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1. Introduction

The introduction of computer vision systems into the area of road traffic management opens wide 
opportunities  for  making  the  roads  safer  and  more  convenient.  Possible  applications  for  such 
systems can include:
– smart control over traffic lights using a feedback information on the traffic situation from a traffic 
analysis system;
– detection of violations of the traffic rules, as well as accidents and other emergency situations on 
the road;
– on-board vehicular safety systems for prevention of accidents and mistakes in driving;
– information systems for drivers providing real-time data on congestions and other problems on the 
roads;
– applications for journey time estimation depending on the current traffic situation;
– gathering long-term statistics on traffic situation in different time of the day, days of the week, 
seasons etc. for planning of  urban development.

For these purposes, various traffic analysis systems are being developed and implemented now. The 
aim of  this  thesis  project  is  to  study the  applicability  of  different  image  analysis  and  pattern 
recognition  methods  for  the  task  of  detection  and  tracking  of  vehicles  on  the  road  based  on 
grayscale  video  sequences  taken  in  different  situations  (static  or  moving  camera,  daytime  vs. 
nighttime conditions, etc.).

The main elements of a basic road traffic analysis system are the following:
– detection of new vehicles that appear on the road;
– tracking of the vehicles movement;
– conversion from image to world coordinates in order to be able to obtain the results in a 
practically useful form.
From the data generated by these elements, statistical information on the traffic is extracted.

This thesis work is described in the following order. In Part 2, the state of the art in the traffic  
analysis methods is briefly described. In Part 3, the methods used in the conducted experiments are 
explained in details. In Part 4, the description of the traffic analysis mechanism, both for the cases 
of static and moving camera, is provided. In Part 5, the conducted experiments with real video 
sequences and their results are described. Finally, the conclusion on the work is given in Part 6.
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2. Previous work

Object  detection and tracking using the information from video sequences  has been a  topic  of 
intensive research for the recent two decades. In this part of the work, the methodology developed 
for the different stages of the process is briefly summarized. In Chapter 2.1, methods for object 
detection used for identification of vehicles on the road are described. In Chapter 2.2, techniques for 
tracking the object movement are given. Finally, in Chapter 2.3, the possible approaches for the task 
of finding the correspondence between the object coordinates in the image and in the real world are 
mentioned.

2.1. Detection of vehicles

One of the possible approaches aims to detect moving objects on a static background (background 
subtraction). The background can be extracted by median filtering of each pixel location in time 
domain using a sufficiently large number of consecutive frames [28]; however, usually it requires 
for the camera to be perfectly stable. M.Piccardi [29] mentions the methods that build a statistical 
model of gray levels at each pixel location. A more sophisticated method developed by P.M.Jodoin 
et al. [5], [22] analyzes the statistics of frequency of gray level changes at each pixel position in 
order to decide whether this pixel belongs to the background or a moving object.

In  cases  where  a  static  background  cannot  be  directly  estimated  due  to  significant  camera 
movement, the methods of camera motion estimation and compensation are used. M.Munderloh et 
al. [25] proposes a technique that uses a grid of tracked points for the camera motion estimation and 
compensation.  T.Kanade et al. [27] applies RANSAC and Markov model to distinguish between 
trajectories of background and foreground points in a video sequence taken with a moving camera; 
this is the used for image segmentation between background and foreground objects. R.Dahyot [28] 
proposes  an  iterative  method  that  estimates  the  camera  translation  and  changes  of  the  camera 
parameters between frames instead.

Different approaches to the problem of detection use a model of the relevant type of objects. Such 
models can be global, i.e. describing the properties of an object as a whole, or based on some local  
features  of  the  type  of  objects  that  needs  to  be  detected.  Zhang  et  al.[32]  proposes  an  object 
detection method using a set of gray level histograms. M.Murshed et al.[34] uses a method based on 
edge detection and analysis of edge displacement between consecutive frames. For identifying a 
relevant  object  in  the  image,  many  methods  apply  various  kinds  of  feature  points,  such  as 
histograms of oriented gradients (HOG) proposed by N.Dalal and B.Triggs in [12], scale-invariant 
feature  transform  (SIFT) developed  by  D.Lowe  [30],  or  speeded-up  robust  features  (SURF) 
developed by H.Bay et al.[33].

Some methods actually detect particular details specific for vehicles (wheels, symmetric rectangular 
elements, etc.).  T.Kanade and H.Schneiderman [31] proposed a method of detection of objects by 
their specific parts using the wavelet transform. N.Kanhere in [6] used Haar-like features to detect 
rectangular elements of vehicles.

Detection methods based on some local details or feature points of relevant objects usually include 
an object model describing co-occurrence of the features for more reliable detection [35].

6



2.2. Tracking of vehicles

The most straightforward approach to tracking the vehicles is the template-based tracking, which 
search for a correspondence with a sample image of the object. D.Mohr and G.Zachmann [41] use a 
tracker based on the silhouette shape matching. F.Jurie and M.Dhome [40] proposed a method that 
uses splitting the object template into sub-templates. A.Cavallaro et al.[21] developed an algorithm 
that  splits  each  object  into  segments  and  uses  an  individual  template  for  each  segment.  This, 
however, can pose a problem of distinguishing between fragments of objects, single objects and 
close group of objects; this problem is addressed in [36]. 

When the objects to track are represented as a set of specific details or feature points, it opens an 
opportunity for tracking based on the feature point correspondence.  C.Buarque et al. in [38] uses 
this approach with SIFT, and Hu Shuoa et al. in [39] – with SURF feature points. A.Ladikos et al.
[23]  combines  the  template-based method with  feature  points  obtained with  a  corner  detection 
algorithm.

Another approach to object tracking is to model the object with its global characteristics and search 
for an image region with the best possible match to these characteristics. D.Comaniciu et al.[19] 
developed a tracking procedure based on the mean shift algorithm and the object representation as a 
color histogram. B.de Villiers et al.[47] improved this algorithm by adding a more sophisticated 
object representation and a trajectory prediction with Kalman filter for better occlusion handling.

On  the  other  hand,  the  tracker  can  simultaneously  consider  several  hypotheses  on  the  object 
trajectory and make a  final  decision  between  them later.  Y.Rui  and  Y.Chen [45]  proposed the 
particle  filter  tracking  algorithm  that  generates  multiple  hypotheses  on  the  object  location 
("particles"),  checks  their  correspondence  with  the  object  model,  and  make  decisions  to  drop 
improbable  hypotheses  and  use  only  highly  probable  ones  for  predicting  the  further  object 
movement. Ch.Yang et al. [46] developed a more sophisticated version of the particle filter method: 
it uses a double representation of the object – in a color histogram and edge orientation histogram 
form.  Ch.Chang  et  al.[44]  combined  the  mean  shift  and  particle  filter  ideas  in  their  tracking 
algorithm. The particle filter method also allows to use a "track before detect" approach, as in [37] 
by D.J.Salmond.

Some  alternatives  to  these  common  approaches  also  exist.  A.Yilmaz  et  al.  developed  several 
versions of an algorithm tracking the contours of objects [48][49]. A.Bhattacharyya et al.[42] tracks 
vehicles on the road using optical flow.

2.3. Conversion between image and world coordinates

The conventional approach to the task of finding the correspondence between the image and world 
coordinates includes camera calibration, i.e. finding the intrinsic and extrinsic parameters of the 
camera.  This  can  be  done using  a  two-  or  three-dimensional  reference  object,  as  proposed  by 
S.Upadhyay et al. in [24]. N.Kanhere [6] describes a method of camera calibration using known 
details of the scene.

For a more general task of scene reconstruction, I.Gordon and D.Lowe [43] build a 3D model of the 
scene by combining information from different frames taken with a moving camera and using SIFT 
features to establish correspondence between the scene details in different frames.
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An alternative approach is proposed by P.Melnyk and R.Messner in [50], who used the log-polar 
transform to mitigate the perspective instead.

The  possible  problem  of  non-linearities  in  the  correspondence  between  the  world  and  image 
coordinates and camera distortion compensation is studied in [7].
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3. Methods used in the thesis work

This part provides a detailed description of the techniques used in this thesis work for extracting the 
information  on  road  traffic.  In  Chapter  3.1,  the  method  of  describing  the  candidate  objects  is 
explained. Chapter 3.2 provides the theory of how the decision on whether a candidate object can be 
relevant  is  made.  Chapter  3.3  describes  the  mechanism  of  object  tracking.  After  this,  the 
mathematics  of  correspondence  between the  image and the  real-world  coordinates  is  given;  in 
Chapter 3.4, conversion from the world to image coordinates is described, and Chapter 3.5 shows 
the solution of the inverse problem for the particular case of a 2-dimensional road plane in the 
world coordinates.

3.1. Histogram of oriented gradients (HOG) as an object descriptor 

In this thesis work, for the static camera scenarios, background subtraction using statistical filtering 
was implemented, which is a simple method explained in Chapter 4.2 within the description of the 
whole algorithm of image processing and analysis for the static camera. In the moving camera case, 
a more sophisticated mechanism including an SVM classifier based on HOG as object features is 
needed, which is described below.

The histogram of oriented gradients (HOG) is a method of object shape representation used for 
object detection. It divides the image of the object into a predefined number of regions (cells) and 
builds a histogram of image gradient orientations for each cell. Then the cells are combined into 
larger regions (blocks), and gradient orientation histograms for each block are built, normalized by 
average gradient  magnitude  in  order  to  minimize the  influence of  contrast  differences  between 
different images of the same type of objects [12, p.2].

For computing a histogram of oriented gradients, first the gradient magnitude ρ(x,  y) and gradient 
direction ω(x, y) are calculated for all pixel locations (x, y) of the object image:

                 ________________
ρ(x, y) = √DX

2(x, y) + DY
2(x, y) (3.1)

{ω(x, y) = atan
DY(x, y)

(3.2)
––––––––––––––

DX(x, y) 
– π ≤ ω < π

where DX and DY are the image gradients in the horizontal and vertical direction, respectively.

Every pixel location  (x,  y) is assigned to a corresponding cell. If the size of the object image is 
xMAX×yMAX pixels, and the cell grid consists of NX × NY cells, the grid coordinates of the cell (CX, CY) 
to which a particular pixel location (x, y) belongs, are:

CX(x, y) = 
│
│
└

(x – 1) NX 
––––––––––––––––

xMAX

│
│
┘

+ 1                         (3.3)
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CY(x, y) = 
│
│
└

(y – 1) NY
––––––––––––––––

yMAX

│
│
┘

+ 1                         (3.4)

For each cell, a histogram of gradient directions is built. For the number of bins  NB, the bin  b to 
which a particular direction ω corresponds, is calculated the following way:

b (x, y) = 
│
│
└

(ω(x, y) + π) NB 
––––––––––––––––––––––––

2 π

│
│
┘

+ 1                (3.5)

and then the values of the cell histogram  HC for every cell (i,  j) and bin  k are computed as an 
average gradient magnitude within the cell for the directions corresponding to this bin [4, p.4]:

HC (i, j, k) = ∑ρ(x, y)
––––––––––

Aij

│CX(x, y) = i
│CY(x, y) =j
│b (x, y) = k

(3.6)
x, y

Fig.  3.1.  Combining  cells  into 
blocks for HOG.

where Aij is the area (number of pixels) of the cell (i, j).

As soon as the histograms for individual cells are made, they 
are combined together to form block histograms. For the blocks 
consisting  of  NI ×  NJ cells  each,  a  cell  Cij with  the  grid 
coordinates  (i,  j)  is  included  into  a  block  Bpq with  the  grid 
coordinates (p, q) if

Cij ∈ Bpq   if:

  (p ≥ i)∩(p ≤ i + NI – 1)∩(q ≥ j)∩(q ≤ j + NJ – 1)           (3.7)

and the block histogram is formed as a concatenation of cell 
histograms for all cells within the block (see Fig. 3.1) [4, p.4]:

HB0 (p, q) = 

┌
│
│
│
│
└

HC (p, q)              HC (p+1, q)         …       HC (p+NI–1, q)
HC (p, q+1)          HC (p+1, q+1)     …       HC (p+NI–1, q+1)
 …
HC (p, q+NJ–1)    HC (p+1, q+NJ–1)   …    HC (p+NI–1, q+NJ–1)

┐
│
│
│
│
┘

(3.8)

where
HB0  is the unnormalized block histogram,
(p, q) are the grid coordinates of the block,
NI and NJ are the number of cells in the block in the horizontal and vertical direction, respectively.

Finally,  each  block  histogram  is  normalized  in  order  to  suppress  the  influence  of  contrast 
differences and noise [11, p.5]:

HB (p, q) = fN (p, q) HB0 (p, q)                                             (3.9)
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where
HB  is the resulting normalized block  histogram,
fN  is the normalization factor [15, p.2]:

_________________________

fN (p, q) = √ 1
–––––––––––––––––––––––––––––––––––––––––

║HB0 (p, q)║2 + K μ {HC}                         (3.10)

where 
║HB0 (p, q)║ is the norm of the unnormalized histogram for the (p, q) block,
μ {HC } is the mean of the whole cell histogram for all cells,
K = 0.1 is the proportionality coefficient.

3.2. Support vector machine (SVM) as an object classifier
 
In practice,  for the task of object detection in images,  the HOG descriptor is combined with a 
classifier algorithm, which makes a decision on whether a particular object candidate can be an 
object of the relevant type. In this thesis work, the Support Vector Machine (SVM) classifier is used 
for  this  purpose.  The  SVM assigns  any given  object  to  either  of  two  classes:  +1  or  –1.  The 
classification mechanism is based on training samples, which have their class known, and tries to 
separate them with a hyperplane drawn at the maximum possible distance from the nearest samples 
(see  Fig.  3.2a).  This  means  that  the  hyperplane  (shown in  solid  gray line  at  Fig.  3.2)  has  the 
following equation [17, p.2]:

wT f(Xi) + a = 0        (3.11)

where 
Xi is the vector of object features (the HOG in our case);
f(.) is the function that maps the object features vector onto a feature space where the two classes of 
objects are linearly separable;
w is the normal vector to the hyperplane;
a is the offset constant depending on the coordinate system.

For all training samples, the following condition holds [17, p.2–4]:

ci (wT f(Xi) + a) ≥ 1 (3.12)

where ci   is the class where the sample Xi belongs to (either ci   = 1 or  ci    = –1). The samples for 
which the equality in (3.12) holds are called the support vectors.

The distance from a point Xi in the feature space to the separating hyperplane is [17, p.3]:

d (Xi, (w, a)) = 
| wT f(Xi) + a |

≥
1

(3.13)––––––––––––––––––––––– ––––––––

║w║2 ║w║2

Therefore, as it can be seen at Fig. 3.2a, the distance between the margins (shown in dashed gray 
lines) of different classes is [17, p.3]:
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dM = 2 min {d (Xi, (w, a))} = 
2

(3.14)–––––––––

║w║2

However, in some practical cases the separating hyperplane does not exist (see Fig. 3.2c). In order 
to handle such situations, the classifier is designed to minimize the probability of classification error 
instead. In this case, the condition (3.12) has the following form [17, p.3]:

Fig. 3.2a. SVM classifier for a 
case when the samples can be 
linearly separated.

Fig. 3.2b. SVM classifier for a 
case of sample groups separable 
with a mapping function.

Fig. 3.2c.  SVM classifier  using 
a  mapping  function  for 
inseparable groups of samples.

{ci (wT f(Xi) + a) ≥ 1 – εi 

εi  ≥ 0 
(3.15)

where εi   is the error for the case  Xi; it also needs to be mentioned that this situation leads to a 
classification error only if  εi   ≥ 1, due to the nonzero distance between the margins of the areas in 
the feature space that the classifier intends to separate with a hyperplane.

This  means  that  the  task  of  building  an  SVM classifier  can  be  formulated  as  an  optimization 
problem [17, p.3]:

{
dM = 

2
 → max      (or 

║w║2

  → min )
(3.16)

–––––––––– –––––––––––

║w║2 2

C ∑ εi    → min
     i

that  needs  to  be solved under  the  (3.15)  constraints. (C is  a  constant  regulating  the  degree  of 
importance of avoiding errors in the classification of the training samples.) The Lagrangian for this 
problem has the form [17, p.3]:

 Λ(αi, λi) = 
1

║w║2 + C ∑ εi  – ∑ αi (ci (wT f(Xi) + a) – 1 + εi ) – ∑ λi εi

                       i             i                                                               i
(3.17)––– 

2

where αi ≥ 0 and λi ≥ 0 are the Lagrange multipliers.

Therefore [17, p.3–4]:
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∂Λ
 = w – ∑ αi ci  f(Xi) = 0

  i
(3.18)–––––

∂w

∂Λ
 = – ∑ αi ci  = 0

  i
(3.19)–––––

∂a

∂Λ
  = C – αi – λi = 0 (3.20)––––––

 ∂εi 

which also means that εi  = 0 if  αi  < C.

This leads to [17, p.4]:

w = ∑ αi ci  f(Xi) (3.21)
         i

a = 
1 ∑ (ci  – wT f(Xi))

  i
│
│0 < αi  < C

(3.22)–––––––

NSV 

Therefore, the decision function for classifying any new HOG vectors will be [17, p.4]::

c(X) = sign (wT f(X) + a) = sign (∑ αi ci  f(Xi)T f(X) +
                                                           i

   1
–––––––

 NSV

∑ (cj – 
  j   

– ∑ αi ci  f(Xi)T f(Xj))
     i  

│
│0 < αj  < C

)                         (3.23)

Now it is obvious that an explicitly stated mapping function f() is not necessary. It is sufficient to 
formulate  a  kernel  function  F()  that  makes  an inner  product  between the  mapping function  of 
different arguments [17, p.2–4]:

F(Xi,Xj) = f(Xi)T f(Xj) (3.24)

Several types of kernel functions exist [16, p.3]; in this thesis work, the Gaussian kernel is used:

F(Xi,Xj) = exp(– γ║Xi – Xj║2 ) (3.25)

where γ is a constant that needs to be adjusted to the particular classification problem, as well as the 
C. As recommended in [18, p.5], they are chosen between the values equal to 2 in a power of an 
integer  number  by  analyzing  the  performance  of  the  classifier  at  all  combinations  of  these 
parameters within the selected range. 
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3.3. Kernel-based mean shift tracker

In  this  thesis  work,  for  the  static  camera  case  a  specially developed variant  of  template-based 
tracker was implemented, which is described in Chapter 4.2. For the moving camera, the mean shift 
tracker described in [19] was used. In this algorithm, the sample of the object is resized to a fixed 
size, which is equal to the size of the kernel [wK, hK]; it sets greater weights to the central part of the 
object [19, p.3]. In this thesis work, the Epanechnikov kernel is used [19, p.5]:

                       (x – wK / 2)2 +  (y – hK / 2)2

K(x, y) = 1 – –––––––––––––––––––––––               (3.26)
                            (wK / 2)2 + (hK / 2)2

For the resized picture of the detected object, a gray level histogram GS is built. Each pixel of the 
resized sample is assigned to a particular bin b:

b (x,  y) =
│
│
└

g (x, y) NB

│
│ 
┘

 + 1 (3.27)

where  g is  the  gray level,  and  NB is  the  number  of  bins  in  the  histogram.  The value  of  each 
histogram bin is calculated according to the weight that the kernel sets to each pixel:

GS (i) = 

∑ K(x, y)
x, y

│
│b(x, y) = i

(3.28)–––––––––––––––––––––––––––

∑ K(x, y)
x, y             

During the object tracking process, this histogram is used as a template for comparison with such 
histograms of the object built for new locations being considered. As a criterion of similarity, the 
Bhattacharyya coefficient is used [19, p.3]:

B (G, GS) = ∑
   i

   _________
√ G(i) GS(i) (3.29)

where G is the grey level histogram for the possible new position of the object.

While processing a new video frame, for each object present by the moment, an initial gray level 
histogram G0 is built according to (3.27)–(3.28), assuming that the location of the object has not 
changed since the previous frame.

For the purpose of practical calculation of the Bhattacharyya coefficient, its approximation based on 
the Taylor series expansion is used [19, p.4]: 

B (G, GS) = 
 
∑
  i

   __________
√G(i) GS(i) ≈

1 ∑
   i

   ____________
√ G0(i) GS(i) +

1 ∑
  i

             _____________
G(i) √ GS(i) / G0(i) (3.30)––– –––

2 2

where G is the gray level histogram for a possible new location of the object being considered.
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Only the second term in (3.30) needs to be maximized, since the first term does not depend on G. 
This means that a weight depending on GS and G0 is assigned to each bin of G [19, p.4]:

w(i) = {0                                      if G0(i) = 0
   ____________
√ GS(i) / G0(i)                  otherwise

(3.31)

After  these initialization procedures,  the mean shift  algorithm is  applied to  approach to  a  new 
location of the object [19, p.4]:

[du, dv] = 

∑ [(x – wK / 2), (y – hK / 2)] w(b(x, y))
x, y

(3.32)–––––––––––––––––––––––––––––––––––––––––––––––

∑ w(b(x, y))
x, y                       

where 
b(x,  y) is the index of the histogram bin corresponding to the gray level of the pixel at the [x,  y] 
coordinates of the object sample,
[du, dv] is the found shift of the object coordinates [u, v] from the previous location.
              
Then [uo +  du,  vo +  dv] are assigned as the new values of the object coordinates [uo ,  vo],  G is 
assigned as the new value of G0, and the calculations of (3.31) – (3.32) are repeated until the stop 
condition of the algorithm is fulfilled [19, p.4]. 

3.4. Camera self-calibration based on known details of the scene for conversion 
from world to image coordinates

Camera calibration is the problem of finding the parameters of a camera that produce the given 
mapping from the 3D world coordinates (x,  y,  z) to the 2D image coordinates (u,  v).  In this thesis 
work,  camera  calibration  was  done  using  the  method  described  in  [6],  with  some  necessary 
corrections. This method is based on using some a priori information on the scene geometry, which 
can be known in advance. Such information includes:
– parallelism or perpendicularity of particular lines in the world coordinates,
– known real-world distances between some distinct points visible in the image.

The relationship between the 3D world coordinates  (x,  y,  z) and the 2D image coordinates (u,  v) 
depends on the optical parameters of the camera and its placement in the scene. In homogeneous 
coordinates, it can be represented the following way [7, p.1]:

┌ ┐ ┌ ┐
│ sU f   ξ     sU τU │ │ r11   r12   r13    tX │

s [u, v, 1]T = K R [x, y, z, 1]T  =│  0   sV f   sV τV │· │ r21   r22   r23    tY │· [x, y, z, 1]T        (3.33)  
│  0      0      1 │ │ r31   r32   r33    tZ │
└ ┘ └ ┘

where:

– s is a scaling coefficient;
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– K is a matrix of intrinsic parameters of the camera, which include:
– focal length f,
– the width and height of a pixel –  sU and sV,   

– the skew factor ξ, representing the degree of non-perpendicularity between the u and v axes of 
the image,
– translation vector [τU , τV]T  between the center of the image and the point of intersection of the 
main optical axis of the camera with the image plane;

–  R is a matrix of extrinsic parameters of the camera; it consists of:
– rotation matrix (r11, r12  ... r33), 
– translation vector [tX, tY, tZ ]T between the zero point of the world coordinates and the camera 
center [7, p.1]. 

The elements of the rotation matrix (r11, r12 ... r33) are combinations of trigonometrical functions of 
the three rotation angles:
– pan angle θ – rotation around the vertical axis;
– roll angle ψ – rotation around the optical axis of the camera,
– tilt angle φ – rotation in the plane drawn through the optical axis and its projection onto the road 
plane (see Fig. 3.3) [6, p.61].

The number of parameters necessary to find can be reduced by making some realistic assumptions 
on the camera:
– the camera optics is supposed to have no defects that could introduce geometrical distortions into 
the image (ξ = 0),
– the camera is supposed to be mounted horizontally (ψ = 0),
– the main optical axis of the camera projects into the center of the image (τU, = 0, τV = 0),
– pixels of the output image are perfectly square and are used as a measurement unit (sU = 1, sV = 1).

Taking into account also that the translation vector [tX,  tY,  tZ  ]T can be expressed via the camera 
height h and the rotation angles, only one intrinsic (f) and three extrinsic (φ, θ, h) parameters remain 
to be estimated.  The matrix of intrinsic parameters turns to have a simple form [6, p.62]:

┌ ┐
│f      0     0 │

K = │0     f      0 │                         (3.34)
 │0     0     1 │

└ ┘
The extrinsic parameters depend on the world coordinate system and, therefore, can be derived by 
turning  from  one  world  coordinate  system  to  another  step-by-step  and  introducing  the 
corresponding modifications into the R matrix (see Fig. 3.3 for the coordinate systems used). 

In the (X0,  Y0,  Z0) coordinate system, centered in the camera center,  φ = 0,  θ = 0,  h = 0, and  the 
matrix of the extrinsic parameters of the camera is a trivial identity matrix concatenated with a zero 
translation vector:

┌
│
│
│
└

┐
│
│                        (3.35)
│
┘

1     0     0     0 
R0= 0     1     0     0 

 0     0     1     0 

The (X1,  Y1,  Z1) coordinate system introduces the angle  φ between the road plane and the camera 
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optical axis:

Fig.  3.3.  The  camera  position  over  the  road 
plane and the coordinate systems used.

Fig. 3.4. The known distances used for camera 
calibration.

┌
│
│
│
│
└

┐
│
│
│
│
┘

1            0                     0             0

R1 = R0 · 
0     cos (φ+π/2)  –sin(φ+π/2)      0 =0     sin (φ+π/2)    cos(φ+π/2)     0
0            0                     0             1

┌
│
│
│
└

┐
│
│         (3.36)
│
┘

1        0             0          0  
0  – sin φ   – cos φ        0 
0    cos φ   – sin φ         0

Then, the coordinate system is translated by the camera height h; this is the transition from (X1, Y1, 
Z1) to (X2, Y2, Z2):

┌
│
│
│
│
└

┐
│
│
│
│
┘

1           0           0            0

R2 = R1 · 
0           1           0            0 
0           0           1          – h
0           0           0            1

┌
│
│
│
└

┐
│
│             (3.37)
│
┘

1        0             0             0  
= 0  – sin φ   – cos φ    h cos φ 

0    cos φ   – sin φ     h sin φ

In this coordinate system (X2, Y2, Z2), the equation of  (3.33) turns to the following form [6, p.61]:
┌
│
│
│
└

┐
│
│·
│
┘

┌
│
│
│
└

┐
│
│
│
┘

f   0  0 1        0             0             0  
s [u, v, 1]T = 0  f   0 0  – sin φ   – cos φ    h cos φ · [x, y, z, 1]T         (3.38)

 0  0  1 0    cos φ   – sin φ     h sin φ

The θ angle is not included into the matrix yet; on this stage it remains as the angle between the 
projection of the main  optical axis of the camera onto the road plane and the road traffic direction 
[6, p.61]. 
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The remaining unknown parameters of the camera can be found using the data on the scene known 
in advance:
– road marking lines, and their parallelism or perpendicularity,
– the width of each lane,
– the length of the dashes in dashed road marking lines,
– possibly also the distances between some other details on the ground.

Detection of road marking elements was beyond the scope of this thesis work. It can be done using 
Canny edge detection method in combination with Hough transform and a priori information on the 
road marking standards [1, p.44–54]. As soon as the road marking lines are detected, the vanishing 
point of the lines heading along the road can be found in the image. 

Let the image coordinates of this vanishing point be denoted as (u0, v0). This point corresponds to a 
point in infinity lying straight along the direction of the visible part of the road. As it can be seen in  
Fig. 3.3, its homogeneous coordinates in the (X2, Y2, Z2) coordinate system are [6, p.63]:

            V = [−tan θ,  1, 0, 0 ]T            (3.39) 

Applying (3.38) to these coordinates produces the following equations for the φ and θ angles:

tan φ =  – 
 v0

(3.40) ––––––

 f 

cos2 θ = 
f 2 + v0

2

(3.41)–––––––––––––––––––––

f 2 + u0
2 + v0

2 

Then, by inserting the image coordinates of known points on the road surface (see Fig. 3.4) into 
(3.38), we get two additional equations:

h uA
+ W cos θ =

h uB
(3.42)––––––––––––––––––––––– ––––––––––––––––––––––––––

(vA – v0) cos φ (vB – v0) cos φ

h (f 2 – vC v0)
+ L cos θ =

h  (f 2 – vD v0)
(3.43)–––––––––––––––––––– –––––––––––––––––––––

 f (vC – v0) f (vD – v0)

Solving the equation system of (3.40), (3.41), (3.42) and (3.43) yields the necessary parameters of 
the  camera:  its  focal  length  f,  its  height  over  the  road  surface  h,  and  the  angles  φ and  θ 
characterizing the position of the camera optical axis relatively to the traffic direction.  In a case 
when the camera height h is known, only one known distance on the road surface (either W or L) is 
sufficient.

Finally, the transition from (X2, Y2, Z2)  to (X, Y, Z) coordinate system is made in order to include the 
θ angle into the camera matrix :
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┌ ┐
│ cos θ    – sin θ       0           0 │

R = R2 · 
│ sin θ       cos θ       0           0 │  =│    0             0          1           0 │
│    0             0          0           1 │
└ ┘

┌
│
│
│
└

┐
│
│              (3.44)
│
┘

        cos θ             – sin θ                  0             0  
= – sin θ sin φ     – cos θ sin φ      – cos φ      h cos φ

  sin θ cos φ        cos θ cos φ      – sin φ       h sin φ

where R is the resulting matrix of the extrinsic parameters of the camera introduced in (3.33). 

3.5. Planar homography for conversion from image to world coordinates

The camera calibration procedure described in Chapter 3.4 allows to locate the point in the image 
corresponding to the given point on the road plane. In some cases, the inverse problem needs to be 
solved: finding a road plane correspondence for any image plane point. For such situations, the 
method of planar homography can be used. 

First, the correspondence for at least 4 points needs to be known in advance [20, p.3]. It is obtained 
by inverse mapping of a set of arbitrarily chosen points (x1, y1), (x2, y2), (x3, y3), (x4, y4) onto the (u, 
v) image plane using the camera matrices  K and  R known from (3.34) and (3.44) and setting the 
vertical coordinate z to zero:

[s ui,  s vi,  s]T  = K R [xi, yi, 0, 1]T  (3.45)

Of the set of points (x1, y1), (x2, y2), (x3, y3), (x4, y4), neither three can be located at a single straight 
line [20, p.3]. It is better to choose them as the angles of a square, for example [–100, –100], [–100, 
100], [100, –100], and [100, 100].

In order to increase the accuracy of homography estimation, both the image plane and the road 
plane coordinate system undergo the Hartley normalization. This is done transforming them into the 
new coordinate systems (u', v') and (x', y'), such that:
– the zero points of the new coordinate system is located at the centroid of the set of points;
– the average distance from the zero point to each of the points is equal to √2 [20, p.4–6].

[x', y'] = ([x, y] – [μ{x}, μ{y}])
 √2 

(3.46) –––––––––––

 μ{dxy}

where
 μ{x}, μ{y} are the mean values of the coordinates x and y, respectively;
 μ{dxy} is the mean distance from the points in the (x, y) coordinate system to their centroid:

{√
________________________

}                                    (3.47) μ{dxy} = μ (x – μ{x})2 + (y – μ{y})2

Therefore, the transformation matrix Txy necessary for the Hartley normalization of the coordinates:
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[x', y',1]T = Txy [x, y, 1]T (3.48)

appears to be the following:

Txy = 

┌
│
│
│
│
│
│
│
└

√2 
0

 
    √2 μ{x} ┐

│
│
│
│
│
│
│
┘

(3.49)

––––––––––– ––  ––––––––––––––

μ{dxy}      μ{dxy}

0
 √2    √2 μ{y}

––––––––––– ––  ––––––––––––––

μ{dxy}      μ{dxy}

0 0 1

and, similarly, for

[u', v',1]T = Tuv [u, v, 1]T (3.50)

we get

Tuv = 

┌
│
│
│
│
│
│
│
└

   √2 
0

 
    √2 μ{u} ┐

│
│
│
│
│
│
│
┘

(3.51)

––––––––– ––  ––––––––––––

μ{duv}      μ{duv}

0
  √2    √2 μ{v}

–––––––––– ––  ––––––––––

μ{duv}     μ{duv} 

0 0 1

where 

{√
_______________________

}                                    (3.52) μ{duv} = μ (u – μ{u})2 + (v – μ{v})2

After the Hartley normalization is done, a homography matrix H' for the normalized coordinates is 
estimated, such that

[s x', s y', s]T = H' [u', v', 1]T (3.53)

or, in the form of equations with individual coefficients of the H' homography matrix:

s x' = h'11 u' +h'12 v' +h'13 (3.54)

s y' = h'21 u' +h'22 v' +h'23 (3.55)

s = h'31 u' +h'32 v' +h'33 (3.56)

where 
s is a proportionality coefficient;
h'ij is the element from the i-th row and j-th column of the H' matrix.

Excluding the s, the equations of (3.54) – (3.56) can be transformed into
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– h'11 u' – h'12 v' – h'13 + h'31 u' x' +h'32 v' x' +h'33 x' = 0 (3.57)

– h'21 u' – h'22 v' – h'23 + h'31 u' y' +h'32 v' y' +h'33 y' = 0 (3.58)

which produces the following matrix equation for the selected set of points (x1, y1), (x2, y2), (x3, y3), 
(x4, y4) in the Hartley-normalized coordinate system [20, p.3]:

┌
│
│
│
│
│
│
│
└

 –  u'1     – v'1     – 1         0          0        0       u'1 x'1        v'1 x'1      x'1 
    0          0         0      –  u'1     – v'1     – 1      u'1 y'1        v'1 y'1      y'1  
 –  u'2     – v'2     – 1         0          0        0       u'2 x'2        v'2 x'2      x'2 
    0          0         0      –  u'2     – v'2     – 1      u'2 y'2        v'2 y'2      y'2  
 –  u'3     – v'3     – 1         0          0        0       u'3 x'3        v'3 x'3      x'3 
    0          0         0      –  u'3     – v'3     – 1      u'3 y'3        v'3 y'3      y'3  
 –  u'4     – v'4     – 1         0          0        0       u'4 x'4        v'4 x'4      x'4 
    0          0         0      –  u'4     – v'4     – 1       u'4 y'4        v'4 y'4      y'4 

┐
│
│
│
│·
│
│
│
┘

┌
│
│
│
│
│
│
│
│
└

h'11

h'12

h'13

h'21

h'22

h'23

h'31

h'32

h'33

┐
│
│
│
│
│
│
│
│
┘

 = 0           (3.59)

By solving the  (3.59), the coefficients  h'ij for the Hartley-normalized homography matrix  H'  are 
found.

Finally, the transition from the Hartley-normalized coordinate systems (u', v') and (x', y') to the real 
image coordinates (u, v) and road plane coordinates (x, y) is done. From (3.48), (3.50) and (3.53) we 
get:

Txy [s x, s y, s]T = H' Tuv [u, v, 1]T (3.60)

Therefore

[s x, s y, s]T = Txy
–1 H' Tuv [u, v, 1]T  = H [u, v, 1]T (3.61)

where H = Txy
–1 H' Tuv is the homography matrix for direct conversion from the image to the road 

plane coordinates [20, p.5].
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4. Thesis work description

4.1. General notes

Approaching the task of road traffic analysis differs depending on whether the video was taken with 
a static or moving camera. The case of the static camera is simpler for the following reasons:
1) In such a case, a static background can be extracted and used for distinguishing between static 
objects, which are ignored, and moving objects, which are the only ones that are proceeded.
2) A static camera has a permanent location within the scene; therefore, the problem of camera self-
calibration needs to be solved only once to find the relationship between any point on the road 
surface and the corresponding point in any frame of the video sequence.

Proceeding a video taken with a moving camera poses some additional challenges for the image 
analysis algorithms:
1) Static and moving objects cannot be distinguished in advance; therefore, any object that may be 
relevant for the road traffic analysis task needs to be taken into consideration.
2) Camera calibration needs to be done repeatedly, in order to cope with the shift of the camera 
position within the scene.
3) The self motion of the camera is required to be tracked as well, because the correspondence 
between the different world coordinate systems drawn for different frames of the video sequence 
needs to be established.

Here, the block diagrams with necessary explanations are provided both for the static and moving 
camera case. Then, detailed descriptions of the whole image processing algorithm are given: in 
Chapter 4.2 for the static camera scenarios, and in Chapter 4.3 for the moving camera.

4.1.1. The static camera case

Fig. 4.1. The stages of road traffic analysis for the static camera case.

For the static camera case, the following stages of image processing are required (see Fig. 4.1):
– establishing the correspondence between the image coordinates and the world coordinate system 
(this needs to be done only once in such a case);
– distinguishing between moving and static objects;
– tracking of the objects movement;
– searching whether any new objects have appeared;
– analysis of the gathered data and extracting statistical information on road traffic from it.
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4.1.2. The moving (dynamic) camera case

The  case  of  a  dynamic  camera  is  more  complicated,  because  a  correspondence  between  three 
coordinate systems needs to be established:
– the image coordinate system;
– the relative world coordinate system for each frame, which puts the camera into the zero point of 
the coordinates;
– the absolute world coordinate system, which keeps the same coordinates for each static detail of 
the scene regardless of any movement of the camera.

Fig. 4.2. The stages of road traffic analysis for the moving camera case.

This requires for the moving camera case to include some additional stages of image processing 
compared to the scenarios with a static camera (see Fig. 4.2):
– searching for new objects in a video frame (in the image coordinates),
– tracking of the known objects (in the image coordinates),
– camera calibration (establishing the relationship between the image and relative world coordinates 
for each frame);
– projection from the image plane to the road plane (shifting to the relative world coordinates);
– searching for background features, such as road marking elements (in the relative world 
coordinates);
– tracking the background features (which helps to draw the correspondence between the relative 
world coordinates of consecutive frames);
– tracking the camera's own movement (in order to convert the location of the objects from the 
relative to the absolute world coordinates);
– analysis of the gathered data (converted to the absolute world coordinates) and extracting 
statistical information on road traffic from it.

4.2. Road traffic analysis from video taken with a static camera

In this chapter, a description of all stages of image processing and analysis for the static camera 
case is provided in the way as they were implemented in the experiments made for this thesis work.  
Section 4.2.1 describes the procedure of distinguishing the moving objects from the static ones. In 
section 4.2.2, the way of conversion between the road plane and the image coordinates used in the 
experiments is explained. Section 4.2.3 tells about the object tracking mechanism used for the static 
camera  scenarios.  In  Section  4.2.4,  identification  of  the  relevant  objects  (vehicles)  among  all 
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moving objects is discussed. Finally, Section 4.2.5 explains how the statistical parameters of road 
traffic are calculated using the data gathered at all the previous stages.

4.2.1. Detection of moving object by background subtraction

Detection of vehicles in a video sequence recorded by a static camera requires to distinguish truly 
moving  foreground  objects  from  apparent  motion  of  background  details  due  to  camera  pose 
instability, wind, etc. This can be achieved with various methods of background subtraction [2, p.3], 
[3, p.4–5], [5, p.1–2]. Their principle is based on comparing each frame of the video to a sample of 
the background of the scene (an image containing only the static details) and making a decision on 
each pixel of this frame, whether it belongs to the background or to a moving (foreground) object.

In  this  work,  statistical  filtering is  used for distinguishing between foreground and background 
objects. A frame with no vehicles present in the area being analyzed is used as a sample of the 
background. For each pixel P (up, vp) in this background image, a window of observation is set:

R = { u ∈[ up – ΔuMAX , up + ΔuMAX] (4.1)v ∈[ vp  – ΔvMAX,  vp + ΔvMAX]

The size of the window (ΔuMAX, ΔvMAX) is equal to the supposed maximum displacement of image 
details due to camera instability. 

For all pixels inside R, a local histogram is built. Gray level values are linearly quantized with the 
number of quantization levels equal to the number of bins in the histogram (NB) and assigned to the 
corresponding bin:

┌    g + Δg ┐
b = gQ = │────── ∙  NB │                     (4.2)

│ gMAX + Δg │

where g is the gray level, gMAX is the maximum gray level, Δg is the minimum resolution between 
gray levels, gQ is the quantized gray level value, and b is the histogram bin to which it is counted.

This histogram reflects the assumed probabilities of gray levels in the position of  P(up,  vp) if the 
camera instability lies within the assumed limits (± ΔuMAX, ± ΔvMAX) while no moving objects are 
passing  through  this  point.  The  frequencies  of  gray  levels  in  the  window  of  observation  are 
weighted with a Gaussian kernel:

H[u,v](b) =  

Σ Σ K(Δu, Δv) │

(4.3)
Δu  Δv │gQ (Δu, Δv)=b
───────────────────────────────────

        Σ Σ K(Δu, Δv) 
 Δu   Δv      

where H[u,v](b) is the estimated probability for the gray level at the (u,v) image coordinates to fall 
into the histogram bin b, and K(Δu, Δv) is the Gaussian kernel for the observation window:

K(Δu, Δv) = k exp (     Δu2       Δv2

)  (4.4)──  ─────  ──  ─────

     2σu
2           2σv

2 
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where k is selected so that

   +ΔuMAX         +ΔvMAX

    Σ       Σ         K(Δu, Δv)  = 1 (4.5)
Δu=– ΔuMAX    Δv=– ΔvMAX

and σu  and σv are selected so that, with the practical accuracy of computation,

K(±ΔuMAX, ±ΔvMAX) ≈ 0                          (4.6)

For each frame of the video, the gray level of every pixel is compared to the histogram for this 
pixel; if the estimated probability of such gray level value at this position in the image lies below 
the threshold, the pixel is classified as a part of a foreground object:

J(u,v) ={I(u,v)       if  H[u,v] (gQ(I(u,v))) < Θ
 (4.7)

0              otherwise

where I(u,v) is the gray level value of the pixel of the original frame at the (u,v) image coordinates, 
gQ(I(u,v)) is the quantized value of I(u,v), Θ is the threshold (selected to be between 0.001 and 0.05, 
depending on the video image quality and visibility conditions), and J(u,v) is the gray level value of 
the output statistically filtered image at the (u,v) image coordinates.

In order to improve the quality of the extracted foreground image, postprocessing needs to be done. 
It includes the following operations:
– removing overly small objects, which probably resulted from local gray level fluctuations;
– aggregating nearly located fragments into larger objects;
– for daytime videos, a shadow removal procedure is required in some cases; 
– for nighttime videos, it is necessary to reduce the light reflections off the road surface.

4.2.2. Conversion from image to road plane coordinates

The  camera  calibration  is  made  using  the  method  described  in  Chapter  3.4.  Given  the  image 
coordinates of a set of straight lines that are parallel in the real world, and the image coordinates of  
two pairs of points with known real-world distances between them, it  produces the matrices of 
extrinsic (K) and intrinsic (R) camera parameters: 

s [u, v, 1]T = K R [x, y, z, 1]T =

┌
│
│
│
└

┐
│
│·
│
┘

┌
│
│
│
└

┐
│
│
│
┘

f    0   0        cos θ                – sin θ              0             0  
 = 0   f    0 – sin θ sin φ      – cos θ sin φ     – cos φ     h cos φ · [x, y, z, 1]T           (4.8)  

0   0   1   sin θ cos φ        cos θ cos φ      – sin φ     h sin φ

which allow for transition from the 3D world coordinates (x, y, z) to the 2D image coordinates (u, 
v), but not vice versa. However, the task of vehicle traffic analysis can be reduced to the analysis of  
movement of the object projection on a 2D plane approximating the road surface. This projection 
can be generated for every video frame based on the results of the camera calibration, using inverse 
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mapping and setting the value of the vertical coordinate (z) to be constant (usually z = 0):

[s u,  s v,  s]T = K R [x, y, 0, 1]T  = P [x, y, 0, 1]T  (4.9)

where P = K R is a full camera matrix (4.8). 

Since the matrices K and R have been found at the camera calibration stage, for each point (x, y) of 
the road plane the corresponding image coordinates (u,  v) are calculated by applying (4.9) and 
dividing the resulting vector [s u, s v, s]T by its third element s:

s u =  x f cos θ  – y f sin θ                                             (4.10)

s v = – x f sin θ sin φ – y f cos θ sin φ + f h cos φ          (4.11)

 s  =  sin θ cos φ + cos θ cos φ + h sin φ                      (4.12)

The resulting road plane projection image is generated using inverse mapping. 

A road plane projection of the static background image is also generated the same way. In addition, 
it is used for predicting the vehicle movement direction. For this purpose, the trajectory of the road 
is approximated with a 4th power polynomial, as proposed in [1, p.14]. This is done by selecting a 
group of points [ui, vi] lying on the same road marking line, which follows the road trajectory, and 
projecting  them onto  the  road  plane  coordinate  system using  (4.9)  and  inverse  mapping.  The 
resulting set of points [xi, yi] on the road plane is used to produce a polynomial approximation of the 
road trajectory in the (X, Y) coordinate system:

        x = P4(y) = k4 y4 + k3 y3 + k2 y2 + k1 y + k0                          (4.13)

By this approximation, the angle of traffic direction β is estimated for each point [x, y] on the road 
surface:

β(x,y) =  lim  atan
             Δy→0

Δy
(4.14)────────────────────

P4(y+Δy) – P4(y)

which in practice is approximately calculated the following way:

β(x,y) ≈ atan
          

1
(4.15)────────────────────

P4(y+ 1) – P4(y)

– for the lanes where traffic is directed off the camera, and

β(x,y) ≈ atan
          

1
+ π                                              (4.15)────────────────────

P4(y+ 1) – P4(y)

– for the lanes where traffic is directed towards the camera.

4.2.3. Template-based tracking

The generated road plane projection of both the full  original video frame and the output of its 
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statistical filtering are the input of the tracking algorithm.  All comparisons and calculations are 
made in the road plane coordinate system, and the result is the coordinates of all tracked objects in 
the road plane projection. 

Known objects are proceeded in the order of their distance from the camera (nearest objects first). 
This helps to manage the cases of occlusion correctly, as the occluder, which is always closer to the 
camera than the occluded object, is processed first. Each object is searched within the specified 
search area: 

S = { x ∈[ xP +ΔxMIN,  xP +ΔxMAX ] (4.17)y ∈[ yP +ΔyMIN , yP +ΔyMAX ]

checking all possible coordinate shifts from ΔxMIN to ΔxMAX and ΔyMIN to ΔyMAX around the predicted 
location (xP, yP ) of the object for the current frame. For every possible coordinate shift (Δx, Δy) the 
image of the object is supposed to be such part of the full frame in the road plane projection that is  
covered by the object template shifted by (Δx, Δy) from the predicted coordinates of the object:

 IOS(Δx, Δy)(x, y) = I(x, y) sign T(x+Δx, y+Δy)                (4.18)

where IOS(Δx, Δy) is the supposed image of the object for the coordinate shift (Δx, Δy), I(x, y) is the full 
image in the road plane projection,  and  T is the object template.  The possibility for the object 
coordinates to be located at the (Δx, Δy) is assessed with the following cost function that needs to be 
minimized:

C(Δx, Δy) = D1(Δx, Δy) – a D2(Δx, Δy)– b D3(Δx, Δy)      (4.19)

where:

the arguments of the cost function, (Δx, Δy) are the coordinate shift within the search area S;

D1 is the sum of absolute differences between the object template and the assumed image of the 
object in its new position:

Σ Σ |T(x+Δx, y+Δy)–I(x,y)| │
│T(x+Δx, y+Δy)≠0

D1 = 
 x     y

(4.20)──────────────────────────────────────────────────────

AT

(I  is the road plane projection of the current frame, T is the template of the object, AT is the total 
area of the template).

D2  is the share of the area of the segments in the foreground image that intersect with the object 
template in its assumed position:

Σ Σ sign(J(x, y)) │

D2 = 
 x     y │T(x+Δx, y+Δy)≠0

(4.21)──────────────────────────────────────────

AJ  + 1
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(J is the part of the road plane projection of the foreground objects relevant for the vehicle being 
searched, and AJ is its area. J contains only the segments that have an intersection with the vehicle 
template shifted onto the predicted position of the vehicle. A segment Q in the road plane projection 
of the foreground image belongs to J if:
                                                                                                                                k – 1

        Q ∈ J  if  ( Σ Σ Tk (x,y) Q(x,y) > 0)∩( Σ Σ Σ Ti (x,y) Q(x,y) = 0)             (4.22)
                                                x        y                                                         i = 1    x       y

where Ti  is the template of i-th object, and k is the index of the object currently being searched for).

D3  is the sum of absolute differences in gray levels between the assumed image of the object and 
the background image:

Σ Σ  |I(x, y)–B(x, y)| │
│T(x+Δx, y+Δy)≠0

D3  =  
 x     y

(4.23)─────────────────────────────────────────────

AT

(B is the road plane projection of the background image; if the instability of the camera pose is  
significant, the average gray level of the road surface gR.AVG is inserted into the formula instead):

Σ Σ |I(x, y)–gR.AVG |│
│T(x+Δx, y+Δy)≠0

D3  = 
 x     y

(4.24)────────────────────────────────────────────

AT

In experiments, the following values for the weighting coefficients appeared to produce the best 
results: a = 1, b = 3.

a) b)

Fig. 4.3.
a) Approximation of the vehicle shape with a rectangular 
cuboid. W, L and H are the width, length and height of 
the vehicle, respectively, β is the movement direction. 
b) Projection of the shape from (a) onto the road plane. 
The area really occupied by the vehicle is shaded in red.

Fig. 4.4. 
Proportions  for  calculating  the  x'i, 
coordinates
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The search procedure aims to find the minimum of the cost function value for all coordinate shifts 
(Δx, Δy) within the search area S. The found optimal coordinate shift from the predicted position of 
the object is added to its predicted road plane coordinates:

[x(N),  y(N)] = [xP (N),  yP (N)] + arg min C(Δx, Δy)             (4.25)
                                                 Δx,  Δy

([xP (N),  yP (N)] are the predicted coordinates of the object, [x(N),  y(N)] are its found coordinates).

In order to update the object template, first the template shape, which changes slowly from frame to 
frame,  is  updated.  The  3-dimensional  shape  of  the  vehicle  is  approximated  with  a  rectangular 
cuboid (see Fig. 4.3a). 

The coordinates of the lower corners of this cuboid: (x1,  y1), (x2,  y2), (x3,  y3), (x4,  y4,) are obtained 
from the new coordinates of the vehicle knowing its width W, length L, and movement direction β; 
the latter is known from (4.15), (4.16). For example, if (x1, y1) is used as the vehicle coordinates, the 
coordinates of other corners can be found the following way (see Fig. 4.3):

[x2,  y2] = [x1, y1] + [W sin β, – W cos β]      (4.26)

[x3,  y3] = [x1, y1] + [L cos β,  L sin β]          (4.27)

[x4,  y4] = [x3, y3] + [W sin β, – W cos β]      (4.28)

For the road plane coordinates of the  projection of the upper corners, we get (see Fig. 4.4):

x'i, – xi,
=

x'i,
(4.29)──────── ────

H h

Therefore, the road plane coordinates of the projection of the upper corners are found as:

[x'i,, y'i] ={
  
[xi,, yi] 
  

h
if H < h  

(4.30)
────────

h – H
[∞, ∞] otherwise

where [xi,, yi] are the tracked coordinates of the lower corners of the object, H is the object height, h 
is  the  camera  height  known  from  the  camera  calibration  stage,  and  [x'i,,  y'i]  are  road  plane 
coordinates  of the projection of  the upper  corners of  the rectangular  cuboid approximating the 
object shape. Using (4.26)–(4.30), the shape of the object template is updated  (see Fig. 4.3b).

If the correspondence between the template and the image of the object at the road plane projection 
of the current frame is good (C < 0.1 can be a criterion), the part of the road plane projection of the 
frame with the calculated shape from the found location becomes a new template of the object. If  
the correspondence is far from being perfect, a new template includes a copy of the old one to the 
greatest possible extent. This is done by pasting the old template onto the road plane projection of  
the frame at the found object position and extracting the calculated new template shape from this 
synthesized image:
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T (x, y) ={E(x, y) I(x, y)                                                  if    C < 0.1
(4.31)

E(x, y)((1 – E0(x, y)) I(x, y) + T0(x, y))          otherwise 

where T0 is the old template of the object, E0 is the shape of T0, and E is the shape generated for the 
new template using (4.26) – (4.30).

As soon as the true coordinates of a vehicle in the road plane coordinate system are found, the 
estimation of its average speed is updated using its value at the previous frame and the coordinate 
shift from the previous to the current frame:

________________________ 

s(N) = 
s(N–1) (N–N0–1) + √(x(N) – x(N–1))2 + (y(N) – y(N–1))2

(4.32)────────────────────────────────────────────────────

N – N0

where [x(i),, y(i)] are the object coordinates at i-th frame, N is the number of the current frame, N0 is 
the number of the frame where the object was initially detected, and s(i)   is the estimated absolute 
value of the average speed of the object by i-th frame. Here, the speed is expressed in coordinate 
system units per  interval between frames (not in kilometers per hour). This estimated speed value is 
used to predict the object location in the next frame:

[xPR.(N+1),  yPR.(N+1)] = [x(N), y(N)] + [s(N) cos β,  s(N) sin β]     (4.33)

where [x(N), y(N)] are the current coordinates of the object, s(N)  is the estimated absolute value of the 
object speed,  β is the traffic direction in the [x(N),  y(N)] point of the road known from (4.15) and 
(4.16), and [xPR.(N+1),  yPR.(N+1)] are the predicted coordinates of the object for the next frame.

4.2.4. Identification of new vehicles by analyzing the shape of their road plane projection

As soon as all correspondences between the known vehicles and the detected foreground objects in 
the  frame  being  processed  are  found,  new vehicles  are  searched  by proceeding  the  remaining 
unidentified foreground objects. First, their geometrical shape is analyzed in order to detect cases of 
fragmentation of an object into several segments, and to exclude irrelevant objects. This is done by 
assuming each segment to be an object in itself and drawing the shape of the road plane projection 
for such tentative object using (4.26) – (4.30) (see Fig. 4.5). At least two such shapes are generated:  
for the object width, length and height being equal to their minimum and maximum. If any one of 
the shapes overlaps another segment, that segment is considered to be covered with the segment 
being analyzed. 

The result of testing all segments is accumulated in coverage matrices for the minimum and the 
maximum object size: the rows correspond to the segments been analyzed, and the columns – to the 
segments they cover. An example of coverage matrix for the situation shown at Fig. 4.5 will be:

M = 

║ 0   1   1   0 ║ 
║ 0   0   1   0 ║ 
║ 0   0   0   0 ║ 
║ 0   0   0   0 ║ 

(4.34)

If two segments reciprocally cover one another, it is treated as only the one located closer to the 
camera covers the other one:
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           mj,i = 0   if   (mi,j = 1) ∩ (j > i)                    (4.35)          

where mi,j is the element of M from i-th row and j-th column.

From the coverage matrix, groups of segments that can be object candidates are found. The criteria 
are the following:

Fig. 4.5. Grouping foreground segments into 
object candidates.

1) there must be a segment  j that is not covered 
by any other one:

 Σ mi,j = 0                                (4.36)
  i    

2a) if this segment does not cover any other one, 
it is considered a group in itself:

Gi  = {i}  if  Σ mi,j = 0                        (4.37)
                    j    

where  Gi   is the group of segments based on i-th 
segment;

2b) if the segment covers some other segments, 
they all form a group together with this segment:

               k  ∈ Gi  if  (i = k) ∪ (mi,k = 1)                            (4.38)

3) in any case, the total area of the group needs to be greater than the minimum that depends on the 
particular visibility conditions (day or nighttime, camera height over the road surface, etc.) :

   Σ  Ak ≥ AMIN                                              (4.39)
 k∈G

where Ak is the area of k-th segment, and AMIN is the minimum area for a group of segments to be 
considered a new object.

After this, the object size is estimated from the group of segments attributed to the newly detected 
object. First, all the dimensions of the object (width, length and height) are assumed to have their 
maximum values known from a priori data on objects of interest. A 2D road plane projection for 
such maximum-size object is made for the found location of the candidate object. Then, each of the 
dimensions  of  the  object  (the  width  first,  then  the  length,  and  finally  the  height)  is  gradually 
decreased until the value is reached at which the projection no longer covers the whole group of 
segments that forms the candidate object. Therefore, the previous value of the dimension being 
measured is assumed to be the value of this dimension for the newly detected object.

As soon as the object is measured, a shape for the object template at the found location is generated 
from the  estimated  object  size,  using  (4.26)–(4.30).  Finally,  a  template  for  the  new  object  is 
extracted from the road plane projection of the current frame by using the generated template shape 
as a mask, as it is done in (4.31) for C < 0.1.
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4.2.5. Rectification of the results

After obtaining the whole trajectory of an object within the field of view, the data on the object  
speed can be refined. First, the vehicle trajectory is approximated with a 4th power polynomial, as 
proposed in [1, p.14]:

        x = P4(y) = k4 y4 + k3 y3 + k2 y2 + k1 y + k0                                  (4.40)

Then the length of this polynomial curve is used for a more accurate estimation of the speed of the 
vehicle  using  piecewise  linear  approximation  of  the  obtained  trajectory  of  the  vehicle  (this 
procedure removes most of noise in coordinates):

                _________

s  ≈  
κ  Σ √Δx2 + Δy2 

  ≈––––––––––––––––––––––––––––

(NE – N0) τ

     yMAX            ______________________

 κ   Σ  √|P4(y) – P4(y–1)|2 + 1
   y=yMIN+1

      (4.41)–––––––––––––––––––––––––––––––––––––––––––––––––––

(NE – N0) τ

where: 
yMIN and yMAX are the minimum and maximum values of the y coordinate of the vehicle trajectory, 
respectively;
P4(y)  is  the  x coordinate  value  corresponding  to  y according  to  the  4th  power  polynomial 
approximation of the trajectory  (4.40);
N0 and  NE are  the  numbers  of  the  first  and  the  last  frame  where  the  vehicle  was  observed, 
respectively;
τ is the time interval between two consecutive video frames, in hours;
κ  is  the  scaling  coefficient  between  the  real  distances  and  the  road  plane  projection  image 
coordinates, in kilometers per pixel;
s is the final estimation of the average speed of the vehicle, in kilometers per hour.

4.3.Road traffic analysis from video taken with a moving camera

In this chapter, a description of all stages of image processing and analysis for the moving camera 
case is provided in the way as they were practically implemented in this thesis work. Section 4.3.1 
explains  the  procedure  of  detecting  new  vehicles  on  the  road.  Section  4.3.2  describes  the 
implementation  of  the  object  tracking  algorithm.  In  Section  4.3.3,  the  problem  of  conversion 
between the different world coordinate systems and the image coordinates for different frames of 
the video is discussed. Section 4.3.4 tells about the possible way of tracking the own movement of 
the  camera.  Finally,  Section  4.3.5  explains  how  the  statistical  parameters  of  road  traffic  are 
calculated using the data gathered at all the previous stages.

4.3.1. Detection of new vehicles using HOG-based SVM

For the purpose of vehicle detection in the moving camera scenario, a whole video frame (or, at 
least, the parts of it that can realistically contain a vehicle on the road) needs to be scanned. In this 
thesis work, this was made with a support vector machine classifier using histograms of oriented 
gradients as object features (see the description in Chapter 3.1 and 3.2). Several variations of the 
HOG method exist. They differ in the size (fixed or variable) and shape (rectangular or not) of the  
cells,  and in  the definition of gradient (which can be signed or unsigned,  and calculated using 
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different filters: Sobel, Prewitt, simple difference, etc.) [11, p.3-4], [13, p.2-4]. The version used in 
this thesis work implements the HOG with rectangular cells of variable size and signed gradients 
calculated from a difference image:

DX(x, y) = g (x+1, y) – g (x, y)                                       (4.42)

DY(x, y) = g (x, y+1) – g (x, y)                                       (4.43)

where 
g (x, y) is the gray level at (x, y) coordinates of the image, 
DX(x, y) is the horizontal difference image, 
DY(x, y)  is the vertical  difference image.

The size of the HOG grid used for detecting vehicles was selected to be NX = 6 cells in horizontal 
and NY = 4 cells in vertical direction. The block size was  2 × 2 cells.

For the practical purpose of detecting vehicles in a video sequence, the SVM classifier was trained 
with a set of positive (images of vehicles) and negative (images of other types of objects that can 
appear at  the scene)  samples,  and the γ and  C parameters  were adjusted.  For this  thesis  work, 
C = 213 and γ = 213 produced the best results.

The SVM using HOG as object features, though it  demonstrates reasonably good performance, 
cannot guarantee absolutely reliable detection, especially in the regard of avoiding false positives. 
Therefore,  in  order  to  increase  the  robustness  of  vehicle  detection,  a  voting  mechanism  was 
implemented.  It  uses the experimentally observed fact that true positive cases produce multiple 
overlapping detections, while false positives occur randomly.

For the purpose of detecting new vehicles, every 5th frame of the video is scanned with a bounding 
box shifting along its horizontal and vertical axes [u, v] with a fixed step [Du, Dv], trying all possible 
values of u = ku Du, v = kv Dv as the top left corner coordinates of a candidate object, where ku and kv 

are integer numbers. The size of the bounding box [x, y] also varies with a fixed [Dx, Dy], step, so all 
sizes within the limits of possible size of the object in the image, from (xMIN, yMIN) to (xMAX, yMAX), 
such as x = xMIN + kx Dx, y = yMIN + ky Dy, are checked under additional constraints on the shape of a 
possible object:

1 ≤ x/y ≤ 2 (4.44)

The results of evaluating the hypotheses on the size and location of the object within the frame are 
stored in an accumulator matrix Q with the size equal to the one of the image. If a rectangular part 
of the frame having the top left corner coordinates [u, v] and size [x, y] is classified by the SVM as a 
possible vehicle, the accumulator values for the area occupied by it are incremented:

Q(u .. u+x–1, v .. v+y–1) = Q(u .. u+x–1, v .. v+y–1) + Ix,y (4.45)

where Ix,y is a matrix of x columns and y rows, filled with all 1s. The found values of the coordinates 
and size [u, v, x, y] for each object candidate classified by the SVM as a vehicle are appended to the 
hypotheses matrix:
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R =

┌
│
│
│
└

u1,  v1,  x1,  y1

u2,  v2,  x2,  y2

…
un,  vn,  xn,  yn

┐
│
│
│
┘

(4.46)

where  [ui,  vi]  are  the  coordinates  of  the  top  left  corner,  and  [xi,  yi]  is  the  object  size  for  i-th 
hypothesis.

After entire frame has been scanned, it is checked whether the maximum of the accumulator  Q 
exceeds the threshold Θ for the number of overlapping detections  sufficient  to consider  a  new 
vehicle been detected. If max{Q} > Θ, the size of the object is calculated as a median of the sizes 
for all hypotheses:

[xo, yo] = [ median{[x1, x2, … xn]}, median{[y1, y2, … yn]}] (4.47)

Then the coordinates of the object are found as a point where the bounding box of the (xo, yo) size 
makes the maximum sum of the accumulator:

                                       uo+xo–1   vo+yo–1

[uo, vo] = arg max { ∑  ∑   Q(i, j)} (4.48)
                                        i = uo      j = vo

According to these coordinates and size, a sample of the detected object is extracted from the video 
frame. For the tracking purpose, the sample of the object is resized to the size of the kernel [wK, hK] 
used in the tracking algorithm; in this thesis work, wK = hK = 100 was set. 

4.3.2. Tracking vehicles using the kernel-based mean shift algorithm

Vehicles  were  tracked  using  the  kernel-based mean shift  tracking  procedure  based  on [19],  as 
described in Chapter 3.3. Given the 64-bin gray level histogram, which was used as the object 
template, and the image coordinates of the object in the previous frame, this algorithm iteratively 
searches for the best possible correspondence of the object sample with a region in the current 
frame, until the stop condition is fulfilled. In this thesis work, the stop condition was the following:

    ________
√du2 + dv2 ≤ 0.1 ∪ nit = 20 → Stop (4.49)

where
[du, dv] is the change of the object position since the previous iteration of the mean shift algorithm,  
in image coordinates [u, v];
 nit is the number of proceeded iterations of the mean shift algorithm.
 
An additional aspect that needs to be taken into account in the task of object tracking in image 
coordinates is the change of the visible size of the object. In order to properly manage this, the size 
of the sample of the object has to be variable.  This is  implemented by running the mean shift 
tracking algorithm several times with the size of the object slightly expanded or reduced (compared 
to the previous frame) and choosing the size that produces the greatest Bhattacharyya coefficient 
[19, p.5]. In this thesis work, while proceeding each video frame the following five options are tried 
for the object size and coordinates:
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R =

┌
│
│
│
│
└

uo,                  vo,                   xo,           yo

uo+0.05xo,      vo+0.025yo,    0.9xo,      0.95yo

uo+0.025xo,    vo+0.05yo,      0.95xo,    0.9yo

uo–0.05xo,      vo–0.025yo,    1.1xo,      1.05yo

uo–0.025xo,    vo–0.05yo,      1.05xo,    1.1yo

┐
│
│
│
│
┘

(4.50)

where 
R  is the array of possible options for the initial coordinates and size of the object,
(uo, vo) are the object coordinates at the previous video frame,
(xo, yo) is the object size at the previous frame.

4.3.3. The problem of conversion from image to world coordinates in the moving camera case

When the image coordinates  of an object  are  found, they need to be converted into the world 
coordinates.  In general, the problem of camera calibration in the moving camera case is solved 
using the principles applied in the case of static camera. From the image coordinates of a vanishing 
point formed by a set of parallel lines directed along the road, and the distances between some 
points on the road surface known from a priori information on the scene (road marking standards 
etc.), the system of equations (3.40)–(3.43) is built to find the camera parameters:

tan φ =  – 
 v0

(4.51) ––––––

 f 

cos2 θ = 
f 2 + v0

2

(4.52)–––––––––––––––––––––

f 2 + u0
2 + v0

2 

h uA
+ W cos θ =

h uB
(4.53)––––––––––––––––––––––– ––––––––––––––––––––––––––

(vA – v0) cos φ (vB – v0) cos φ

h (f 2 – vC v0)
+ L cos θ =

h  (f 2 – vD v0)
(4.54)–––––––––––––––––––– –––––––––––––––––––––

 f (vC – v0) f (vD – v0)
where
 f is the focal length of the camera;
h is the camera height over the road;
φ is the angle between the main optical axis of the camera and its projection onto the road plane;
θ is the angle between the projection of the main optical axis onto the road surface and the traffic 
direction;
(u0,  v0) are the image coordinates of the vanishing point formed by the continuation of the road 
boundaries into infinity;
W is the known distance between the points A and B on the road plane with the image coordinates 
(uA, vA) and (uB, vB) respectively, located on a straight line perpendicular to the traffic direction;
L is the known distance between the points C and D on the road plane with the image coordinates  
(uC, vC) and (uD, vD) respectively, located on a straight line parallel to the traffic direction;
ψ, the rotation angle of the camera around its main optical axis, is assumed to be zero.

For the case of a camera mounted on a moving vehicle, only f remains constant during the camera 
movement, while the other parameters are changing:
h and  φ  fluctuate around their mean values, and  ψ fluctuates around zero, because the vehicle is 
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shaking during its movement;
θ slowly deviates from its original value and can change significantly with time;
the coordinates of the points on the road surface are changing, previously known points go outside 
of the view, and new points need to be detected in order to keep on updating the camera parameters, 
as well as for tracking the own movement of the camera.

The deviation of camera parameters can be detected by producing a road plane projection image 
using the camera matrix for the previous video frame and analyzing the resulting defects:
– If the parallel road boundaries and marking lines tend to intersect in the road plane projection 
image, this means that the vertical coordinate of the vanishing point, v0, needs to be corrected until 
the lines at the road plane projection become parallel; it affects φ and h.
– If the parallel lines remain parallel, but appear to turn to the right or left in the road plane 
projection image, this shows that the horizontal coordinate of the vanishing point, u0, needs to be 
corrected; it affects θ.
– If the distances between known feature points on the road surface become equally longer or 
shorter in the road plane projection image, this means that h has changed.
– If the distances between known feature points on the road surface change unequally in different 
parts of the road plane projection image, while parallel lines remain parallel, this indicates a non-
zero ψ.
Examples of defects caused by inaccuracies in estimation of the camera parameters are shown at 
Fig. 4.6.

Since in the moving camera case the roll angle ψ cannot be forced to zero or compensated for, it 
needs to be included into the camera matrix:

P = P(ψ=0) Rψ = 

┌
│
│
│
└

┐
│
│· 
│
┘

 f cos θ               – f sin θ                0                 0  
–f sin θ sin φ     – f cos θ sin φ      – f cos φ     f h cos φ
 sin θ cos φ        cos θ cos φ           – sin φ        h sin φ

┌
│
│
│
│
└

┐
│
│
│
│
┘

cos ψ       0     – sin ψ     0
   0           1          0         0
 sin ψ       0       cos ψ     0
   0           0          0         1

 =

┌
│

=│
│
└

┐
│
│  (4.55)
│
┘

             f cos θ cos ψ                         – f sin θ                    – f cos θ sin ψ                              0
– f sinθ sinφ cosψ – f cosφ sinψ      – f cosθ sinφ       f sinθ sinφ sinψ – f cosφ cosψ        f h cosφ
   sinθ cosφ cosψ – sinφ sinψ           cosθ cosφ          – sinθ cosφ sinψ – sinφ cosψ          h sin φ

where 
Rψ  is the rotation matrix for the roll angle ψ;
P(ψ=0) = K R  is the camera matrix for ψ = 0 derived as in (3.33) – (3.44);
P  is the full camera matrix including all the rotation angles (φ, θ, and ψ).

The updated camera matrix for each video frame is stored to be used later for extracting statistical 
information on the traffic.

Similarly to the static camera case, in the moving camera scenario a road plane projection image is  
generated from the video frame using the inverse mapping method based on the estimated camera 
matrix and setting the vertical coordinate z to zero:

[s u,  s v,  s]T = P [x, y, 0, 1]T  (4.56)
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a) b) c)

d) e) f)

g) h) i)
Fig. 4.6. The types of defects in the road plane projection image caused by inaccuracies in the 
estimated camera parameters:
a) a road plane projection made with the correct camera matrix;
b) h assumed to be higher than its true value;
c) h assumed to be lower than its true value;
d) the vanishing point mistakenly located above its true position;
e) the vanishing point mistakenly located below its true position;
f) the vanishing point mistakenly located to the left from its true position;
g) the vanishing point mistakenly located to the right from its true position;
h) ψ < 0 while assumed to be zero;
i)  ψ > 0 while assumed to be zero.
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So for each (x, y, 0) point on the road plane, the corresponding image location (u, v) is found.

The difference from the static camera case is that the used road plane coordinate system is relative 
and specific for the particular video frame. In order to set the correspondence between this relative 
coordinate system and the absolute world coordinates, tracking of static details of the scene and 
estimation of the camera's own movement are needed, which is described below.

In order to amplify the features to search for, a difference image of the video frame being proceeded 
and the average gray level of the road surface is generated. First,  the gray level  m of the road 
surface is estimated as a median of the part of the frame showing the road surface:

m = median{I(S)} (4.57)

where 
I is the road plane projection of the frame being proceeded,
S is the region of I that contains the road surface.

Then a difference image J is calculated:

J = | I – m | (4.58)

In this difference image, the details of road marking (in most cases, the ends of dashes in dashed 
lines) are tracked using simple template tracking mechanism.

          [xp[n],  yp[n]] = [xp [n–1],  yp [n–1]] + arg min Σ Σ |T(x+Δx, y+Δy)–J(x,y)|                    (4.59)
                                 Δx,  Δy    x      y

where
T is the template of the feature being tracked,
[xp[i],  yp[i]] are the relative world coordinates of the feature p at i-th frame.

Using the difference image generated in (4.58), new features of the background, of which the ends 
of dashes in dashed road marking lines are the most important, are being detected using sample 
images of such road marking elements and checking their correspondence with the regions of a road 
plane projection of the video frame being proceeded.

Σ |J(x ... x+xmaxT–1, y ... y+ymaxT–1) – T |
x  ,  y                                                                                     
                            xmaxT  ymaxT

< Θ (4.60)

where 
J  is the difference image between the road plane projection of the frame being proceeded and the 
average gray level of the road surface, calculated in (4.58);
T is the template of the road marking element being searched for;
(xmaxT, ymaxT) is the size of T;
Θ is  the threshold for considering the  J(x ...  x+xmaxT–1,  y ...  y+ymaxT–1) to be the road marking 
element T.

When a region of the size  (xmaxT,  ymaxT) satisfying  (4.60) is found in  J,  it  is added to the list of 
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background features used for establishing correspondence between the relative world coordinate 
systems of different video frames and tracking the camera's own movement.

4.3.4. Tracking the own movement of the camera

Given a set of static points located on the road plane with their image coordinates [up[n], vp[n]] in 
the current frame n, their coordinates [xp[n], yp[n]] in the relative world coordinate system specific 
for this frame can be found using the procedures described in Section 4.3.3; the same was done for  
the previous frame (n – 1). The own movement of the camera causes these static details of the scene 
to change their position in the road plane projection image. For the points located on the road plane,  
this shift of their coordinates is equal by the absolute value to the displacement of the camera, but  
has the opposite direction:

       [xp[n], yp[n]]T – [xp[n–1], yp[n–1]]T = – ([xc[n], yc[n]]T – [xc[n–1], yc[n–1]]T)               (4.61)

where (xp[i],  yp[i]) and (xc[i],  yc[i]) are the relative world coordinates in the road plane projection 
image of the i-th frame for the feature point p and the camera, respectively.

In order  to minimize the errors occurring due to inaccuracies in  the coordinates of the feature 
points, the update procedure for the camera coordinates uses the median of the coordinate shifts of 
all the feature points:

           xc[n] = xc[n–1] – median{x1[n] – x1[n–1], x2[n] – x2[n–1],  ... xN[n] – xN[n–1]}    (4.62)

           yc[n] = yc[n–1] – median{y1[n] – y1[n–1], y2[n] – y2[n–1],  ... yN[n] – yN[n–1]}           (4.63)

where
(xj[i], yj[i]) are the relative world coordinates in the road plane projection image of the i-th frame for 
the j-th feature point,
N > 0 is the total number of feature points on the road surface currently being tracked.

Since  in  the  moving  camera  case  the  vehicles  have  been  tracked  in  the  image  coordinates,  a 
mechanism for conversion from the image plane to the road plane coordinate system for the stored 
coordinates of vehicles is needed. For this purpose, planar homography is used, as described in 
Chapter 3.5. It produces a homography matrix H setting the correspondence between the two planar 
coordinate systems (u, v) and (x, y)  in the following form (3.61):

[s x, s y, s]T = H [u, v, 1]T (4.64)

Using  (4.64), the tracked image coordinates for each object are converted to the relative world 
coordinates in the road plane projection for the particular frame. Then, using the fact that in the 
relative world coordinates the camera center is  located at  the zero point,  the conversion to the 
absolute world coordinates is made by adding the own coordinates of the camera obtained from 
(4.62) – (4.63):

[xA[n], yA[n]]T = [x[n], y[n]]T + [xc[n], yc[n]]T (4.65)

where 
[x[n],  y[n]] are the relative world coordinates of the object at the n-th video frame obtained from 
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(4.64);
[xc[n], yc[n]] are the absolute world coordinates of the camera at the n-th video frame obtained from 
(4.62) – (4.63);
[xA[n], yA[n]] are  the absolute world coordinates of the object at the n-th video frame.

4.3.5. Rectification of the results

As soon as the absolute world coordinates of a vehicle are found for each frame where it  was 
observed, then its trajectory and speed can be estimated using the methods applied for the static 
camera case. The trajectory is approximated with a 4th power polynomial, as proposed in [1, p.14]:

        x = P4(y) = k4 y4 + k3 y3 + k2 y2 + k1 y + k0                (4.66)

Then the length of this polynomial curve is used for estimating the speed:

                __________

s  ≈  
κ  Σ √Δx2 + Δy2 

  ≈–––––––––––––––––––––––––––––

(NE – N0) τ

     yMAX         ______________________

 κ   Σ √|P4(y) – P4(y–1)|2 + 1
   y=yMIN+1

      (4.67)–––––––––––––––––––––––––––––––––––––––––––––––––

(NE – N0) τ

where:
yMIN and  yMAX are the minimum and maximum values of the  y coordinate of the observed vehicle 
trajectory, respectively;
P4(y)  is  the  x coordinate  value  corresponding  to  y according  to  the  4th  power  polynomial 
approximation of the trajectory  (4.66);
N0 and  NE are  the  numbers  of  the  first  and  the  last  frame  where  the  vehicle  was  observed, 
respectively;
τ is the time interval between two consecutive video frames, in hours;
κ  is  the  scaling  coefficient  between  the  real  distances  and  the  road  plane  projection  image 
coordinates, in kilometers per pixel;
S is the final estimation of the average speed of the vehicle, in kilometers per hour.
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5. Experiments and results

In this part, the different scenarios used for testing the image processing and analysis algorithms 
described in Part  4 are presented.  Chapters 5.1 to 5.3 describe the three scenarios with a static 
camera.  In Chapter 5.4,  the performance of the methods used in  the static  camera scenarios is 
assessed. Chapter 5.5 shows the moving camera scenario, and in Chapter 5.6, some observations on 
the moving camera case are made.

5.1. Scenario 1: Video from a stable static camera, taken at daytime

The  video  sequence  from  [8]  was  used  for  this  scenario.  During  the  estimation  of  camera 
parameters, a non-horizontality of the camera with  ψ ≈ –3.5° was found; it was compensated by 
rotating  all  frames  by  –ψ,  as  recommended  in  [6,  p.59].  The  camera  calibration  was  done  in 
assumption that the true distance between the points A and B (see Fig. 5.1) is equal to 6 m, and the 
distance between B and C is 10 m.

Fig.  5.1.  The  background  image  used  for  camera  calibration  in 
scenario 1; the distances between A and B and between C and D 
were assumed to be known.

The resulting camera parameters appeared to be the following:
camera focal length f = 129.6 m;
camera height over the road surface: h = 13.4 m;
tilt angle φ = 12.2°,
pan angle  θ = 13.7°.

Using these parameters, a sequence of 1551 frames was proceeded. 56 vehicles passed through the 
tracking area in this video sequence, all of them were successfully detected, no misdetection of 
irrelevant objects was observed.

41



a) b)

c) d)

e)

Fig. 5.2. Results for scenario 1.
a) Video frame No.50 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.3. Results for scenario 1.
a) Video frame No.300 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.4 Results for scenario 1.
a) Video frame No.550 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.5. Results for scenario 1.
a) Video frame No.800 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.6. Results for scenario 1.
a) Video frame No.1050 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.7. Results for scenario 1.
a) Video frame No.1300 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d)

e)

Fig. 5.8. Results for scenario 1.
a) Video frame No.1550 from [8] with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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After the detection of each object, its classification into one of the vehicle types (car, van, truck, 
dumper, trailer) was made by comparing its visual appearance with a sample of a vehicle of each 
type. Statistics on the vehicle speed was gathered for each lane and each vehicle type. Different 
stages  of  image processing  for  this  scenario  are  shown at  Fig.  5.2  –  5.8.  The resulting  traffic 
statistics is presented in Table 5.1.

No. of vehicles per lane
%

speed, km/h
A1 A2 B2 B1 min. aver. max.

No. of 
vehicles 
per type

cars 10 7 7 12 69 51 69 102
vans 2 0 2 4 15 53 66 85

dumpers 2 0 0 1 6 44 49 58
trucks 1 0 0 2 6 45 60 70
trailers 0 0 0 1 2 60 60 60

unclassified 1 0 0 0 2 59 59 59

% 31 13 17 38

speed,
km/h

min. 44 64 78 56 44
aver. 54 72 86 65 66
max. 63 81 102 75 102

Table 5.1. Statistics for the vehicle speed per lane and per vehicle type for scenario 1.

5.2. Scenario 2: Video from an unstable static camera, taken at nighttime

A video sequence provided by Prof. Irene Gu was used for this scenario. The camera calibration 
was done in assumption that the true distance between the points A and B (see Fig. 5.9) satisfies the 
Swedish national standards on lane width and is equal to 3.75 m, and, since the point from where 
the video had been taken was known, the camera height was estimated to be h = 7.8 m. The other 
parameters of the camera appeared to be the following:
camera focal length f = 61.6 m;
tilt angle φ = –3.7°,
pan angle  θ = 5.3°.

Fig.  5.9.  The  background  image  used  for  camera  calibration  in 
scenario  2,  and  the  points  whose  coordinates  in  the  world 
coordinate system were assumed to be known.
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a) b)

c) d) e)

Fig. 5.10. Results for scenario 2.
a) Video frame No.65 for scenario 2 with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a)

c) d) e)

Fig. 5.11. Results for scenario 2.
a) Video frame No.315 for scenario 2 with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d) e)

Fig. 5.12. Results for scenario 2.
a) Video frame No.565 for scenario 2 with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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a) b)

c) d) e)

Fig. 5.13. Results for scenario 2.
a) Video frame No.815 for scenario 2 with the tracked vehicles and their trajectories marked. 
b) The foreground objects from (a).
c) The road plane projection of the frame from (a). 
d) The road plane projection of (b). 
e) Synthetic "road map" image showing the traffic situation.
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Using these parameters, a sequence of 835 frames was proceeded. 11 vehicles passed through the 
tracking area in this video sequence, all of them were successfully detected, no misdetection of 
irrelevant objects was observed.

Due to the poor visibility at the nighttime and high instability of the camera pose, noise in object 
coordinates was significant; therefore, statistics on the vehicle speed was gathered only per traffic 
direction. Different stages of image processing for this scenario are shown at Fig. 5.10 – 5.13. The 
resulting traffic statistics is presented in Table 5.2.

No. of vehicles per traffic direction speed, km/h
A B min. aver. max.
5 6 24 33 53

Table 5.2. Statistics for the traffic intensity per direction and the vehicle speed for scenario 2.

5.3. Scenario 3: Video from a highly unstable aerial camera, taken at daytime

The video sequence from [9] was used for this scenario. In order to apply the algorithms for the 
static camera case to this scenario, a preliminary stabilization of the video sequence was necessary.  
This was made by selecting 7 stable feature points visible in all frames (see Fig. 5.14), searching for 
them at  each  frame,  and  using  them to  build  a  planar  homography between  the  desired  fixed 
coordinates of these points at the target image and their found coordinates at the source image, as 
described in [20, p.2–6]. Then each frame was transformed to the same projection using inverse 
mapping.

Since the video sequence represents an aerial view, it was suitable for being treated as a road plane 
projection; therefore,  no special  camera calibration was necessary in this  case.  The background 
image was combined from parts of different frames containing no vehicles; it is shown at Fig. 5.15. 

2138 frames  were proceeded,  extracting  statistical  information  on the  traffic  direction  between 
different streets in the crossing shown in the video sequence. 88 vehicles (including 1 motorcycle) 
passed through the tracking area in this video sequence, all of them were successfully detected, no 
misdetection of irrelevant objects was observed.

Different stages of image processing for this scenario are shown at Fig. 5.16 – 5.24. The resulting 
traffic statistics is presented in Table 5.3.

traffic to
Street 1 Street 2 Street 3 Street 4

traffic 
from

Street 1 7 2 7 7
Street 2 0 8 2 19
Street 3 0 5 9 0
Street 4 4 14 0 4

Table 5.3. Statistics on the traffic directions for scenario 3 (If the source and destination of the 
traffic are the same, this means that the vehicles either were standing or the video sequence does not 
show their whole way).
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Fig. 5.14. A frame from the video used for scenario 3, with the points used for 
stabilization marked.

Fig. 5.15. The background image for scenario 3.
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a)

b)

c)

Fig. 5.16. Results for scenario 3.
a) Video frame No.100 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.17. Results for scenario 3.
a) Video frame No.350 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.18. Results for scenario 3.
a) Video frame No.600 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.19. Results for scenario 3.
a) Video frame No.850 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.20. Results for scenario 3.
a) Video frame No.1100 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.21. Results for scenario 3.
a) Video frame No.1350 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.22. Results for scenario 3.
a) Video frame No.1600 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.23. Results for scenario 3.
a) Video frame No.1850 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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a)

b)

c)

Fig. 5.24. Results for scenario 3.
a) Video frame No.2100 from [9].
b) Stabilized frame from (a) with the tracked 
vehicles and their trajectories marked. 
c) The foreground objects from (b).
d) Synthetic "road map" image showing the 
traffic situation. d)
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5.4. Comments on the static camera scenarios

The amount of data gathered from the 3 static camera scenarios allows to make some evaluations of 
the  performance  of  the  methods  used.  First,  the  effectiveness  of  background  subtraction  for 
detection of moving objects can be assessed, which is done Section 5.4.1. Second, the sensitivity of 
the vehicle detection procedure (in the sense of the time needed to react on a new object appeared in 
the tracking area) can be also estimated; the result of this is presented in Section 5.4.2.

5.4.1. Background subtraction performance assessments

In Table 5.4., data on the quality of the resulting image after the background subtraction for the 
proceeded 3 static camera scenarios is presented. For the sum of the number of vehicles observed in 
each frame throughout each scenario, the occurrences of the following situations were counted:
– intact objects, i.e. cases when one segment resulting from the background subtraction corresponds 
to one vehicle;
– fragmented objects, i.e. cases when the image of a vehicle was split into two or more segments by 
the background subtraction procedure;
– merged objects, i.e. cases when two or more nearly located vehicles were put into a single 
segment by the background subtraction procedure;
– objects both fragmented and merged, i.e. cases when one fragment of a fragmented object was 
merged with another object;
– invisible objects, i.e. cases when the background subtraction procedure failed to distinguish a 
vehicle from the background.

Scenario

Objects  in 
all frames

Intact 
objects

Fragmented 
objects

Merged 
objects

Objects both 
fragmented 
and merged

Invisible 
objects

1 total 4925 3671 686 492 72 4
%% 100 74.5 13.9 10.0 1.5 0.1

2 total 1576 570 686 103 211 6
%% 100 36.2 43.5 6.5 13.4 0.4

3 total 38769 29561 8768 2 2 436
%% 100 76.2 22.6 0.05 0.05 1.1

Table 5.4. Assessment of the background subtraction performance.

As it can be seen, in the daytime videos the background subtraction produces perfect segment to  
object correspondence in 3/4 of cases. The share of mergers seems to depend on the viewing angle; 
in  a  top view they almost  never  occur.  The high percentage  of  fragmentation  in  the  nighttime 
scenario reflects the fact that the front or rear lights of a vehicle, which produce two foreground 
segments in good visibility conditions, were the actual object to track. The occurrence of invisible 
objects was low, though it tends to grow with increase of the distance from the camera to the object.

5.4.2. Detection delay assessment

In a perfect case, the vehicle identification procedure described in Section 4.2.4. should notice a 
newly appeared vehicle as soon as it enters the tracking area. However, in some cases detection 
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does not occur immediately due to some factor that prevents a reliable classification of the object as 
a vehicle. This can be, for example, the following:
– low quality of background subtraction in this particular area, which produces a fragment smaller 
than the necessary minimum size, specified in (4.39);
– occlusion of the newly appeared object.
In  order  to  avoid  errors,  the  detection  procedure  implemented  in  this  thesis  work  postpones 
detection to  the  next  frame if  it  cannot  decide certainly whether  a  newly appeared object  is  a 
vehicle. Such situations lead to a delay in object detection. In Table 5.5, data on detection delays in 
the proceeded 3 static camera scenarios is presented.

Scenario
No. of 
frames

No. of 
vehicles

Vehicles detected with a delay Delay length, frames 
No. %% min. average median max.

1 1551 56 18 32.1 0 1.2 0 17
2 835 11 8 72.7 0 7.8 7 20
3 2138 88 42 47.7 0 4.0 0 64

Table 5.5. Assessment of the reaction time of the vehicle identification procedure.

Here it can be seen that in the daytime scenarios most vehicles were detected immediately as they 
appeared.  In  the  nighttime  scenario,  delayed  detections  were  more  common  because  of  the 
difficulty in distinguishing between the front lights of a vehicle and the reflection of these lights off 
the road surface when the distance from the camera to the object is  long. In the non-top view 
scenarios 1 and 2, the longest delays in detection occurred due to partial occlusions. In scenario 3,  
the longest delay happened when a vehicle was standing in a badly visible place at the edge of the 
tracking area for long time.

5.5. Scenario 4: Video from a moving camera mounted on a vehicle, taken at 
daytime

The video sequence from [10] was used for this scenario. The initial camera calibration was done in 
assumption that the true distance between the points A and B (see Fig. 5.25) is equal to 3 m, and the 
distance between B and C is 7.5 m. 

The initial camera parameters for the first frame appeared to be the following:
camera focal length f = 21.0 m;
camera height over the road surface h = 0.8 m;
tilt angle φ = –9.1°,
pan angle θ = 2.3°.

Since detection of road marking elements was beyond the scope of this thesis work, adjustment of 
camera parameters for further frames was done manually. After this, 1612 frames were proceeded, 
extracting statistical information on the vehicle speed for each lane. 12 vehicles passed through the 
tracking area in this video sequence, all of them were successfully detected, no misdetection of 
irrelevant objects was observed. 

The resulting traffic statistics is presented in Table 5.6. Different stages of image processing for this 
scenario are shown at Fig. 5.26 – 5.30. 
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Fig.  5.25.  The  image  used  for  the  initial  camera 
calibration in scenario 4; the distances between A and B 
and between C and D were assumed to be known.

No. of vehicles per lane speed, km/h
A4 A3 A2 A1 min. aver. max.

0 0 6 6 54 67 86
Table 5.6. Statistics for the traffic intensity per lane and the vehicle speed  for scenario 4.
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a)

Fig. 5.26. Results for scenario 4.
a) Video frame No.50 with the 
tracked vehicles and their 
trajectories marked. 
b) Road plane projection of the 
frame from (a).
c)  Synthetic  "road map"  image 
based on the frame from (a). 

b)

c)
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a)

Fig. 5.27. Results for scenario 4.
a) Video frame No.275 with the 
tracked vehicles and their 
trajectories marked. 
b) Road plane projection of the 
frame from (a).
c)  Synthetic  "road  map"  image 
based on the frame from (a). 

b)

c)
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a)

Fig. 5.28. Results for scenario 4.
a) Video frame No.560 with the 
tracked vehicles and their 
trajectories marked. 
b) Road plane projection of the 
frame from (a).
c)  Synthetic  "road  map"  image 
based on the frame from (a).

b)

c)
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a)

Fig. 5.29. Results for scenario 4.
a) Video frame No.1120 with the 
tracked vehicles and their 
trajectories marked. 
b) Road plane projection of the 
frame from (a).
c) Synthetic "road map" image 
based on the frame from (a).

b)

c)
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a)

Fig. 5.30. Results for scenario 4.
a) Video frame No.1500 with the 
tracked vehicles and their 
trajectories marked. 
b) Road plane projection of the 
frame from (a).
c) Synthetic "road map" image 
based on the frame from (a).

b)

c)
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5.6. Comments on the moving camera case

One scenario  is  not  sufficient  to  make  any evaluations  on  the  used  methods.  However,  some 
interesting data on the behavior of the camera parameters during the camera's own movement can 
be collected. 

The statistics of the camera parameters change for the whole video sequence is shown at Fig. 5.31 – 
5.34. As it can be seen, the  camera height  h, tilt angle  φ, pan angle  θ, and roll angle  ψ fluctuate 
around their mean value, but only for the θ the statistical distribution is symmetric. The asymmetry 
of the statistics for h and φ can be explained by the observation that the up and down movement of 
the camera mounted on a moving vehicle is not a symmetric process. However, the  ψ angle is 
symmetric with respect to the traffic direction the same way as the θ is. Seemingly, in this case the 
non-flatness of the road surface (i.e. the fact that real roads are built in a shape of cylindrical surface 
instead of a perfect plane in order to provide drainage for rainfall water) can matter.

An interesting subject for study can be the correspondences between the camera parameters. As the 
graphs at Fig.5.35 show, their alterations during the camera movement are not random; they have 
some correlation with each other. The values of the correlation between different camera parameters 
for Scenario 4 are presented in Table 5.7.

Camera parameters camera height h pan angle θ tilt angle φ
roll angle ψ 0.22 0.01 0.32
tilt angle φ 0.52 0.21

pan angle θ 0.21 Correlation
Table 5.7. Correlation between different camera parameters in Scenario 4.

As it can be seen, the greatest correlation is observed between the camera height h and its tilt angle 
φ. This can reflect a specific pattern in the shaking movement of the camera mounted on a moving 
vehicle. The correlation between the tilt angle φ and is roll angle ψ is also worth mentioning. This 
can be a promising area for further research.
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a)

b)
Fig. 5.31. Fluctuation of the camera height h for the moving camera scenario 4:
a) time diagram;
b) statistics.

74



a)

b)
Fig. 5.32. Fluctuation of the tilt angle φ for the moving camera scenario 4:
a) time diagram;
b) statistics.
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a)

b)
Fig. 5.33. Fluctuation of the pan angle θ for the moving camera scenario 4:
a) time diagram;
b) statistics.
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a)

b)
Fig. 5.34. Fluctuation of the roll angle ψ for the moving camera scenario 4:
a) time diagram;
b) statistics.

77



a) b)

c) d)

e) f)

Fig. 5.35. Correspondences between different parameters of the moving camera:
a) camera height h and pan angle θ;                       b) camera height h and tilt angle φ;
c) camera height h and roll angle ψ;                       d) pan angle θ and tilt angle φ;
e) pan angle θ and roll angle ψ;                              f) tilt angle φ and roll angle ψ.
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6. Conclusion and future work
This thesis work shows the applicability of different methods of image analysis for the aims of road 
traffic analysis based on grayscale video sequences.

For the static camera case, object detection and tracking in a world coordinate system was made, 
instead of the usual solution in the image coordinates. The possibility to identify vehicles in the 
road plane projection of a video frame based on the typical size and shape of various kinds of  
vehicles was demonstrated.

For  the  moving  camera  case,  the  applicability  of  the  mean  shift  tracking  method,  originally 
developed for proceeding color video sequences [19], to grayscale video was shown. The problem 
of  false  positives  produced  by  the  HOG-based  detection  was  overcome  by  implementing 
overlapping detections and a voting mechanism.

This thesis work shows the importance of proper detection of road marking elements for the camera 
calibration. Improving the accuracy of line detection methods in application to the vanishing point 
detection and precise detection of the ends of dashes in dashed road marking lines can be the task 
for a future work aiming to increase the performance of the road traffic analysis methods in the case 
of a moving camera.

In addition, correspondences between the changing camera parameters during the motion of the 
camera appeared to be another interesting area for research. This can lead to developing some kind 
of models predicting the camera motion and the corresponding alteration of its parameters, which 
also can be helpful for the task of road traffic analysis based on videos from a moving camera.
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