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Optimal battery dimensioning and control of a CVT
PHEV powertrain
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Abstract—This paper presents convex modeling steps for the
problem of optimal battery dimensioning and control of a plug-in
hybrid electric vehicle with a continuous variable transmission.
The power limits of the internal combustion engine and the
electric machine are approximated as convex/concave functions
in kinetic energy, while their losses are approximated as convex
in both kinetic energy and power. An example is presented of
minimizing total cost of ownership of a city bus including battery
wear model. The proposed method is also used to obtain optimal
charging power from an infrastructure that is to be designed at
the same time the bus is dimensioned.

Index Terms—plug-in hybrid electric vehicle, battery sizing,
power management, convex optimization

I. INTRODUCTION

Hybrid electric vehicles (HEVs) are being of major in-

terest in the 21st century due to the potential of decreasing

fuel consumption and emissions without a serious impact on

vehicle’s performance. HEVs possess most of the features

of conventional vehicles, but besides the internal combustion

engine (ICE), they also include an energy buffer, typically

a battery and/or a super capacitor, and one or more electric

machines (EMs). This gives them an additional degree of

freedom allowing more efficient operation, [1]. However, this

also makes them more expensive, and to keep the cost down,

HEVs may need to include a downsized engine and a carefully

selected energy buffer.

The optimal size of the HEV’s powertrain components de-

pends on the powertrain configuration, ability to draw electric

energy from the grid, drive patterns, prices of petroleum,

electricity and energy buffer, and on how well adapted the

buffer energy management is to driving conditions. Moreover,

the size of the powertrain components and the HEV energy

management need to be optimized simultaneously, because

a non-optimal energy management may lead to non-optimal

components’ sizes, [2].

The problem of dimensioning and performance assessment

of HEV powertrains is mainly approached in literature by

using heuristic methods, or dynamic programming (DP) [3]-

[9]. These methods typically experience very long computa-

tional time for multidimensional problems (with several state

variables); as for example, the computational time in DP

increases exponentially with the number of state variables [10].
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In terms of computational time a more promising approach has

been presented in [11] where convex optimization has been

proposed for dimensioning and control of HEVs with either a

series, or a parallel powertrain topology with a conventional

discrete-gear transmission.

Extending the work of [11], this study considers a con-

tinuous variable transmission (CVT) parallel powertrain for

an HEV that has a possibility to draw electric energy from

the grid (a plug-in HEV, i.e. PHEV). Moreover, the PHEV

includes a battery wear model described by a limited energy

throughput. The objective is to minimize the total cost of

vehicle ownership, which includes a decision on the optimal

battery size and energy management that minimizes used fuel,

electricity, and number of battery replacements within the

lifetime of the vehicle. This is a nonlinear and mixed-integer

control problem, where integer variables are the engine on/off

control and the number of battery replacements. The problem

includes two states, a battery state of charge (SOC) and a CVT

gear ratio, and one design parameter, the battery size.

The contribution of this paper are convex modeling steps

that allow time efficient suboptimal solution of the PHEV

dimensioning problem. Engine on/off control is decided by

heuristics and the remaining sub-problem is remodeled as a

convex optimization problem that can be solved in several

minutes on a standard PC. The power limits of the internal

combustion engine and the electric machine are approximated

as convex/concave functions in kinetic energy, while their

losses are approximated as convex in both kinetic energy and

power. The short computational time allows the optimization

to be repeated for several charging configurations, and by

that making it possible to optimally design the charging

infrastructure at the same time the vehicle is dimensioned.

The paper is outlined as follows: problem formulation

and modeling details are described in Section II; the convex

modeling steps are given in Section III; an example of battery

dimensioning of a city bus is given in Section IV; the optimal

result is validated in Section V; and the paper is ended with

discussion and future work in Section VI.

II. BATTERY DIMENSIONING PROBLEM

This section describes modelling details and formulates the

optimization problem.

A. Powertrain model

We investigate a parallel PHEV powertrain where the ICE

and EM are mechanically connected to the wheels through a

CVT, as depicted in Fig. 1. The vehicle is required to fulfill a
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Fig. 1. Parallel PHEV powertrain model with a CVT. The efficiency of the
power electronics is averaged and reflected within the EM, the auxiliaries and
the charging stations. The EM speed reduction gear is considered part of the
EM.

certain driving mission fully described by road altitude, desired

vehicle velocity and acceleration at each point in time. In

the view of the vehicle powertrain this can be translated to

demanded speed ωd(t) on the shaft between the differential

gear and CVT, and power

Pm(t) + Pe(t) = A1(t) + nA2(t) + Pbrk(t)

+ I(t)
(
r2(t)ω̇d(t)ωd(t) + ṙ(t)r(t)ω2

d(t)
) (1)

that has to be provided by the EM, Pm(t), or the ICE, Pe(t).
(The optimization variables are marked in bold for readability.

As optimization variables, we refer to both the control signals

and states in the problem.) The demanded power (detailed

in Appendix A) is affine in vehicle mass, and therefore, it

is affine in the number of battery cells n that are yet to be

determined. The remaining optimization variables in (1) are

the power Pbrk(t) at the friction brakes and the CVT gear

ratio r(t). The inertia of the components rotating with speed

ωt(·) = r(t)ωd(t) is denoted by I(t). (The symbol · is used

to indicate a function of optimization variables.)

The vehicle’s electric path is closed by

Pc(t) + Pb(t) = Pm(t) + Pa +Bm(·) +Bb(·) (2)

delineating the battery and grid power, Pb(t),Pc(t), driving

the EM and the auxiliaries, Pa. Additionally, part of the sup-

plied power is dissipated in the EM and battery (losses), Bm(·)
and Bb(·). We consider positive power when discharging the

battery.

The ICE losses, Be(·), and the losses of the EM, including

losses of the power electronics and the EM gear, are given

as static maps (an example is shown later, in Fig. 3(a)). We

consider, for simplicity, constant auxiliary power and constant

efficiency for the power electronics, CVT, differential gear

and charging stations. The clutch is considered open when

the engine is off, and it is therefore identified by the engine

on/off state e(t). We assume that the signal e(t) is pre-decided

using heuristics that give suboptimal solutions. This is further

discussed in Section IV-A.

The battery consists of n identical cells with open circuit

voltage u(·) that is a nonlinear, non-convex function of the

battery SOC, as illustrated in Fig. 2. Then, the power at the
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Fig. 2. Battery cell open circuit voltage.

pack terminals, Pb(t) − Bb(·), is related to the total number

of cells, regardless of the configuration (series/parallel). This

study is concerned of finding the optimal battery capacity,

where n is relaxed to a real number, thus lowering the de-

pendence on pre-manufactured cells. Instead, we focus on the

battery technology, assuming that later, at the manufacturing

phase, cells can be fabricated and assembled according to the

optimal pack power and capacity.

The battery losses are expressed as

Bb(·) = nRi2(·) = R
P 2

b (t)

u2(·)n (3)

with i(·) and R denoting cell current and resistance, respec-

tively. The SOC derivative is given by

ṡ(t) = − i(·)
Q

= − Pb(t)

Qu(·)n (4)

with Q denoting cell capacity.

B. Battery wear model

Battery lifetime depends on many factors, e.g. cell’s tem-

perature, discharge rate, depth of discharge, charging strategy,

amount and frequency of overcharge, etc, [12]. An accurate

life prediction model has to consider all these factors to well

describe the physical and electrochemical aging processes,

both of a single cell and the pack as a whole. However,

the complexity of the existing electrochemical models, which

entail many states and highly nonlinear electrochemical pro-

cesses [13], limits their use in problems of assessment and

sizing of HEV powertrains.

In a significantly simpler life prediction model it is as-

sumed that under constant operating conditions the battery

can achieve an overall energy throughput until end of life is

reached (capacity fade by 20%). The throughput based models

capture the major battery aging phenomena in HEVs, because

battery operation is generally restricted within the linear

voltage-SOC region (see Fig. 2), and a battery management

system keeps the lumped cell temperature within a certain

interval. In the community of HEV’s energy management vari-

ous weighted throughput models have already been utilized. In

[14], [15] the throughput is parameterized by charge/discharge

rate, while in [16] the dependence on SOC and temperature

is also considered.

To lower the computational burden (further discussed in

Section IV and V), we have adopted a simple battery wear

model that considers limited battery energy throughput. Denot-

ing the maximum allowed cell’s energy throughput by Ethmax,
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the cycled battery energy within the lifetime of the vehicle is

limited by

dv
ddc

∫ tf

t0

|Pb(t)| dt ≤ (Nr(·) + 1)nEthmax. (5)

The term dv/ddc gives the number of times the representative

driving cycle is driven within the lifetime of the vehicle, where

dv is the average travel distance in the vehicle lifetime and ddc
is the length of the driving cycle. The initial and final time

of the driving cycle are denoted by t0 and tf . The battery is

replaced Nr(·) times within the vehicle lifetime.

C. Non-convex optimization problem
The optimization objective is formulated to minimize total

cost of vehicle ownership. This includes operational cost for

consumed petroleum and electricity, Jo(·), and battery cost,

Jb(·). The other powertrain components are predetermined and

do not enter the cost function. Expressed in [currency/km],

these costs are computed as

Jo(·) =
1

ddc

∫ tf

t0

(
wf (Pe(t) +Be(·)) +

wc

ηc
Pc(t)

)
dt, (6)

Jb(·) =
wb

dv
(Nr(·) + 1)n, (7)

where ηc is efficiency of the charging stations, wf and wc are

petroleum and electricity cost in [currency/kWh], and wb is

battery cell cost in [currency] including depreciation expenses.

The number of battery replacements can be expressed from (5)

as

Nr(·) = ceil

(
dv
ddc

∫ tf
t0

|Pb(t)| dt
nEthmax

)
− 1 (8)

where ceil rounds the value to the nearest integer towards

infinity.
The optimization problem can then be summarized as

follows

minimize Jo(·) + Jb(·)
subject to (1), (2), (4),

Pbrk(t) ≥ 0

Pe(t) ∈ [0, e(t)Pemax(·)] (9a)

Pm(t) ∈ [Pmmin(·), Pmmax(·)] (9b)

Pc(t) ∈ [0, c(t)ηcPcmax] (9c)

Pb(t) ∈ [imin, imax]u(·)n (9d)

s(t) ∈ [smin, smax] (9e)

s(tf ) = s(t0) (9f)

r(t) ∈ [rmin, rmax] (9g)

n ≥ 0

t ∈ [t0, tf ]

with Pbrk(t), Pe(t), Pm(t), Pc(t), Pb(t), s(t), r(t) and

n as optimization variables. The constraints include speed

dependent limits on the ICE and EM power, (9a), (9b), battery

power and SOC limits, (9d), (9e), and CVT gear ratio limits,

(9g). The vehicle can charge with a limited power, (9c), only

at sections on the driving cycle indicated by c(t). Battery SOC

sustaining operation is imposed by (9f).

D. Convex optimization
A convex problem can be written as

minimize f0(x)

subject to fi(x) ≤ 0

hj(x) = 0

x ∈ X
where X ⊆ R

n is a convex set, fi(x) are convex functions and

hj(x) are affine in the vector of optimization variables x [17].

The set of integers is not convex, and this is the reason the

engine on/off signal in (9) is decided by heuristics, prior to the

optimization. However, (9) is still not convex. This is because

of the integer number of battery replacements in (8) and the

non-convex operations in (1), (2), (4) and (9d). Moreover,

the ICE and EM losses, Be(·), Bm(·), have to be convex

in the optimization variables they depend on. Similarly, the

EM generating power limit, Pmmin(·), has to be convex, and

the ICE and EM motoring power limits, Pemax(·), Pmmax(·),
have to be concave functions.

III. CONVEX MODELING

This section describes the steps of remodeling the problem

(9) into a convex optimization problem.

A. Battery
The convex modeling steps to reformulate (3) and (4) have

been introduced in [18] and [19], and are here only briefly

summarized for consistency.
First, the cell open circuit voltage is approximated with a

linear function

u(·) = Q

C
s(t) + u0, (10)

as illustrated in Fig. 2. Second, a variable change is proposed

using battery energy

Eb(t) = nQ

∫ s(t)

0

u(·)ds(t) = n
C

2
(u2(·)− u2

0) (11)

instead of SOC. Then, (4), (9d)-(9f) can be written as

Ėb(t) = −Pb(t) (12)

Pb(t) ∈ [imin, imax]

√
n

(
2

C
Eb(t) + u2

0n

)
(13)

Eb(t) ∈
C

2

([
u2(smin), u

2(smax)
]
− u2

0

)
n (14)

Eb(tf ) = Eb(t0) (15)

where the square root function in (13) is concave in n and

Eb(t).
Following the steps in [19] a new optimization variable

Bb(t) is introduced for the battery losses. Then, instead of

the equality (3), a relaxed constraint is used

Bb(t) ≥ RC
P 2

b (t)

2Eb(t) + Cu2
0n

(16)

which at the optimum will hold with equality, as otherwise

energy will be wasted unnecessarily. The right side of the

inequality in (16) is convex in n, Pb(t) and Eb(t).
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B. Battery replacements

In order to obtain an integer number of battery replace-

ments, we propose a solution in which two slightly modified

optimization problems are solved:

P1) First, a convex problem is solved where the number of

battery replacements is relaxed to a real number, i.e.

Jb(·) =
wb

ddcEthmax

∫ tf

t0

|Pb(t)| dt. (17)

Let Ñ∗
r be the optimal number of replacements found

by solving the relaxed problem.

P2a) Then, a convex problem is solved where the number

of battery replacements in the cost function is fixed to

Nrmax = ceil(Ñ∗
r ), giving the battery cost

Jb(·) =
wb

dv
(Nrmax + 1)n. (18)

At the same time a constraint is induced on the energy

throughput to ensure that Nrmax is not exceeded, which

can be written as∫ tf

t0

|Pb(t)|dt ≤
ddc
dv

(Nrmax + 1)Ethmaxn. (19)

P2b) If ceil(Ñ∗
r ) > 0, then the same problem as in P2a) is

solved, but with Nrmax = ceil(Ñ∗
r )− 1.

The nearest integer to Ñ∗
r that minimizes the total cost in

P2a) and P2b) is chosen the optimal solution.

C. CVT

Similarly as with the battery, the CVT can be modeled as

convex by replacing the gear ratio r(t) with a variable

Et(t) = ω2
t (·) = ω2

d(t)r
2(t) (20)

expressing nominal kinetic energy of an object with inertia of

2 kgm2. This will allow (1) to be written as convex

Pm(t) + Pe(t) = A1(t) + nA2(t) + Pbrk(t) +
I(t)

2
Ėt(t).

(21)

Accordingly, the constraint (9g) will change to

Et(t) ∈ [r2min, r
2
max]ω

2
d(t). (22)

D. ICE and EM

Due to the variable Et(t) introduced in (20), we seek

models for the ICE and EM power limits and losses that are

convex (concave for the motoring limits) in Et(t) (i.e. ω2
t (·)),

besides Pe(t) and Pm(t). In the following, we study specific

examples of ICE and EM, illustrated in Fig. 3(a), that will be

used later in Section IV.

1) Approximation of power limits: A quick investigation of

the ICE and EM depicted in the middle row of Fig. 3(a), shows

that the power limits are indeed convex/concave in ω2
t (·). A

straightforward concave approximation of the ICE power limit

can be obtained by a piecewise affine function,

Pemax(·) = min
{
a0j + a1jω

2
t (·)

}
= min {a0j + a1jEt(t)} , j = 1, ..., ke,

(23)

where we have chosen ke = 4 affine pieces for the model in

Fig. 3(b).

Similarly, the EM power limits are approximated with two

pieces, one with constant power and the other with constant

torque,

Pmmax(·) = min
{
b01, b11

√
Et(t)

}
(24)

Pmmin(·) = max
{
b02, b12

√
Et(t)

}
(25)

where b01, b11 > 0 and b02, b12 < 0.

2) Approximation of power losses: It is shown also in Fig.

3(a) that the ICE losses, in the non-shaded region, and the

EM losses, in the entire region, appear convex in both power

and speed squared. When approximating the ICE losses we

disregard the shaded region, because it can be expected that

the optimal control will avoid operation at high speeds. This is

because for any ICE power, the optimal speed is outside the

shaded region (see the optimal efficiency line in Fig. 3(a)),

unless a higher speed is enforced by the lower limit of (22).

This could happen for very high demanded speed, not typical

in normal vehicle operation, and therefore, the misfit in the

shaded region will have small influence on the results.

Functions approximating power losses have been found by

fitting a second order polynomial in speed squared, power

and torque. Similarly as with the battery, new variables are

introduced and the losses are relaxed with inequality,

Be(t) ≥ e(t)d0 + d1ω
4
t (·) + d2Pe(t) + d3

P 2
e (t)

ω2
t (·)

= e(t)d0 + d1E
2
t (t) + d2Pe(t) + d3

P 2
e (t)

Et(t)

(26)

Bm(t) ≥ m(t)g0 + g1ω
2
t (·) + g2|Pm(t)|+ g3P

2
m(t)

+ g4
P 2

m(t)

ω2
t (·)

= m(t)g0 + g1Et(t)

+ g2|Pm(t)|+ g3P
2
m(t) + g4

P 2
m(t)

Et(t)
.

(27)

The coefficients in front of the nonlinear terms are positive,

and hence, the losses are convex in Pe(t), Pm(t) and Et(t).
The signals e(t) and m(t) are used to remove the idling losses

when the ICE is off and the EM is off and not rotating.

Therefore, the EM idling losses are removed when the vehicle

speed is zero, i.e.

m(t) =

{
0, ωd(t) = 0

1, otherwise.
(28)

The difference in fuel and electric energy consumption of

the original and approximated ICE and EM maps, is shown in

Fig. 4. It can be noticed that for most of the operating points
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Fig. 3. ICE and EM models. In each sub-figure the ICE model is in the left column, and the EM model is in the right column. The contour lines in the
top two rows show efficiency maps, while torque/power limits are depicted by the thick solid lines. The dashed lines depict torque-speed points of optimal
efficiency for a given demanded power. The shaded region in the top two rows is not considered when approximating the ICE losses.
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between operating points of the original and approximated ICE and EM
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contour lines.

(excluding the shaded region in the ICE map), the difference

is within [−2, 2]%. Further investigation of the accumulated

error, after simulating the vehicle against a certain driving

cycle, is performed in Section V.

3) Slipping the clutch: To improve vehicle efficiency,

(P)HEVs typically turn the ICE off at low speed and power

demands. However, depending on the vehicle and the driving

mission, it might be necessary to keep the ICE on at certain

time instances where the speed ωt(·) has to drop below the

ICE idling speed. In an actual vehicle this can be achieved by

e.g. slipping the clutch. However, it can be easily concluded

that the convex ICE model will not allow ICE operation at

very low speed, and even one such time instance will yield the

optimization problem infeasible. This is easier to investigate

if the ICE and the slipping clutch are considered as one unit,
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Fig. 5. The ICE and the clutch as a single unit. The clutch is slipping when
operating within the shaded region.

as in Fig. 5. The maximum power of this unit is not concave

in ω2
t (·) and the concave approximation (23) will not allow

ICE operation left of the dashed line in Fig. 5.

A solution to this problem, that does not infringe convexity,

can be obtained by switching the ICE model based on a known

signal, e.g. ωd(t). Each time ωd(t) drops below a threshold

ωslipp, the ICE power will be limited by

Pemax(·) = Temax(ωidle)
√

Et(t) (29)

instead of (23). The torque Temax(ωidle) is the maximum

torque the ICE can deliver at idling speed.

While slipping the clutch, within the shaded region in Fig.

5, the CVT gear ratio has to be high. Therefore, the threshold

ωslipp can be found as

ωslipp =
ωidle

rmax − ε
(30)
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TABLE I
CONVEX OPTIMIZATION PROBLEM.

minimize

Jo(Pe(t),Be(t),Pc(t)) +

{
wb

ddcEthmax

∫ tf
t0

|Pb(t)| dt, case P1
wb
dv

(Nrmax + 1)n, case P2

subject to

Pm(t) + Pe(t) = A1(t) + nA2(t) + Pbrk(t) +
I(t)
2

Ėt(t)
Pc(t) + Pb(t) = Pm(t) + Pa +Bm(t) +Bb(t)

Bb(t) ≥ RC
P2

b (t)

2Eb(t)+Cu2
0n

Be(t) ≥ e(t)d0 + d1E2
t (t) + d2Pe(t) + d3

P2
e (t)

Et(t)

Bm(t) ≥ m(t)g0 + g1Et(t) + g2|Pm(t)|+ g3P 2
m(t) + g4

P2
m(t)

Et(t)

Pbrk(t) ≤ 0

Pe(t) ∈
{
[0, e(t)min {a0j + a1jEt(t)}] , ωd(t) > wslipp,[
0, e(t)Temax(ωidle)

√
Et(t)

]
, ωd(t) ≤ wslipp

Pm(t) ∈ m(t)
[
max

{
b02, b12

√
Et(t)

}
,min

{
b01, b11

√
Et(t)

}]
Pc(t) ∈ [0, c(t)ηcPcmax]

Pb(t) ∈ [imin, imax]
√

n
(

2
C
Eb(t) + u2

0n
)

Ėb(t) = −Pb(t)

Eb(t) ∈ C
2

([
u2(smin), u

2(smax)
]− u2

0

)
n

Eb(tf ) = Eb(t0)
Et(t) ∈ [r2min, r

2
max]ω

2
d(t)

n ≥ 0∫ tf
t0

|Pb(t)|dt ≤
{
+∞, case P1
ddc
dv

(Nrmax + 1)Ethmaxn, case P2

t ∈ [t0, tf ], j = 1, ..., ke
Optimization variables are: Pbrk(t),Pe(t),Pm(t),Pc(t),Pb(t),
Be(t),Bm(t),Bb(t),Eb(t),Et(t),n.

where ε is a small positive number that can be used to allow

limited freedom in the choice of gear. If, instead, it is assumed

that the CVT must have the highest gearing, then ε can be set

to zero, and (29) can be simplified to

Pemax(·) = Temax(ωidle)ωd(t)rmax. (31)

The ICE losses (26) can also be replaced by any other

function convex in Pe(t) and Et(t) when the clutch is

slipping. In the rest of this paper we have chosen the same

losses (26) for the whole speed range.

Finally, the convex optimization problem can be summa-

rized as in Table I.

IV. OPTIMIZATION EXAMPLE

This section gives an example of optimal battery dimension-

ing of a plug-in hybrid electric city bus. The bus is driven on

a bus line that has opportunity of installing charging stations

on 28 bus stops, as in Fig. 6. The charging infrastructure is

to be developed at the same time the bus is dimensioned, and

we are interested in finding the optimal battery vs. number

of stations, assuming that the bus cannot stay (charge) longer

than 20 s at the bus stops. Moreover, it is of interest to find the

optimal magnitude of charging power vs. number of stations,

if the absolute maximum a charging station can provide is

250 kW.

The bus is equipped with 135 kW Diesel ICE and ±100 kW

EM as in Fig. 3(a). The battery cell, ANR26650M1, is a high

power Lithium Ion cell from A123 Systems. The value for

the energy throughput is based on experimental data of the
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50
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Bus stops with
charging opportunity

Fig. 6. Bus line with charging opportunities. The bus starts and ends the
route at the same bus stop.

cell operated under constant conditions, [20], [12]. Depending

on temperature, charge/discharge rate and depth of discharge,

the battery throughput may vary from about 2000Ah to

20 000Ah. A PHEV is typically not operated under constant

conditions, and is very likely to utilize the battery in relatively

high charge/discharge rates. Nevertheless, we have chosen

an optimistic value of 16 800Ah, and considering the nearly

constant open circuit voltage, the cell’s energy throughput is

rounded to 55.4 kWh.
The allowed SOC range is within 25-75% and the operation

is charge sustaining with free final SOC.

A. Engine on/off control
We have adopted a heuristic engine on/off control strategy

that has been proposed in [11]. The strategy is based on the

knowledge that the engine is most efficient at high torque and

medium speed, as illustrated in Fig. 3(a). Thus, ICE operation

at low power demand is avoided. Each time the power of the

baseline vehicle (battery with nbase cells) exceeds a threshold

P ∗
on, the engine is turned on, i.e.

e(t) =

{
1, A1(t) + nbaseA2(t) > P ∗

on

0, otherwise.
(32)

The optimal power threshold P ∗
on is found by iteratively

solving the convex problem for several gridded (discrete)

thresholds within the power range of the vehicle. The threshold

is also recomputed for the different charging configurations.

B. Sampling time
The convex optimization problem is written in discrete time

using first order Euler discretization (see e.g. [11]). Then a

package is used, CVX [21], [22], to translate the problem into

a form required by the solver, SeDuMi [23]. The problem

is nonlinear, second order cone [17], where the number of

variables depends on the sampling time, because in the discrete

domain each time dependent variable becomes a vector of

optimization variables (a variable per time instance).
We have investigated sampling time from 0.25 to 8 s, while

running the code on a standard PC (4GB RAM, 2.67GHz dual

core CPU). The computational time and relative error in total

cost are given in Fig. 7, where the baseline cost is obtained

with 0.25 s sampling. In order to keep the computational time

down, less than 100 s, the remaining results in this paper are

obtained with 1 s sampling time. This gives relative error in

total cost of about 2%.
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Fig. 8. Optimal results vs. charging configuration. The dotted line in the
bottom left plot shows the number of battery replacements that would be
needed, if the limit on throughput is applied after the optimization has finished.

C. Optimal battery size and charging power

One of the questions this work investigates is whether or

not the inclusion of the battery wear model brings significant

changes to the optimal battery size and PHEV energy man-

agement. For this reason we show the optimal results in Fig.

8 for a battery model with unlimited energy throughput, and

a model with limited throughput.

When energy throughput is not limited, we observe similar

results to those published in [24]. The battery size first in-

creases with the number of charging stations to make room for

the available grid energy, thus charging with full grid power.

At the same time the vehicle is increasingly driven on electric

power and the cost for consumed Diesel fuel decreases. When

the number of charging stations reaches 14, the vehicle is

capable to drive almost entirely on electric power. With greater

number of stations the battery size starts to decrease as well

as the average charging grid power. However, this operation

requires significant amount of cycled battery energy. If the

limit on energy throughput is applied after the optimization has

finished, the battery would need more than 20 replacements

within the lifetime of the vehicle.

When the limit on energy throughput is considered in

the optimization, the results are noticeably different. In this

case the battery size is about 6 kWh (entire energy content)

regardless of the number of charging stations. Furthermore,
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Fig. 9. Optimal results for an infrastructure with 5 charging stations. The
solid lines, in the left column, show results for the battery model with limited
energy throughput. The dotted lines show the corresponding results (same
marker), but for a battery with unlimited throughput. The optimal operating
points, in the right column, are shown by dot markers for the battery with
limited throughput, and with circles for the battery with unlimited throughput.

the optimization refocuses on lowering the cycled battery

energy resulting in grid charging power of less than 25 kW

and requiring no more than 3 pack replacements.

D. Optimal energy management

To investigate the optimal energy management in more

details, we have chosen one specific configuration with 5

charging stations. The results are shown in Fig. 9.

When energy throughput is not limited, the battery uses

most of its available SOC range. The optimization has sized

the battery to allow cell operation mainly at greater than 90%

efficiency, except during brake regeneration and grid charging,

when operation at lower efficiency is also taking place. When

energy throughput is limited, the battery does not use more

than 10% SOC and the operation is kept within the 90%

efficiency region. To further reduce losses, the operating points

are located closer to the upper SOC limit where the open

circuit voltage is slightly higher.

The optimal distribution of CVT gear ratio is similar in

the two cases. When the ICE is on, the optimal gear ratio

is typically low, thus allowing the ICE to operate at higher

torque. When operating in electric mode, high gear ratio is

also common, thus allowing the EM to operate at high speed

and low torque. The ICE operating points, depicted in the

bottom right plot in Fig. 9, are scattered mainly along the

optimal efficiency line.

E. Influence of cell energy throughput

In Fig. 10 we show the influence of cell energy through-

put on the total optimization cost and the number of pack

replacements. We vary the limit on cell energy throughput in

the interval [10-400]kWh, while assuming, for simplicity, that

the cell price and all remaining parameters stay unchanged.
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The results could be used to indicate a more suitable

battery cell for the studied application. For example, if a

hybrid electric bus (not plug-in) is requested to cost about

40EUR/100km (operational and battery cost), then a battery

cell has to be chosen with about 300 kWh energy throughput.

If the bus is plug-in and the infrastructure is equipped with

charging stations on all bus stops, then the same cost can be

reached using a cell with about 100 kWh throughput. If the

plug-in bus is requested to cost about 30EUR/100km, then the

bus line should be equipped with at least five charging stations,

regardless of the cell’s throughput. A demand to never replace

the battery within five years lifetime period of the non-plug-in

bus can be reached by choosing a cell with energy throughput

of about 250 kWh, or higher.

V. VALIDATION WITH DYNAMIC PROGRAMMING

The difference from the globally optimal solution is vali-

dated by comparing results with those obtained by DP. The

comparison is performed only on a sub-problem of (9) in

which battery wear is not included, battery size is kept

constant, and the final battery SOC (and consequently the

initial SOC) is not free. The reason for doing this is to

keep the computational time down. Recall that in DP the

computational time is exponential to the number of states, and

(9) has two states, SOC and CVT gear ratio, and a design

parameter, battery size, which can be considered a third state.

Moreover, the ceil function in the objective, or the limit on

battery replacements, will require an additional state for energy

throughput. Additional DP iterations are also needed to allow

free final SOC while sustaining the initial charge. In terms of

computational effort, this corresponds to including a fifth state

in the problem.

In effect, the considered sub-problem requires only two

states, SOC and CVT gear ratio. Furthermore, in order to

emphasize validation of the ICE model approximation, an

infrastructure is considered without charging opportunities,

which promotes longer ICE operation. Then, the objective

function is simply formulated to minimize fuel consumption.

We apply Bellman’s principle of optimality, [10], to

solve the problem via backwards recursion. Denoting with

J∗
DP (s(tk), r(tk), tk) the cost matrix holding the optimal cost-

to-go from states s(tk), r(tk) to the desired final state at time

tf , the optimization problem, at a time instance tk, can be
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Fig. 11. The solid line in the left plot shows relative difference in fuel
consumption between the optimal fuel consumption obtained by convex
optimization, and the global optimum obtained by DP. The dashed line shows
difference in fuel consumption due to utilisation of approximated ICE, EM,
and battery model. The right plot shows the computational time of DP vs.
number of grid points for the discrete state and input spaces.

formulated as follows

J∗
DP (s(tk), r(tk), tk) = min

zr(tk),Te(tk)

{

Te(tk)r(tk)ωd(tk)Δt+ J∗
DP (s(tk+1), r(tk+1), tk+1)

}
s.t.: (1), (2), (4), (9b), (9d) at tk,

s(tk) ∈ S ⊆ [smin, smax]

r(tk) ∈ R(tk) ⊆ [rmin, Rmax(tk)]

Te(tk) ∈ Te ⊆ [0, Temax]

zr(tk) ∈ R(tk+1) ⊆ [rmin, Rmax(tk+1)]

tk ∈ T ⊆ [t0, tf ].

Control signals are the engine torque Te(tk) and the desired

gear ratio at the next time instant, zr(tk) = r(tk+1). The cost

at the final time is a penalty for violating the battery charge

sustaining constraint. We chose a linear penalty function

J∗
DP (s(tf ), r(tf ), tf ) = 1000 · |s(tf )− s0|.

Discrete values are used for the states and control signals,

and the derivatives are replaced with a difference. The grid

resolution of the discrete sets, T , S , R(tk) and Te determines

the accuracy of the solution. The same sampling time Δt = 1 s

has been used as in the convex problem, while the number

of grid points for the remaining discrete sets have been

varied from 21 to 101, uniformly spaced within the signals’

boundaries. In order to avoid infeasibility when using a sparse

grid, the set R(tk) has been varied at each time instant,

such that it contains the same number of grid points within

the interval [rmin, Rmax(tk)]. The upper limit on gear ratio

Rmax(tk) is computed as

Rmax(tk) =

{
min {rmax, wtmax/wd(tk)} , wd(tk) > 0

rmax, wd(tk) = 0

where wtmax is the maximum speed the ICE and EM can

deliver.

The validation results for a 4.5 kWh battery (entire energy

content) and SOC initialised to 50% are shown in Fig. 11.

The difference in fuel consumption is expressed as a relative

error

Fuel cons. convex - Fuel cons. DP

Fuel cons. DP
× 100.
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It can be observed that when using a sparse grid, the

convex optimization is actually more accurate than DP (look

for negative error in Fig. 11). For a grid with 101 points a

more accurate result is obtained, showing improvement in fuel

consumption by 1.01%, but the price to pay is more than

30 hours computational time. The results coincide to those

published in [25], where it has been observed that the error

due to the on/off heuristics (32) is in the order of 1%, and

typically lower.

The error induced by approximations has been investigated

by comparing the global optimum of DP with the optimum

of another instance of DP evaluated with the approximated

ICE, EM and battery models. The results are presented in Fig.

11, showing an average error that is less than 1%, which at

101 grid points is 0.86%. The approximation error has also

been investigated by mapping the optimal ICE operating points

from the convex optimization to the original ICE model. This

gave a fuel consumption error of 0.82%, averaged over the

different charging configurations.

VI. DISCUSSION AND FUTURE WORK

In addition to the presented method for optimal battery

dimensioning and power-split control of a CVT PHEV power-

train, we provide some aspects concerning problem pretreat-

ment and we discuss future work.

A. Numerical challenges and pretreatment

With the chosen driving cycle the optimization problem has

a moderate size even when sampling time is 0.25 s. (SeDuMi,

which solves the dual problem for improved efficiency, reports

470 000 variables and 170 000 equality constraints.) However,

the optimization will require long computational time and may

be subject to numerical challenges that would arise for long

driving cycles, when, e.g., the bus is to be driven on several

bus lines.

In this study several measures have been taken to shorten the

computational time. The braking power, a slack variable, has

been taken outside the optimization by relaxing the equality

in (21) with inequality (see [11] for details). The variables

constrained to a certain value have also been removed from the

optimization. For example, the grid, ICE and EM power (and

losses), may be non-zero only at time instances with charging

opportunity, or when e(t) = 1 and m(t) = 1, respectively. All

variables are scaled so that their values belong to a similar

range.

One of the most important pre-processing steps is writing

the problem in a sparse matrix form [17]. In this study we

allowed CVX to decide on the problem sparsity, while special

attention to this topic will be paid in future studies.

B. Future work

Despite using a very simple battery wear model, this study

indicated that completely omitting a wear model may cause

unrealistic sizing of (P)HEV powertrains. This motivates fu-

ture studies incorporating a more detailed battery wear model.

Some steps in this direction have already been taken in [15],

where it has been shown that it is possible to include a c-

rate dependent throughput based battery wear model in convex

optimization. Further studies will investigate the possibility of

including the dependence on other factors, such as depth of

discharge and temperature.

Future studies may focus on applying the method to longer

driving cycles using distributed optimization, [26]. Improved

ICE on/off control and a generalization of the ICE and EM

approximations is a major topic to be also considered in future

studies.

APPENDIX A

DATA AND MODELING

Given the longitudinal vehicle velocity v(t) and road gradi-

ent α(t), the dissipative forces the vehicle encounters are the

aerodynamic drag and the rolling resistance

Fa(t) =
ρaAfcd

2
v2(t), Fr(t) = mt(n)gcr cosα(t).

Then, the mechanical power balance equation is((
Iv
r2w

+mt(n)

)
v̇(t) +mt(n)g sinα(t)

)
v(t)

+ (Fa(t) + Fr(t)) v(t) = (ηdηt)
sgn v̇(t) (Pm(t) + Pe(t))

− η
sgn v̇(t)
d

(
It + η

sgn v̇(t)
t (Im + Iee(t))

)
×

(
r2(t)ω̇d(t)ωd(t) + ṙ(t)r(t)ω2

d(t)
)
− P̃brk(t).

After applying the following changes

mt(n) = mv + nmc, ωd(t) = rd
v(t)

rw
,

A2(t) = mc
v(t) (gcr cosα(t) + g sinα(t) + v̇(t))

(ηdηt)sgn v̇(t)
,

A1(t) =
mv

mc
A2(t) + v(t)

Fa(t) + Iv
v̇(t)
r2w

(ηdηt)sgn v̇(t)
,

Pbrk(t) =
P̃brk(t)

(ηdηt)sgn v̇(t)
, I(t) =

It

η
sgn v̇(t)
t

+ Im + Iee(t),

the form that has been used in (1) can be obtained. Parameter

values are given in Table II. The battery depreciation expenses

are as described in [11].
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