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The search for optimization principles in microbial metabolism, such as biomass or ATP yields or growth
rate optimization, has attracted substantial research efforts in the recent years. Here we use the results of C13
labeling experiments together with genome scale metabolic networks of S cerevisiae and E coli in order to
assess if there are relationships between systemic variables that are present in both organisms. Strong
correlations between the total flux per unit of substrate and the ATP turnover rate per unit of substrate and
between the growth rate divided by the total flux and the total flux per unit of substrate were observed for
both organisms. We also observed that the common assumption of biomass yield optimization is not
consistent with the experiments.

he recent development of sequencing technologies and bioinformatics has made possible the reconstruction
of genome-scale metabolic networks for different microorganisms'. Genome-scale metabolic networks can
be condensed into a mathematical representation that, by imposing steady state constraints to internal
metabolites and directionality constraints to the metabolic reactions, define a region of feasible flux distributions?,
which from a geometric point of view is a cone in a multidimensional Euclidean space (with as many dimensions
as metabolic reactions). By setting maximal rates for some of the reactions (typically substrate uptake rates), the
region of feasible flux distributions is further reduced to a convex polytope in a multidimensional Euclidean space.

Genome-scale metabolic networks contain only stoichiometric information. In order to use these networks as
tools to predict in-vivo metabolic flux distributions and how these flux distributions change after genetic manip-
ulations such as gene deletions, other assumptions about the operation principles of metabolism are necessary.

In this paper we use experimental flux distributions measured in two different microorganisms, S cerevisiae and
E coli, with the aim of identifying possible additional criteria (objective functions or extra constrains), that could
be used in order to improve the predictive power of genome-scale metabolic models.

Linear objective functions (typically the growth rate) have been extensively used to compute metabolic flux
distributions®. If a maximal substrate uptake rate is set as a constraint the optimization of the growth rate becomes
equivalent to the optimization of the biomass yield. The mentioned yield optimization has shown to generate
correct predictions for microorganisms growing in chemostats* for a broad scope of dilution rates and different
carbon sources’. The common phenomenon of overflow metabolism, in which less energetically efficient fer-
mentative pathways are used in detriment of the more efficient respiration, even if oxygen is available, has been
explained in terms of a trade-off effect which favors fast growth in detriment of high yield®”. Within the frame of
constraint based modeling, this overflow metabolism phenomenon is typically addressed by using an upper
bound for the oxygen consumption, which limits the extent of respiration®, and maximizing the growth rate. The
implicit assumption in this approach is that even if catabolism is not optimal (the less efficient fermentation is
partially used instead of the more efficient respiration), anabolism is optimal and the ATP produced in catabolism
is optimally allocated to maximize the cell growth. This assumption of optimal anabolism appears experimentally
to be correct for microbial cultures growing in chemostats>®. Here we test if optimal anabolism works in batch
cultures. Growth yield optimization has shown to work poorly for microorganisms in batch cultures’. It has been
shown that experimental flux distributions observed in the central carbon metabolism of E. coli seem to be more
consistent with the maximization of ATP production rate per flux unit®, however this predictions were done using
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a metabolic network with only 10 degrees of freedom (while genome-
scale networks have typically hundreds of degrees of freedom). In
metabolic networks with more degrees of freedom (which can
involve futile cycles), the optimization of this function is likely to
predict flux distributions in which there is not biomass production
and all the ATP produced is degraded in futile cycles. Also based on a
metabolic network of E. coli’s central carbon metabolism, it has been
argued that the experimental flux distributions of E. coli and other
bacterial species are close to the optimality Pareto surface that defines
the trade-offs between maximal biomass yield, maximal ATP pro-
duction yield and minimal sum of metabolic fluxes'. The main
problem of assessing the suitability of objective functions by com-
paring predicted and measured flux distributions is the fact that in
order to predict a flux distribution, one or more constraints (at least
the uptake rate of a limiting substrate) have to be used together with
the tested objective function®'' and formally any objective function is
potentially able to generate correct predictions, provided that it is
combined with a suitable set of constraints.

Another limitation is the fact that the experimental techniques
available to measure metabolic flux distributions, which are based
on using C13 labeled substrates'>""%, are only able to resolve a limited
number of flux splitting ratios in the central carbon metabolism.
For example, the determined flux ratios measured in one of the
datasets that we are using'® allow determining 7 independent internal
metabolic fluxes, while genome-scale metabolic networks have typ-
ically hundreds of degrees of freedom'”. This means that there are
many possible flux distributions consistent with the experimental
measurements.

It is a common practice to infer the flux distributions in a larger
network from a reduced number of measured fluxes by first com-
puting one solution compatible with the constraints in the larger
network in which the set of measured fluxes is as close as possible
to the measured values'®, this is typically done by minimizing a sum
of weighted error squares. The larger network has more degrees of
freedom than the number of measured fluxes; therefore there are
many possible solutions compatible with the values obtained from
the minimization of squares. In order to obtain a single solution, the
sum of squares of the non-measured fluxes is minimized'’. The men-
tioned approach involves 2 main problems. First of all if the large
network is supposed to be a genome-scale network, a steady state
solution in which all the measured fluxes are in agreement with the
measured values (or at least within the error measurement intervals)
should exist and the error minimization would not be necessary. If
this is not the case whether the large network is not comprehensive
enough or the measured values are not correct. On the other hand, by
minimizing the sum of squares of the fluxes, an arbitrary assumption
is being made and this could bias the results. Here we argue (see
methods) from an information theoretical perspective, that the best
estimate of a global flux distribution given a limited set of measured
fluxes is the average of the components of the convex basis of the
space of solutions compatible with the measurements.

Results

Using available C13 labeling experimental data for two of the best
known eukaryotic and prokaryotic microorganisms (S cerevisiae and
E coli), we aim to identify possible global operation principles that
govern the metabolic flux distributions and that are general enough
to be conserved between two microorganisms that are very far apart
from an evolutionary perspective. The genome-scale metabolic mod-
els that we used are iTO980* for S cerevisiae and iJR904"® for E coli.
We have the experimental flux distributions of a reference S. cerevi-
siae strain and 36 deletion mutants'® as well as the flux distributions
for a reference E coli strain, 3 deletion mutants and 6 strains evolved
from the deletion mutants (2 evolved strains per mutant)'®. The
genome-scale metabolic models were constrained with the reported
experimental error intervals'®". In all the cases there were feasible

solutions within the reported intervals for the measured fluxes. No
error minimization was therefore required. A random sampling algo-
rithm'® was used to generate a set of 3000 flux distributions. The
sampled distributions correspond to elements of the convex basis that
define the region of flux distributions consistent with the measure-
ments (See methods for more details). The average flux distributions
for each strain are reported in the supplementary files S1 and S2.

For each of the obtained flux distributions, we computed 19 sys-
temic variables such as: the sum of all the metabolic fluxes, biomass
yield on the substrate, biomass per unit of total flux, the total flux per
unit of consumed substrate, the ATP, NADH and NADPH turnover
rates, the previous turnover rates per unit of substrate and per unit of
total flux etc. As we have argued in the previous section the actual
value of these systemic variables cannot be inferred from experi-
ments (using the current C13 labeling methods), and what we com-
puted are optimal estimators of these variables (See methods).

Here we computed the correlation coefficients between the esti-
mators for the systemic variables in order to identify possible rela-
tions of the types: y = a + bx or z = a + bx + cy. Only 3 relations
with correlation coefficients higher than 0.8 and conserved both for S
cerevisiae and E coli were observed, these relations corresponded to: a
positive correlation with ordinate at the origin equal to zero between
the ATP turnover rate and the NADH turnover rate (correlation
coefficients of 0.953 for E coli and 0.938 for S cerevisiae), a positive
correlation with negative ordinate a the origin between the total flux
per unit of substrate and the ATP turnover rate per unit of substrate
(correlation coefficients of 0.879 for E coli and 0.980 for S cerevisiae)
and a negative correlation with positive ordinate at the origin
between the growth rate divided by the total flux and the total flux
per unit of substrate (correlation coefficients of (0.919 for E coli and
0.909 for S cerevisiae).

The slopes and the ordinates at the origin are different for each
organism (Figure 1) but the type of relation is conserved. The exist-
ence of so conserved correlations in two microbial organisms so far
apart from an evolutionary point of view and with very different
metabolic networks, seems to indicate the existence of conserved
operation principles common to microbial cells, which govern the
distribution of metabolic fluxes. These relationships between sys-
temic variables could be used as constraints in genome-scale meta-
bolic models in order to improve their predictive power. The
experimental data that we have used correspond to conditions of
glucose excess and growth in batch reactors, which as we have men-
tioned are the conditions in which the common assumption of bio-
mass yield optimization tends to fail.

We also aimed to test how consistent with the experimental evid-
ence is the assumption of the existence of an objective function
maximized by the metabolic network. As we have mentioned prev-
iously the main difficulty for assessing the suitability of an objective
function by comparing predictions and experimental data is the fact
that besides the objective function one or several constraints must be
also imposed in order to predict metabolic flux distributions. The
choice of constraints determines the output of the predictions as
much as the objective functions. For example it is common to con-
strain the carbon source uptake rate, which in reality (given the fact
that it changes a lot between different conditions and as a result of
gene deletions) seems to be far from being constrained. In order to
avoid any ad hoc assumption of constraints, we are not comparing
predictions and experiments, but the experimental values for the wild
type strain with the values of deletion strains. Deletion strains have a
metabolic network which is a sub-network of the wild type (and
therefore has a smaller space of feasible solutions). Therefore if an
objective function exists its value should be smaller or equal in the
strains with a deletion than in the wild type strain. A significance test
was performed (see methods) in order to identify the number of
mutant strains in which each of the considered systemic variables
was significantly higher or lower than in the wild type strain. The
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Figure 1| Linear correlations between systemic variables in S. cerevisiae and E. coli.

systemic variables that are not significantly higher in any of the
mutant strains are possible objective functions. We see in figures 2
and 3 that the commonly used growth yield is one of the worse
candidates for optimality.

We also tested how far the biomass yields are from the assumption
of anabolic optimality. By anabolic optimality we mean that the
produced ATP is optimally allocated to biomass production. To test
this we constrained for each strain the glucose and the oxygen
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consumption rates to their experimental values and compared the
predicted biomass production rate with its experimental value. The
real strains seemed to be well below the anabolic optimality (figure 4).

Discussion

In summary, using two genome scale metabolic models of high qual-
ity, for a prokaryotic and a eukaryotic organism, and high quality
C13 labeling experimental data'*'’; we have identified three strongly
conserved correlations between systemic variables. The correlation
between ATP and NADH turnover rates appears to be trivial to some
extent, due to the fact that both processes are highly coupled through
respiration, and also fermentation. The two other correlations are
non-trivial and are surprisingly well conserved for two very different
microbial organisms. This points to the existence of global operation
principles (involving relationships between systemic variables)
of microbial metabolism that are common to eukaryotic and
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prokaryotic species. We also showed that if an objective function
exists this is not likely to be the growth yield.

Based on our results, we suggest the utilization of the identified
relationships as extra constrains in the genome-scale metabolic mod-
els. This is likely to lead to more realistic predictions of the metabolic
flux distribution, at least in the two organisms we have analyzed.
Using objective functions such as biomass yield does not seem to
be a good option, and other objective functions (figure 2), such as
total turnover of redox cofactors, are likely to be closer to reality. It
has also been shown that the allocation of ATP to biosynthetic pro-
cesses is clearly non-optimal in the studied strains.

Methods

Impossibility of a full identification of the flux distribution in a genome-scale
metabolic network. A metabolic network can be described by its stoichiometric
matrix S, which contains the stoichiometric coefficients of each metabolite (columns)
in each reaction (rows) of the network. If each internal metabolite is in steady state,
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Figure 2 | The bars represent the number of deletion mutants (and evolved strains for E. coli) that showed higher or lower values for each
systemic function with a probability higher than 95%. The biomass yield shows higher values in many deletion mutants than in the wild type. The
turnover rate of redox cofactors seems to be a suitable objective function (maximal in the wild type).
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Figure 3 | Here we plot the average value of three of the systemic functions against the Euclidean distance of the flux distributions with respect to the
wild type in S. cerevisiae (this gives an idea of how these functions tend to change when the flux distributions differ more from the wild type
distribution. The error bars are the standard deviations of each systemic function (calculated from the random sampling). We see that the total flux and
the energy dissipation rate tend to decrease with the deviation from the wild type flux distribution, the biomass yield however takes both higher and lower
values.
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Figure 4 | The optimal growth rate (blue dots) and the experimental
growth rate (red dots) are plotted for the experimental glucose and
oxygen uptake rates of the S. cerevisiae strains. The assumption of
anabolic optimality strongly over-predicts the growth rate in batch
conditions.

the following relationship must be satisfied.

S¥=0 (1)
This condition defines a system with as many independent linear equations as the
rank of the stoichiometric matrix and as many variables as reactions in the network.
In order to solve such a system it is necessary to measure as many metabolic fluxes as
the difference between the total number of reactions and the rank of the
stoichiometric matrix. This would require measuring several hundreds of metabolic
fluxes, which is not feasible with the current C13 labeling techniques, which typically
are restricted to the fluxes in the central carbon metabolism. Therefore a complete
flux distribution is today non-measurable and systemic variables such as the total
ATP turnover rate or the total flux in the metabolic network are also non-measurable.
This limits the conclusion of previous works'’.

Convex set. If the irreversibility constraints (the flux in the irreversible reactions has
to be zero or positive) are added to equation 1, and the fluxes in the measured
reactions are constrained to the error interval of the measurements. The sub-index i
states for the irreversible reactions and the sub-index m states for the measured
reactions.

Sp=0

v;i =0 (2)

In€ " Vi)
The previous set of constrains defines a convex set. A convex set C is defined by the
following condition: if {x,y}€C then ax+ (1 —o)yeC for any ae(0,1]. It is
straightforward to see that if x and y are vectors satisfying the previous constrains, any
vector defined as ax + (I — a)y will also satisfy the mentioned constraints.

Ifan element z of the convex set C can only be expressed as z = ox + (1 — o)y (being
xand y also elements of C and o a positive number lower than 1) if z = x or z = y then
z belongs to the convex basis of C.

Any element x of C can be expressed as a linear combination of the elements of the
convex basis of C {z;}, so that x= Y o;z; with the coefficients o; being positive and
their sum is equal to 1. i

Information of the distribution of coefficients a;. It is possible to define the
Shannon’s information entropy of the set of values o, H= — Y o; In ;. The

i
distribution of coefficients that maximizes this information entropy corresponds to
an equal value for all the coefficients. The criterion of maximal information entropy is
normally assumed to describe a system of which we have a limited amount of
information®'. We use here the same criterion in order to infer a most likely flux
distribution given the limited information provided by the fluxes measured
experimentally. According to the mentioned criterion, if the constraints imposed in
equation 2 define a convex set with a convex basis {&;} formed by n elements, the

1
t likely flux distributi illbe: V== &.
most likely flux distribution will be: ¥ n;e

Random sampling of elements of the convex basis. In a genome scale metabolic
network with thousands of reactions, the number of elements of the convex basis

follows a combinatorial explosion that makes unfeasible its complete enumeration. It
was recently shown by Kelk and co-workers, than the high number of elements in a
convex basis can be explained by a small number of alternative flux values in several
metabolic sub-networks, which by a mechanism of combinatorial explosion; give rise
to millions of corners. Based on this property we can conclude that sampling a limited
number of corners in the solution space (3000 in our case) is enough to explore all the
rank of values that each reaction can take. The sampling was carried out as described
in a previous paper>. For each sampled flux distribution we computed the value of
each of the 19 systemic variables and used its average as an optimal estimator of each
systemic variable for each strain.

Comparison of systemic variables between the wild type and each mutant. We are
also interested in knowing in how many mutants a systemic variable was higher or

lower than in the wild type strain. To do that we compared the first sample of the wild
type with all the samples of the mutant and computed how many times the mutant
had a higher (or lower) value for that systemic variable. Then we repeated the same for
the second sample of the wild type and continued doing the same till the last sample of
the wild type. If in 95% or more of the 3000 X 3000 comparisons the mutant had a
higher or lower value for the systemic variable, we considered that systemic variable as
significantly higher or lower in the mutant than in the wild type.
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