from the set of boundary unsafe states. Finally, we also applied
the algorithm of [35] to the BDDs returned by Algorithm 3
in order to convert these BDDs into equivalent IDDs that will
support the final implementation of the maximally permissive
DAP (c.f. the relevant discussion in the previous sections).

Columns 1-2 in Table I report respectively the cardinalities
of the set of reachable states, R, and the set of the Boolean
variables, XD, that are employed by the BDD ∆E which is the
primary input to Algorithms 1 and 2. Since, in classical SCT,
the maximally permissive DAP is characterized by the trim
of the corresponding RAS-modeling FSA, |R| can function
as a pertinent surrogate measure of the problem complexity,
when it is solved through a conventional representation of this
FSA. On the other hand, (7) implies that |XD| is equal to
the number of binary variables that are necessary to encode
the resource capacities and (an upper bound to) the maximal

11The experiments were carried out on a standard desktop, (2.66 GHz Intel
Core Quad CPU, 10GB RAM) running Windows 7

number of process instances that can occupy each of the non-
terminal processing stages of the considered RAS instance
Φ, and therefore, it can be perceived as a surrogate measure
of the “size” of Φ in terms of its structural elements (c.f.
Definition II.1). Also, in the world of symbolic computation,
the number of the Boolean variables that is communicated by
|XD|, is frequently used as a practical surrogate measure of
the overall complexity that is expected for this computation.

Columns 3-5 report report on the outcome of the com-
putation of Algorithm 1 and its empirical complexity. More
specifically, Column 3 reports the number of the reachable
boundary unsafe states, |RB|, that are computed by Algorithm
1. Columns 4-5 report the required computation time, TRB
(in seconds), and the maximal number of BDD nodes, ζRB ,
employed during the execution of the algorithm. Each of these
numbers accounts, respectively, for the time and the maximal
nodal requirements that are necessary for the construction of
the BDD ∆E, that is a primary input for Algorithm 1, and
the considered experimentation has also revealed that these
additional quantities are rather insignificant compared to the
time and the maximal nodal requirements that characterize the
execution of Algorithm 1 itself. Having the set of all reachable
boundary unsafe states, Column 6 reports the cardinality of
the set of the minimal boundary unsafe states RB, obtained
through Algorithm 3. Column 7 shows the combined time
for the extraction of the minimal reachable boundary unsafe
states and the conversion of this set to an IDD, TRBIDD. Finally,
Column 8 reports the maximal number of BDD nodes ζRB
during the execution of Algorithm 3.

The related results for Algorithm 2 are as follows: Columns
9-10 report the cardinalities of the set of deadlock states FD
and the set of boundary unsafe states FB, while Columns 11-
12 report the computation time TFB and the peak of the BDD
nodes during the execution of this algorithm. Similar to the
case of Algorithm 1, both of the last two values account also
for the generation of the input BDDs ∆E and χF . Column
13 reports the cardinality of the set of minimal boundary
unsafe states FB. Column 14 shows the combined time for
the extraction of the minimal boundary unsafe states and the
conversion of this set to an IDD, TFBIDD, and Column 15 shows
the maximal number of BDD nodes, ζFB , used by Algorithm
3 to remove the non-minimal states from FB. Finally, for
the sake of comparison, Column 16 includes the required
computation time of applying the algorithm of [25] on the
considered RAS instances.

Thanks to the compactness offered by the employed sym-
bolic representations, both, Algorithm 1 and Algorithm 2 are
capable of handling RAS instances that have billions of states
in their underlying state-spaces, and they manage to compute
the set of boundary unsafe states with limited memory and
time. Table I also reveals that functions like the removal
of non-minimal boundary unsafe states from the originally
computed sets RB and FB can be performed very efficiently
through symbolic computation. On the other hand, it is evident
from Table I that neither |R| nor |XD| manage to capture
effectively the empirical time and space complexity of the
computation of the target sets RB and FB respectively by
Algorithms 1 and 2, since there is not strong correlation among

15

TABLE I: A sample of computational results regarding the efficiency of the presented algorithms

Algorithm 1 presented in Section IV-A Algorithm 2 presented in Section IV-B

|R| |XD| |RB| TRB ζRB |RB| TRB
IDD ζRB |FD| |FB| TFB ζFB |FB| TFB

IDD ζFB TRU [25]

799, 071 45 186, 500 21 527, 040 6, 193 1 586, 529 291, 592 283, 962 7 283, 962 8, 934 1 551, 210 199

1, 659, 342 51 381, 846 90 1, 115, 932 9, 472 19 3, 943, 512 942, 254 800, 940 42 796, 123 17, 931 7 2, 046, 115 1, 447

1, 962, 454 49 438, 521 28 607, 812 6, 719 2 853, 680 769, 090 761, 399 29 450, 040 10, 527 4 929, 955 989

3, 436, 211 55 783, 794 207 1, 374, 268 31, 236 41 7, 775, 958 1, 590, 736 1, 564, 991 106 1, 176, 110 55, 553 73 8, 985, 355 5, 863

14, 158, 338 51 2, 615, 904 180 1, 731, 691 31, 629 11 2, 709, 199 1, 983, 934 3, 558, 362 152 1, 561, 971 46, 048 19 2, 939, 342 31, 933

14, 521, 572 54 3, 218, 012 626 3, 556, 004 26, 920 34 8, 969, 555 3, 399, 416 5, 696, 085 642 4, 999, 572 51, 069 103 7, 920, 050 36, 305

14, 963, 458 59 3, 207, 511 470 3, 207, 511 17, 990 104 12, 698, 346 6, 898, 234 5, 989, 367 553 4, 415, 000 31, 376 393 17, 578, 012 51, 295

22, 212, 582 55 5, 066, 271 2, 150 8, 019, 401 31, 328 60 10, 435, 459 4, 621, 662 8, 056, 766 964 5, 546, 176 62, 996 239 12, 958, 398 44, 222

29, 160, 898 53 5, 496, 694 184 2, 126, 861 15, 957 11 1, 976, 633 3, 035, 820 7, 751, 451 237 2, 685, 162 27, 138 25 2, 442, 037 14, 851

32, 380, 375 56 8, 277, 582 609 4, 347, 910 21, 062 20 2, 719, 450 4, 807, 088 14, 320, 225 904 5, 415, 820 40, 306 109 4, 506, 280 23, 382

2, 430, 581 55 547, 612 15 505, 697 14, 120 0 189, 566 247, 195 741, 764 10 226, 991 16, 732 0 104, 188 1, 112

2, 939, 463 65 408, 009 128 1, 432, 070 3, 401 0 97, 229 142, 301 531, 238 97 1, 043, 925 5, 464 0 80, 869 193

1, 712, 672 57 306, 585 83 1, 590, 899 6, 821 0 175, 493 441, 376 445, 092 38 646, 998 9, 563 3 318, 205 1, 782

1, 962, 454 49 438, 521 33 613, 613 6, 719 1 678, 536 769, 080 761, 399 25 649, 984 10, 527 2 996, 436 1, 073

6, 051, 299 54 1, 087, 093 134 1, 547, 620 4, 713 0 139, 537 1, 189, 993 1, 781, 191 32 575, 720 6, 292 0 157, 214 1, 865

22, 212, 582 55 5, 066, 271 946 6, 665, 791 31, 328 61 10, 472, 017 4, 621, 662 8, 056, 766 815 5, 182, 290 62, 996 245 13, 028, 200 45, 550

24, 430, 444 64 5, 457, 497 205 2, 408, 072 9, 491 0 323, 161 1, 037, 721 6, 000, 747 125 1, 534, 599 10, 699 0 228, 345 5, 339

29, 160, 898 53 5, 496, 694 211 1, 898, 949 15, 957 11 1, 976, 636 3, 035, 820 7, 751, 451 193 2, 146, 384 27, 138 12 1, 535, 306 12, 649

106, 509, 798 74 10, 910, 823 234 3, 873, 700 4, 035 0 69, 722 841, 940 12, 529, 669 313 2, 367, 893 4, 368 0 43, 553 92

596, 212, 152 67 139, 238, 562 3, 097 6, 791, 929 426 0 86, 650 2, 033, 997 169, 402, 134 520 6, 744, 437 572 0 50, 278 1, 098

1, 663, 534 49 130, 825 1 175, 736 2, 665 0 27, 102 185, 177 262, 514 1 129, 084 6, 189 0 30, 140 173

2, 340, 408 50 342, 098 12 525, 047 1, 458 0 15, 405 114, 926 603, 701 2 230, 807 2, 283 0 13, 289 37

7, 885, 856 54 425, 741 28 1, 199, 596 2, 323 0 17, 084 383, 129 594, 828 1 262, 861 2, 628 0 11, 999 19

30, 397, 584 53 568, 889 24 3, 544, 487 16, 526 0 62, 048 349, 953 853, 537 3 229, 892 22, 318 0 39, 358 1001

81, 285, 120 76 2, 027, 904 2 314, 728 1, 215 0 1, 971 110, 656 4, 676, 480 0 120, 387 1, 245 0 1, 860 15

96, 438, 720 64 5, 401, 790 365 3, 031, 243 24 0 11, 703 1, 648, 506 6, 321, 838 106 2, 526, 813 31 0 6, 592 747

399, 477, 600 92 45, 541, 152 2, 802 14, 511, 314 792 0 58, 762 2, 027, 551 122, 636, 544 59 2, 939, 165 1, 975 0 20, 899 6

1, 219, 947, 240 88 18, 531, 807 4, 987 49, 835, 897 381 0 639, 461 86, 535 72, 055, 380 460 7, 959, 586 516 0 495, 417 77

3, 547, 065, 654 94 41, 135, 520 3, 892 20, 605, 813 6, 635 0 57, 369 1, 812, 728 93, 980, 859 74 3, 595, 817 8, 117 0 92, 971 665

3, 749, 923, 584 87 222, 163, 176 8, 773 38, 249, 085 2, 320 0 343, 680 4, 177, 807 269, 219, 724 99 2, 441, 987 5, 171 0 189, 467 88

each of these two columns and the computation time and the
maximal BDD-node requirements reported for each of these
two algorithms.

Next, we focus on the comparison of the computation time
and the maximal memory usage between Algorithm 1 and Al-
gorithm 2. In general, the empirical computational complexity
of a symbolic search-based algorithm is mostly dependent on
(i) the number of the required iterations for the search process
and (ii) the maximum number of BDD nodes employed during
the execution of the algorithm. By taking advantage of the
particular structure and properties of the considered RAS state
spaces, Algorithm 2 avoids the full exploration of these state-
spaces. Hence, compared to Algorithm 1 that employs the
conventional “trimming” technique for computing the target
unsafe states, Algorithm 2 requires fewer iterations to compute
the target boundary unsafe states, and it tends to have a
better computation time. Furthermore, the avoidance of the
exploration of the whole RAS state-space enables Algorithm
2 to consume less memory during its execution, especially for
RAS instances with small unsafe state regions. As depicted
in Figures 4 and 5, Algorithm 2 outperforms Algorithm 1,
on average. This performance dominance is more emphatic
for RAS instances with routing flexibility, since, for these
RAS, the cardinality of the set of reachable states is orders of
magnitude larger than that of the set of boundary unsafe states;
therefore, the partial state-space exploration that is effected by
Alghorithm 2 establishes a stronger competitive advantage.

We conclude this section by comparing the total computa-
tion time of the combined execution of Algorithms 2 and 3
to the computation time of the algorithm for the computation
of the minimal boundary unsafe states that is presented in
[25]. As demonstrated in Fig. 6, for the RAS instances with

simple linear process flows and simple or conjunctive resource
allocation, the sequential execution of Algorithms 2 and 3
outperforms the algorithm of [25] in terms of the computation
time. Some of the largest cases suggest that the gains attained
by the symbolic algorithms can be up to 100 times faster.
On the other hand, for RAS instances possessing routing
flexibility, the algorithm of [25] is competitive to the symbolic
algorithms that were developed herein. We believe that this
comparative improvement of the computational efficiency of
the algorithm of [25] for these particular RAS instances stems
from the fact that the algorithm of [25] focuses explicitly
upon minimal deadlocks and unsafe states in its computation,
and therefore, it effects an even more limited search in
the underlying RAS state space compared to the algorithms
that are developed herein. The computational gains of this
additional restriction of the performed search become more
obvious as the underlying state spaces become larger (which is
the case with the considered RAS involving routing flexibility).

VI. CONCLUSIONS

This paper has developed a novel methodology for de-
ploying the maximally permissive DAP of any RAS instance
coming from the class of D/C-RAS, while taking advantage
of the representational and computational efficiencies that are
provided by symbolic computation. More specifically, for any
given RAS instance, the proposed approach first recasts the
underlying resource allocation dynamics into an EFA model,
and subsequently, it identifies the feasible boundary unsafe
states of this EFA, using one of the two alternative symbolic
algorithms that were presented in Section IV. The obtained
state set is post-processed by an additional symbolic algorithm
that removes all its non-minimal elements, and the resulting

16

0 100 101 102 103 104

100

101

102

103

104

Computation time (in sec.) of Algorithm 2

C
om

pu
ta

tio
n

ti
m

e
(i

n
se

c.
)

of
 A

lg
or

ith
m

 1

SU-RAS
C-RAS
D/C-RAS

Fig. 4: Comparing the computation times (in sec.) of Algo-
rithms 1 and 2

Maximal number of nodes used by Algorithm 2

107 108

105

106

107

108

4 105 106

M
ax

im
al

 n
um

be
r

of
 n

od
es

 u
se

d
by

 A
lg

or
tih

m
 1

SU-RAS
C-RAS
D/C-RAS

10

Fig. 5: Comparing the maximal memory usage of Algorithms
1 and 2, based on their maximal BDD-node requirements

101

102

103

104

105

0 100 101 102 103 104 105

100

Computation time (in sec.) of Algorithms 2 and 3,
and the conversion to IDD

C
om

pu
ta

tio
n

tim
e

(i
n

se
c.

)
of

 [
25

]

SU-RAS
C-RAS
D/C-RAS

Fig. 6: Comparing the computation time (in sec.) of the
sequential execution of Algorithms 2, 3 and the algorithm of
[35] to the computation time of the algorithm of [25]

BDD can be further converted into a TRIE data structure
enabling the implementation of the maximally permissive
DAP through the one-step-lookahead scheme for boundary
unsafe states presented in [24]. The entire procedure has
been implemented in Supremica and a series of computational
experiments has manifested its efficacy and its computational
power.

Since Algorithm 1 relies only on the notion of RAS state
safety as defined by the notion of co-accessibility to the
RAS empty state, it will work on any RAS instance with
fully controllable resource allocation dynamics, beyond the
class of D/C-RAS, provided that the employed RAS-modeling
EFA is an adequate representation of these dynamics. On
the other hand, an additional requirement for the effective
application of Algorithm 2 on RAS instances coming from
broader RAS classes, is that, in the underlying RAS dynamics,
state unsafety still implies the unavoidable absorption of these
dynamics to some deadlock state.12 The two algorithms can
also be easily extended to account for uncontrollable RAS
dynamics, where uncontrollability is defined either in terms
of the timing of some process-loading and advancing events,
or in terms of the routing decisions that are effected by the
RAS processes at stages possessing routing flexibility. The
necessary modifications for Algorithm 1 are in line with the
broader logic that underlies the computation of the maximal
nonblocking controllable sublanguage in SCT [12], [13]. On
the other hand, the aforementioned uncontrollable behavior
can be accommodated in the computation of Algorithm 2 by
revising the computation of the sets χNU , χUcur

and χUnew
in

Lines 10-13, to account for the new notion of state unsafety
that is implied by the uncontrollable behavior; we leave the
relevant details to the reader. Finally, in this broader RAS
context, the “thinning” of the results of Algorithms 1 and 2
to the corresponding minimal subsets through the application
of Algortihm 3 will be possible only if the monotonicity
of the state unsafety that was discussed in Section IV-C,
extends to this new RAS class; otherwise, the implementation
of the target DAP must employ the entire state sets that are
returned by these two algorithms, a fact that defines additional
advantage for the symbolic representation and computation
that is pursued in this work.

In our future work, we will seek to refine and improve
the performance of the above algorithms by considering the
possibility of working with implicit, distributed representations
of the characteristic function ∆E that is employed by the
current versions of these algorithms. We shall also consider
the possibility of capturing and exploiting, in the effected
computation, additional structure that might be present in the
underlying RAS state space. Finally, it is also interesting to
investigate the possibility of extending the applicability of

12 A RAS class that might fail to meet this last condition is that containing
process types with internal “cycling” in their sequential logic; in these cases,
state unsafety might be manifested by eventual absorption to a “livelock”, i.e.,
an entire closed communicating class of non-coreachable states. To the best
of our knowledge, currently there are no efficient algorithms for the detection
or the programmatic construction of livelocks, and therefore, Algorithm 2 will
not be able to execute efficiently the first phase of its overall computation. On
the other hand, some important RAS sub-classes that support internal cycling
for their process types and, yet, state unsafety implies eventual absorption to
a deadlock (and not to a livelock), can be found in [10], [43].

17

the presented symbolic algorithms to RAS with infinite state
spaces, like those considered in [44], [43].

ACKNOWLEDGEMENT

The authors would like to thank Dr. Ahmed Nazeem for
providing some of the data that were utilized in the presented
computational experiments. Also, the first and the third author
want to acknowledge the constructive discussions that they
had with Dr. Nazeem while visiting Georgia Tech in Spring
2012. Finally, the first author thanks Dr. Martin Fabian for the
technical discussion that he provided on the topics of EFA-
based modeling and BDD compression.

REFERENCES

[1] S. A. Reveliotis, Real-time Management of Resource Allocation Systems:
A Discrete Event Systems Approach. NY, NY: Springer, 2005.

[2] M. Zhou and M. P. Fanti, Deadlock Resolution in Computer-Integrated
Systems. Singapore: Marcel Dekker, Inc., 2004.

[3] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans. on
R&A, vol. 11, pp. 173–184, 1995.

[4] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for
automated manufacturing cells,” IEEE Trans. on Robotics & Automation,
vol. 12, pp. 845–857, 1996.

[5] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Event-based
feedback control for deadlock avoidance in flexible production systems,”
IEEE Trans. on Robotics and Automation, vol. 13, pp. 347–363, 1997.

[6] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol.
32(7), pp. 647–659, 2000.

[7] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock avoid-
ance of AGV systems,” in Proceedings of the ICRA’01. IEEE, 2001,
pp. 64–69.

[8] S. Reveliotis and E. Roszkowska, “Conflict resolution in free-ranging
multi-vehicle systems: A resource allocation paradigm,” IEEE Trans.
on Robotics, vol. 27, pp. 283–296, 2011.

[9] A. Giua, M. P. Fanti, and C. Seatzu, “Monitor design for colored Petri
nets: an application to deadlock prevention in railway networks,” Control
Engineering Practice, vol. 10, pp. 1231–1247, 2006.

[10] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune,
S. Mahlke, and S. Reveliotis, “Concurrency bugs in multithreaded soft-
ware: Modeling and analysis using Petri nets,” Discrete Event Systems:
Theory and Applications, vol. 23, pp. 157–195, 2013.

[11] H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis, T. Kelly, and
S. Mahlke, “Eliminating concurrency bugs in multithreaded software: A
new approach based on discrete-event control,” IEEE Trans. on Control
Systems Technology, vol. 21, pp. 2067–2082, 2013.

[12] P. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[14] S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[15] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, pp. 541–580, 1989.

[16] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible
routings,” IEEE Trans. on Automatic Control, vol. 46, pp. 1572–1583,
2001.

[17] Z. W. Li and M. C. Zhou, “Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems,”
IEEE Trans. on SMC – Part A, vol. 34, pp. 38–51, 2004.

[18] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke, “Optimal
liveness-enforcing control of a class of Petri nets arising in multithreaded
software,” IEEE Trans. Autom. Control, vol. 58, pp. 1123–1138, 2013.

[19] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally
permissive Petri net controller using the theory of regions,” IEEE Trans.
on Robotics & Automation, vol. 19, pp. 137–141, 2003.

[20] E. Badouel and P. Darondeau, “Theory of regions,” in LNCS 1491 –
Advances in Petri Nets: Basic Models, W. Reisig and G. Rozenberg,
Eds. Springer-Verlag, 1998, pp. 529–586.

[21] R. Cordone and L. Piroddi, “Monitor optimzation in Petri net control,”
in Proceedings of the 7th IEEE Conf. on Automation Science and
Engineering. IEEE, 2011, pp. 413–418.

[22] Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-
enforcing supervisor with a compressed supervisory structure for flexible
manufacturing systems,” Automatica, vol. 47, pp. 1028–1034, 2011.

[23] A. Nazeem and S. Reveliotis, “Designing maximally permissive dead-
lock avoidance policies for sequential resource allocation systems
through classification theory: the non-linear case,” IEEE Trans. on
Automatic Control, vol. 57, pp. 1670–1684, 2012.

[24] ——, “A practical approach for maximally permissive liveness-enforcing
supervision of complex resource allocation systems,” IEEE Trans. on
Automation Science and Engineering, vol. 8, pp. 766–779, 2011.

[25] ——, “Efficient enumeration of minimal unsafe states in complex
resource allocation systems,” IEEE Trans. on Automation Science and
Engineering, vol. 11, no. 1, pp. 111–124, 2014.

[26] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Com-
puters, vol. 27, pp. 509–516, Jun. 1978.

[27] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.

[28] G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervisory
controllers,” in American Control Conference, 1992, June 1992, pp.
2789–2793.

[29] R. Song and R. Leduc, “Symbolic synthesis and verification of hierar-
chical interface-based supervisory control,” in Discrete Event Systems,
2006 8th International Workshop on, July 2006, pp. 419–426.

[30] C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,” IEEE Transactions on Automatic Control, vol. 51, no. 5,
pp. 782–793, May 2006.

[31] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory synthe-
sis of large systems,” Control Engineering Practice, vol. 14, no. 10, pp.
1157–1167, Oct. 2006.

[32] Y. Chen, Z. Li, M. Khalgui, and O. Mosbahi, “Design of a Maximally
Permissive Liveness- Enforcing Petri Net Supervisor for Flexible Man-
ufacturing Systems,” IEEE Transactions on Automation Science and
Engineering, vol. 8, no. 2, pp. 374–393, 2011.

[33] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based approach
for modeling plant and supervisor by extended finite automata,” IEEE
Transactions on Control Systems Technology, vol. 20, no. 6, pp. 1421–
1435, 2012.

[34] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” Decision and Control,
2007 46th IEEE Conference on, pp. 3387–3392, 2007.

[35] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic computation
of reduced guards in supervisory control,” IEEE Transactions on Au-
tomation Science and Engineering, vol. 8, no. 4, pp. 754–765, 2011.

[36] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An
integrated environment for verification, synthesis and simulation of
discrete event systems,” in the 8th International Workshop on Discrete
Event Systems, 2006, pp. 384–385.

[37] Z. Fei, S. Reveliotis, S. Miremadi, and K. Åkesson, “Supplement
for the paper entitled “A BDD-Based Approach for Designing
Maximally Permissive Deadlock Avoidance Policies for Complex
Resource Allocation Systems”,” Chalmers University of Technology,
Tech. Rep., 2014. [Online]. Available: http://publications.lib.chalmers.
se/records/fulltext/198974/local 198974.pdf

[38] Z. Fei, “Symbolic supervisory control of resource allocation systems,”
Ph.D. dissertation, Chalmers University, Gothenburg, Sweden, 2014.

[39] Z. Fei, S. Miremadi, and K. Åkesson, “Modeling sequential resource
allocation systems using extended finite automata,” in 7th Annual IEEE
Conference on Automation Science and Engineering, CASE’11, Trieste,
2011, pp. 444–449.

[40] Z. Fei, S. Reveliotis, and K. Åkesson, “A symbolic approach for max-
imally permissive deadlock avoidance in complex resource allocation
systems,” in Proceedings of the 12th International Workshop on Discrete
Event Systems. IFAC–IEEE, 2014, pp. 362–369.

[41] S. Reveliotis and A. Nazeem, “Deadlock avoidance policies for auto-
mated manufacturing systems using finite state automata,” in Formal
Methods in Manufacturing, J. Campos, C. Seatzu, and X. Xie, Eds.
CRC Press / Taylor and Francis, 2014, pp. 169–195.

[42] “JavaBDD.” [Online]. Available: javabdd.sourceforge.net
[43] A. Nazeem and S. Reveliotis, “Maximally permissive deadlock avoid-

ance for resource allocation systems with r/w-locks,” Georgia Inst. of
Technology, Tech. Rep. (submitted for publication), 2013.

[44] ——, “Maximally permissive deadlock avoidance for resource allocation
systems with R/W-locks,” in Proceedings of WODES 2012. IFAC, 2012.

http://publications.lib.chalmers.se/records/fulltext/198974/local_198974.pdf
http://publications.lib.chalmers.se/records/fulltext/198974/local_198974.pdf
javabdd.sourceforge.net

	Introduction
	Preliminaries
	Resource Allocation Systems and the corresponding problem of Deadlock Avoidance
	Extended Finite Automata
	Binary Decision Diagrams

	Modeling the considered RAS as an EFA
	Computing the minimal boundary unsafe states
	An extension of the standard SCT synthesis algorithm for the computation of reachable boundary unsafe states
	An alternative algorithm for the computation of feasible boundary unsafe states
	Computing the minimal boundary unsafe states

	Computational Results and Evaluation
	Conclusions
	References

