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Abstract

A constitutive model based on the combination of damage mechanics and plasticity is

developed to analyse the failure of concrete structures. The aim is to obtain a model,

which describes the important characteristics of the failure process of concrete subjected

to multiaxial loading. This is achieved by combining an effective stress based plasticity

model with a damage model based on plastic and elastic strain measures. The model

response in tension, uni-, bi- and triaxial compression is compared to experimental results.

The model describes well the increase in strength and displacement capacity for increasing
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confinement levels. Furthermore, the model is applied to the structural analyses of tensile

and compressive failure.

Keywords: concrete; constitutive model; plasticity; damage mechanics; fracture; mesh

dependence

1 Introduction

Concrete is a strongly heterogeneous material, which exhibits a complex nonlinear me-

chanical behaviour. Failure in tension and low confined compression is characterised by

softening which is defined as decreasing stress with increasing deformations. This soft-

ening response is accompanied by a reduction of the unloading stiffness of concrete, and

irreversible (permanent) deformations, which are localised in narrow zones often called

cracks or shear bands. On the other hand, the behaviour of concrete subjected to high

confined compression is characterised by a ductile hardening response; that is, increas-

ing stress with increasing deformations. These phenomena should be considered in a

constitutive model for analysing the multiaxial behaviour of concrete structures.

There are many constitutive models for the nonlinear response of concrete proposed in

the literature. Commonly used frameworks are plasticity, damage mechanics and com-

binations of plasticity and damage mechanics. Stress-based plasticity models are useful

for the modelling of concrete subjected to triaxial stress states, since the yield surface

corresponds at a certain stage of hardening to the strength envelope of concrete (Leon,
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1935; Etse and Willam, 1994; Willam and Warnke, 1974; Pramono and Willam, 1989;

Menétrey and Willam, 1995; Pivonka, 2001; Grassl et al., 2002; Papanikolaou and Kap-

pos, 2007; Červenka and Papanikolaou, 2008; Folino and Etse, 2012). Furthermore, the

strain split into elastic and plastic parts represents realistically the observed deformations

in confined compression, so that unloading and path-dependency can be described well.

However, plasticity models are not able to describe the reduction of the unloading stiff-

ness that is observed in experiments. Conversely, damage mechanics models are based on

the concept of a gradual reduction of the elastic stiffness (Kachanov, 1980; Mazars, 1984;

Ortiz, 1985; Resende, 1987; Mazars and Pijaudier-Cabot, 1989; Carol et al., 2001; Tao and

Phillips, 2005; Voyiadjis and Kattan, 2009). For strain-based isotropic damage mechanics

models, the stress evaluation procedure is explicit, which allows for a direct determination

of the stress state, without an iterative calculation procedure. Furthermore, the stiffness

degradation in tensile and low confined compressive loading observed in experiments can

be described. However, isotropic damage mechanics models are often unable to describe

irreversible deformations observed in experiments and are mainly limited to tensile and

low confined compression stress states. On the other hand, combinations of isotropic

damage and plasticity are widely used for modelling both tensile and compressive failure

and many different models have been proposed in the literature (Ju, 1989; Lee and Fenves,

1998; Jason et al., 2006; Grassl and Jirásek, 2006; Nguyen and Houlsby, 2008; Nguyen

and Korsunsky, 2008; Voyiadjis et al., 2008; Grassl, 2009; Sánchez et al., 2011; Valentini

and Hofstetter, 2012).

One popular class of damage-plastic models relies on a combination of stress-based plas-
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ticity formulated in the effective (undamaged) stress space combined with a strain based

damage model. The combined damage-plasticity model recently developed by Grassl and

Jirásek (2006); Grassl and Jirásek (2006) belongs to this group. This model, called here

Concrete Damage Plasticity Model 1 (CDPM1), is characterised by a very good agreement

with a wide range of experimental results of concrete subjected to multiaxial stress states.

Furthermore, it has been used in structural analysis in combination with techniques to

obtain mesh-independent results and has shown to be robust (Grassl and Jirásek, 2006;

Valentini and Hofstetter, 2012). However, CDPM1 is based on a single damage parameter

for both tension and compression. This is sufficient for monotonic loading with unload-

ing, but is not suitable for modelling the transition from tensile to compressive failure

realistically. When the model was proposed, this limitation was already noted and a gen-

eralisation to isotropic formulations with several damage parameters was recommended.

In the present work, CDPM1 is revisted to address this issue by proposing separate dam-

age variables for tension and compression. The introduction of two isotropic damage

variables for tension and compression was motivated by the work of Mazars (1984); Ortiz

(1985); Fichant et al. (1999). Secondly, in CDPM1, a perfect plastic response in the nom-

inal post-peak regime is assumed for the plasticity part and damage was determined by

a function of the plastic strain. For the nonlocal version of CDPM1 presented in Grassl

and Jirásek (2006), this perfect-plastic response resulted in mesh-dependent plastic strain

profiles, although the overall load-displacement response was mesh-independent. Already

in Grassl and Jirásek (2006), it was suggested that the plastic strain profile could be

made mesh-independent by introducing hardening in the plasticity model for the nominal
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post-peak regime. In the present model, the damage functions for tension and compres-

sion depend on both plastic and elastic strain components. Furthermore, hardening is

introduced in the nominal post-peak regime. With these extensions, the damage laws can

be analytically related to chosen stress-inelastic strain relations, which simplifies the cal-

ibration procedure. The extension to hardening is based on recent 1D damage-plasticity

model developments in Grassl (2009), which are here for the first time applied to a 3D

model. The present damage-plasticity model for concrete failure is an augmentation of

CDPM1. Therefore, the model is called here CDPM2. The aim of this article is to

present in detail the new phenomenological model and to demonstrate that this model

is capable of describing the influence of confinement on strength and displacement ca-

pacity, the presence of irreversible displacements and the reduction of unloading stiffness,

and the transition from tensile to compressive failure realistically. Furthermore, it will

be shown, by analysing structural tests, that CDPM2 is able to describe concrete failure

mesh independently.

2 Damage-plasticity constitutive model

2.1 General framework

The damage plasticity constitutive model is based on the following stress-strain relation-

ship:

σ = (1− ωt) σ̄t + (1− ωc) σ̄c (1)
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where σ̄t and σ̄c are the positive and negative parts of the effective stress tensor σ̄,

respectively, and ωt and ωc are two scalar damage variables, ranging from 0 (undamaged)

to 1 (fully damaged). The effective stress σ̄ is defined as

σ̄ = De : (ε− εp) (2)

where De is the elastic stiffness tensor based on the elastic Young’s modulus E and

Poisson’s ratio ν, ε is the strain tensor and εp is the plastic strain tensor. The positive

and negative parts of the effective stress σ̄ in (1) are determined from the principal

effective stress σ̄p as σ̄pt = 〈σ̄p〉+ and σ̄pc = 〈σ̄p〉−, where 〈〉+ and 〈〉− are positive and

negative part operators, respectively, defined as 〈x〉+ = max (0, x) and 〈x〉− = min (0, x).

For instance, for a combined tensile and compressive stress state with principal effective

stress components σ̄p = (−σ̄, 0.2σ̄, 0.1σ̄)T, the positive and negative principal stresses are

σ̄pt = (0, 0.2σ̄, 0.1σ̄)T and σ̄pc = (−σ̄, 0, 0)T, respectively.

The plasticity model is based on the effective stress, which is independent of damage. The

model is described by the yield function, the flow rule, the evolution law for the hardening

variable and the loading-unloading conditions. The form of the yield function is

fp (σ̄, κp) = F (σ̄, qh1, qh2) (3)

where qh1 (κp) and qh2 (κp) are dimensionless functions controlling the evolution of the
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size and shape of the yield surface. The flow rule is

ε̇p = λ̇
∂gp

∂σ̄
(σ̄, κp) (4)

where ε̇p is the rate of the plastic strain, λ̇ is the rate of the plastic multiplier and gp is

the plastic potential. The rate of the hardening variable κp is related to the rate of the

plastic strain by an evolution law. The loading-unloading conditions are

fp ≤ 0, λ̇ ≥ 0, λ̇fp = 0 (5)

A detailed description of the individual components of the plasticity part of the model

are discussed in Section 2.2.

The damage part of the model is described by the damage loading functions, loading

unloading conditions and the evolution laws for damage variables for tension and com-

pression. For tensile damage, the main equations are

fdt = ε̃t(σ̄)− κdt (6)

fdt ≤ 0, κ̇dt ≥ 0, κ̇dtfdt = 0 (7)

ωt = gdt (κdt, κdt1, κdt2) (8)

For compression, they are

fdc = αcε̃c(σ̄)− κdc (9)
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fdc ≤ 0, κ̇dc ≥ 0, κ̇dcfdc = 0 (10)

ωc = gdc (κdc, κdc1, κdc2) (11)

Here, fdt and fdc are the loading functions, ε̃t(σ̄) and ε̃c(σ̄) are the equivalent strains and

κdt, κdt1, κdt2, κdc, κdc1 and κdc2 are damage history variables. Furthermore, αc is a vari-

able that distinguishes between tensile and compressive loading. A detailed description

of the variables is given in Section 2.3.

2.2 Plasticity part

The plasticity part of the model is formulated in a three-dimensional framework with a

pressure-sensitive yield surface, hardening and non-associated flow. The main components

are the yield function, the flow rule, the hardening law and the evolution law for the

hardening variable.

2.2.1 Yield function

The yield surface is described in terms of the cylindrical coordinates in the principal

effective stress space (Haigh-Westergaard coordinates), which are the volumetric effective

stress

σ̄V =
I1

3
(12)
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the norm of the deviatoric effective stress

ρ̄ =
√

2J2 (13)

and the Lode angle

θ̄ = 1
3

arccos

(
3
√

3

2

J3

J
3/2
2

)
(14)

The foregoing definitions use the first invariant

I1 = σ̄ : δ = σ̄ijδij (15)

of the effective stress tensor σ̄, and the second and third invariants

J2 = 1
2
s̄ : s̄ = 1

2
s̄2 : δ = 1

2
s̄ij s̄ij (16)

J3 = 1
3
s̄3 : δ = 1

3
s̄ij s̄jks̄ki (17)

of the deviatoric effective stress tensor s̄ = σ̄ − δI1/3.

The yield function

fp(σ̄V, ρ̄, θ̄;κp) =

{
[1− qh1(κp)]

(
ρ̄√
6fc

+
σ̄V

fc

)2

+

√
3

2

ρ̄

fc

}2

+m0q
2
h1(κp)qh2(κp)

[
ρ̄√
6fc

r(cos θ̄) +
σ̄V

fc

]
− q2

h1(κp)q2
h2(κp)

(18)

depends on the effective stress (which enters in the form of cylindrical coordinates) and

on the hardening variable κp (which enters through the dimensionless variables qh1 and
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qh2). Parameter fc is the uniaxial compressive strength. For qh2 = 1, the yield function is

identical to the one of CDPM1.

The meridians of the yield surface fp = 0 are parabolic, and the deviatoric sections change

from triangular shapes at low confinement to almost circular shapes at high confinement.

The shape of the deviatoric section is controlled by the function

r(cos θ̄) =
4(1− e2) cos2 θ̄ + (2e− 1)2

2(1− e2) cos θ̄ + (2e− 1)
√

4(1− e2) cos2 θ̄ + 5e2 − 4e
(19)

proposed by Willam and Warnke (1974). The calibration of the eccentricity parameter e

is described in Jirásek and Bažant (2002) and in section 5. The friction parameter m0 is

given by

m0 =
3 (f 2

c − f 2
t )

fcft

e

e+ 1
(20)

where ft is the tensile strength. The shape and evolution of the yield surface is controlled

by the variables qh1 and qh2 (Figs. 1 and 2). If the two variables qh1 and qh2 in (18) are

set equal to one and the resulting yield function is set equal to zero, the failure surface

3

2

ρ̄2

f 2
c

+m0

[
ρ̄√
6fc

r(cos θ̄) +
σ̄V

fc

]
− 1 = 0 (21)

is obtained, which was originally proposed by Menétrey and Willam (1995).
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Figure 1: The evolution of the meridional section of the yield surface during hardening.

Figure 2: The evolution of the deviatoric section of the yield surface during hardening for
a constant volumetric stress of σ̄V = −fc/3.

11



2.2.2 Flow rule

In the present model, the flow rule in (4) is non-associated, which means that the yield

function fp and the plastic potential gp do not coincide and, therefore, the direction of

the plastic flow ∂gp/∂σ̄ is not normal to the yield surface. The plastic potential is given

as

gp(σ̄V, ρ̄;κp) =

{
[1− qh1(κp)]

(
ρ̄√
6fc

+
σ̄V

fc

)2

+

√
3

2

ρ̄

fc

}2

+ q2
h1(κp)

(
m0ρ̄√

6fc

+
mg(σ̄V, κp)

fc

) (22)

where

mg(σ̄V, κp) = Ag (κp)Bg (κp) fc exp
σ̄V − qh2(κp)ft/3

Bg (κp) fc

(23)

is a variable controlling the ratio of volumetric and deviatoric plastic flow. Here, Ag (κp)

and Bg (κp), which depend on qh2(κp), are derived from assumptions on the plastic flow

in uniaxial tension and compression in the post-peak regime.

The derivation of these two variables is illustrated in the following paragraphs. Here, the

notation m ≡ ∂g

∂σ
is introduced. In the principal stress space, the plastic flow tensor m has

three components, m1, m2 and m3 associated with the three principal stress components.

The flow rule (4) is split into a volumetric and a deviatoric part, i.e., the gradient of the

plastic potential is decomposed as

m =
∂g

∂σ̄
=

∂g

∂σ̄V

∂σ̄V

∂σ̄
+
∂g

∂ρ̄

∂ρ̄

∂σ̄
(24)
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Taking into account that ∂σ̄V/∂σ̄ = δ/3 and ∂ρ̄/∂σ̄ = s̄/ρ̄, restricting attention to the

post-peak regime (in which qh1 = 1) and differentiating the plastic potential (22), we

rewrite equation (24) as

m =
∂g

∂σ̄
=
∂mg

∂σ̄V

δ

3fc

+

(
3

fc

+
m0√

6ρ̄

)
s̄

fc

(25)

Experimental results for concrete loaded in uniaxial tension indicate that the strains

perpendicular to the loading direction are elastic in the softening regime. Thus, the plastic

strain rate in these directions should be equal to zero (m2 = m3 = 0). Under uniaxial

tension, the effective stress state in the post-peak regime is characterised by σ̄1 = ftqh2,

σ̄2 = σ̄3 = 0, σ̄V = ftqh2/3, s̄1 = 2ftqh2/3, s̄2 = s̄3 = −ftqh2/3 and ρ̄ =
√

2/3ftqh2.

Substituting this into (25) and enforcing the condition m2 = m3 = 0, we obtain an

equation from which

∂mg

∂σ̄V

∣∣
σ̄V=ftqh2/3 =

3ftqh2

fc

+
m0

2
(26)

In uniaxial compressive experiments, a volumetric expansion is observed in the softening

regime. Thus, the inelastic lateral strains are positive while the inelastic axial strain is

negative. In the present approach, a constant ratio Df = −m2/m1 = −m3/m1 between

lateral and axial plastic strain rates in the softening regime is assumed. The effective stress

state at the end of hardening under uniaxial compression is characterised by σ̄1 = −fcqh2,

σ̄2 = σ̄3 = 0, σ̄V = −fcqh2/3, s̄1 = −2fcqh2/3, s̄2 = s̄3 = fcqh2/3 and ρ̄ =
√

2/3fcqh2.

Substituting this into (25) and enforcing the condition m2 = m3 = −Dfm1, we get an
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equation from which

∂mg

∂σ̄V

∣∣
σ̄V=−fcqh2/3 =

2Df − 1

Df + 1

(
3qh2 +

m0

2

)
(27)

Substituting the specific expression for ∂mg/∂σ̄V constructed by differentiation of (23)

into (26) and (27), we obtain two equations from which parameters

Ag =
3ftqh2

fc

+
m0

2
(28)

Bg =
(qh2/3) (1 + ft/fc)

lnAg − ln (2Df − 1)− ln (3qh2 +m0/2) + ln (Df + 1)
(29)

can be computed. The gradient of the dilation variable mg in (23) decreases with in-

creasing confinement. The limit σ̄V → −∞ corresponds to purely deviatoric flow. As in

CDPM1, the plastic potential does not depend on the third Haigh-Westergaard coordinate

(Lode angle θ̄), which increases the efficiency of the implementation and the robustness

of the model.

2.2.3 Hardening law

The dimensionless variables qh1 and qh2 that appear in (18), (22) and (23) are functions

of the hardening variable κp. They control the evolution of the size and shape of the yield

surface and plastic potential. The first hardening law qh1 is

qh1(κp) =


qh0 + (1− qh0)

(
κ3

p − 3κ2
p + 3κp

)
−Hp

(
κ3

p − 3κ2
p + 2κp

)
if κp < 1

1 if κp ≥ 1

(30)
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Figure 3: The two hardening laws qh1 (solid line) and qh2 (dashed line).

The second hardening law qh2 is given by

qh2(κp) =


1 if κp < 1

1 +Hp(κp − 1) if κp ≥ 1

(31)

The initial inclination of the hardening curve qh1 at κp = 0 is positive and finite, and the

inclination of both qh1 and qh2 at κp = 1 is Hp, as depicted in Fig. 3. For Hp = 0, the

hardening law reduces to the one proposed in Grassl and Jirásek (2006).

2.2.4 Hardening variable

The evolution law for the hardening variable,

κ̇p =
‖ε̇p‖
xh (σ̄V)

(
2 cos θ̄

)2
=

λ̇‖m‖
xh (σ̄V)

(
2 cos θ̄

)2
(32)
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sets the rate of the hardening variable equal to the norm of the plastic strain rate scaled

by a hardening ductility measure

xh (σ̄V) =


Ah − (Ah −Bh) exp (−Rh(σ̄V)/Ch) if Rh(σ̄V) ≥ 0

Eh exp(Rh(σ̄V)/Fh) +Dh if Rh(σ̄V) < 0

(33)

For pure volumetric stress states, θ̄ in (32) is set to zero. The dependence of the scaling

factor xh on the volumetric stress σ̄V is constructed such that the model response is more

ductile under compression. The variable

Rh(σ̄V) = − σ̄V

fc

− 1

3
(34)

is a linear function of the volumetric effective stress. Model parameters Ah, Bh, Ch and

Dh are calibrated from the values of strain at peak stress under uniaxial tension, uniaxial

compression and triaxial compression, whereas the parameters Eh and Fh are determined

from the conditions of a smooth transition between the two parts of equation (33) at

Rh = 0:

Eh = Bh −Dh (35)

Fh =
(Bh −Dh)Ch

Ah −Bh

(36)

This definition of the hardening variable is identical to the one in CDPM1 described in

Grassl and Jirásek (2006), where the calibration procedure of the hardening variables is
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described.

2.3 Damage part

Damage is initiated when the maximum equivalent strain in the history of the material

reaches the threshold ε0 = ft/E. For uniaxial tension only, the equivalent strain could

be chosen as ε̃ = σ̄t/E, where σ̄t is the effective uniaxial tensile stress. Thus, damage

initiation would be linked to the axial elastic strain. However, for general triaxial stress

states a more advanced equivalent strain expression is required, which predicts damage

initiation when the strength envelope is reached. This expression is determined from the

yield surface (fp = 0) by setting qh1 = 1 and qh2 = ε̃/ε0. From this quadratic equation

for ε̃, the equivalent strain is determined as

ε̃ =
ε0m0

2

(
ρ̄√
6fc

r (cos θ) +
σ̄V

fc

)
+

√
ε2

0m
2
0

4

(
ρ̄√
6fc

r (cos θ) +
σ̄V

fc

)2

+
3ε2

0ρ̄
2

2f 2
c

(37)

For uniaxial tension, the effective stress state is defined as σ̄1 = σ̄t, σ̄2 = σ̄3 = 0, σ̄V =

σ̄t/3, s̄1 = 2σ̄t/3, s̄2 = s̄3 = −σ̄t/3, ρ̄ =
√

2/3σ̄t and r(cos θ) = 1/e. Setting this into (37)

and using the definition of m0 in (20) gives

ε̃ = ε0
σ̄t

ft

= σ̄t/E (38)

which is suitable equivalent strain for modelling tensile failure. For uniaxial compression,

the effective stress state is defined as σ̄1 = −σ̄c, σ̄2 = σ̄3 = 0, σ̄V = −σ̄c/3, s̄1 = −2/3σ̄c,
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s̄2 = s̄3 = 1/3σ̄c, ρ̄ =
√

2/3σ̄c, and r(cos θ) = 1. Here, σ̄c is the magnitude of the effective

compressive stress. Setting this into (37), the equivalent strain is

ε̃ =
σ̄cε0

fc

=
σ̄cft

Efc

(39)

If σ̄c = (fc/ft)σ̄t, the equivalent strain is again equal to the axial elastic strain component

in uniaxial tension. Consequently, the equivalent strain definition in (37) is suitable for

both tension and compression, which is very convenient for relating the damage variables

in tension and compression to inelastic stress-strain curves.

The damage variables ωt and ωc in (1) are determined so that a prescribed stress-inelastic

strain relation in uniaxial tension is obtained. Since, the damage variables are evaluated

for general triaxial stress states, the inelastic strain in uniaxial tension has to be expressed

by suitable scalar history variables, which are obtained from total and plastic strain

components. To illustrate the choice of these components, a 1D damage-plastic stress-

strain law of the form

σ = (1− ω) σ̄ = (1− ω)E (ε− εp) (40)

is considered. Here, ω is the damage variable. This law can also be written as

σ = E {ε− [εp + ω (ε− εp)]} = E (ε− εi) (41)

where εi is the inelastic strain which is subtracted from the total strain. The geometrical

interpretation of the inelastic strain and its split for monotonic uniaxial tension, linear

18



Figure 4: Geometrical meaning of the inelastic strain εi for the combined damage-
plasticity model. The inelastic strain is composed of reversible ω (ε− εp) and irreversible
εp parts. The dashed lines represent elastic unloading with the same stiffness as the initial
elastic loading.

hardening plasticity and linear damage evolution are shown in Fig. 4. Furthermore, the

way how the hardening influences damage and plasticity dissipation has been discussed

in Grassl (2009). The part ω (ε− εp) is reversible and εp is irreversible. The damage

variable is chosen, so that a softening law is obtained, which relates the stress to the

inelastic strain, which is written here in generic form as

σ = fs (εi) (42)

Setting (41) equal with (42) allows for determining the damage variable ω.
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However, the inelastic strain εi in (41) and (42) needs to be expressed by history variables,

so that the expression for the damage variable can be used for non-monotonic loading.

Furthermore, to be able to describe also the influence of multiaxial stress states on the

damage evolution, the inelastic strain in (42) is replaced by different history variables than

the inelastic strain in (41). The choice of the history variables for tension and compression

is explained in sections. 2.3.1 and 2.3.2.

2.3.1 History variables for tension

The tensile damage variable ωt in (1) is defined by three history variables κdt, κdt1 and

κdt2. The variable κdt is used in the definition of the inelastic strain in (41), while κdt1

and κdt2 enter the definition of the inelastic strain in (42). The history variable κdt is

determined from ε̃t using (6) and (7). Here, ε̃t is given implicitly in incremental form by

˙̃εt = ˙̃ε (43)

with ε̃ given in (37). For κdt1, the inelastic strain component related the plastic strain εp

is replaced by

κ̇dt1 =


1

xs

‖ε̇p‖ if κ̇dt > 0 and κdt > ε0

0 if κ̇dt = 0 or κdt < ε0

(44)

20



Here, the pre-peak plastic strains do not contribute to this history variable, since κ̇dt1 is

only nonzero, if κdt > ε0. Finally, the third history variable is related to κdt as

κ̇dt2 =
κ̇dt

xs

(45)

In (44) and (45), xs is a ductility measure, which describes the influence of multiaxial

stress states on the softening response, see Sec. 2.3.4.

2.3.2 History variables for compression

The compression damage variable ωc is also defined by three history variables κdc, κdc1

and κdc2. Analogous to the tensile case, the variable κdc is used in the definition of the

inelastic strain in (41), while κdc1 and κdc2 enter the definition of the equivalent strain in

(42). In addition, a variable αc is introduced which distinguishes tensile and compressive

stresses. It has the form

αc =
3∑
i=1

σ̄pci (σ̄pti + σ̄pci)

‖σ̄p‖2
(46)

where σ̄pti and σ̄pci are the components of the compressive and tensile part of the principal

effective stresses, respectively, which were previously used for the general stress strain law

in (1). The variable αc varies from 0 for pure tension to 1 for pure compression. For

instance, for the mixed tensile compressive effective stress state σ̄p = {−σ̄, 0.2σ̄, 0.1σ̄},

considered in Sec. 2.1, the variable is αc = 0.95.

The history variable κdc is determined from ε̃c using (9) and (10), where, analogous to
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the tensile case, the εc is specified implicitly by

˙̃εc = αc
˙̃ε (47)

The other two history variables are

κ̇dc1 =


αcβc

xs

‖ε̇p‖ if κ̇dt > 0 ∧ κdt > ε0

0 if κ̇dt = 0 ∨ κdt < ε0

(48)

and

κ̇dc2 =
κ̇dc

xs

(49)

In (48), the factor βc is

βc =
ftqh2

√
2/3

ρ̄
√

1 + 2D2
f

(50)

This factor provides a smooth transition from pure damage to damage-plasticity softening

processes, which can occur during cyclic loading, as described in section 2.3.5.

2.3.3 Damage variables for bilinear softening

With the history variables defined in the previous two sections, the damage variables for

tension and compression are determined. The form of these damage variables depends on

the type of softening law considered. For bilinear softening used in the present study, the
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Figure 5: Bilinear softening.

stress versus inelastic strain in the softening regime is

σ =



ft −
ft − σ1

εf1

εi if 0 < εi ≤ εf1

σ1 −
σ1

εf − εf1

(εi − εf1) if εf1 < εi ≤ εf

0 if εf ≤ εi

(51)

where εf is the inelastic strain threshold at which the uniaxial stress is equal to zero and εf1

is the threshold where the uniaxial stress is equal to σ1 as shown in Fig. 5. Furthermore,

εi is the inelastic strain in the post-peak regime only. Since damage is irreversible, the

inelastic strain εi in (51) is expressed by irreversible damage history variables as

εi = κdt1 + ωtκdt2 (52)

Furthermore, the term ε− εp in (40) is replaced by κdt, which gives

σ = (1− ωt)Eκdt (53)
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Setting (51) with (52) equal to (53), and solving for ωt gives

ωt =



(Eκdt − ft)εf1 − (σ1 − ft)κdt1

Eκdtεf1 + (σ1 − ft)κdt2

if 0 < εi ≤ εf1

Eκdt (εf − εf1) + σ1 (κdt1 − εf)

Eκdt (εf − εf1)− σ1κdt2

if εf1 < εi ≤ εf

0 if εf < εi

(54)

For the compressive damage variable, an evolution based on an exponential stress-inelastic

strain law is used. The stress versus inelastic strain in the softening regime in compression

is

σ = ft exp

(
− εi

εfc

)
if 0 < εi (55)

where εfc is an inelastic strain threshold which controls the initial inclination of the soft-

ening curve. The use of different damage evolution for tension and compression is one

important improvement over CDPM1 as it will shown later on when the structural appli-

cations are discussed.

2.3.4 Ductility measure

The history variables κdt1, κdt2, κdc1 and κdc2 in (44), (45), (48) and (49), respectively,

depend on a ductility measure xs, which takes into account the influence of multiaxial

stress states on the damage evolution. This ductility measure is given by

xs = 1 + (As − 1)Rs (56)
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where Rs is

Rs =


−
√

6σ̄V

ρ̄
if σ̄V ≤ 0

0 if σ̄V > 0

(57)

and As is a model parameter. For uniaxial compression σ̄V/ρ̄ = −1/
√

6, so that Rs = 1

and xs = As, which simplifies the calibration of the softening response in this case.

2.3.5 Constitutive response to cyclic loading

The response of the constitutive model is illustrated by a quasi-static strain cycle (Fig. 6,

solid line), before it is compared to a wide range of experimental results in the next

section. The strain is increased from point 0 to point 1, where the tensile strength of

the material is reached. Up to point 1, the material response is elastic-plastic with small

plastic strains. With a further increase of the strain from point 1 to point 2, the effective

stress part continues to increase, since Hp > 0, whereas the nominal stress decreases, since

the tensile damage variable ωt increases. A reverse of the strain at point 2 results in an

reduction of the stress with an unloading stiffness, which is less than the elastic stiffness

of an elasto-plastic model, but greater than the stiffness of an elasto-damage mechanics

model, i.e. greater than the secant stiffness. At point 3, when the stress is equal to

zero, a further reduction of the strain leads to a compressive response following a linear

stress-strain relationship between the points 3 and 4 with the original Young’s modulus

E of the undamaged material. This change of stiffness is obtained by using two damage

variables, ωt and ωc. At point 3, ωt > 0, but ωc = 0. Up to point 5, no further plastic

strains are generated, since the hardening from point 0 to 2 has increased the elastic
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domain of the plasticity part, so that the yield surface is not reached. Thus, the softening

from point 4 to 5 is only described by damage. Only at point 5, the plasticity surface

is reached and a subsequent increase of strain results in hardening of the plasticity part,

which corresponds to an increase of the effective stress. However, the nominal stress,

shown in Fig. 6, decreases, since ωc increases. The continuous slopes of parts 4-5 and

5-6 are obtained, since the additional factor βc in (48) is introduced. A second reversal

of the strain direction (point 6) changes the stress from compression to tension at point

7, which is again associated with a change of the stiffness. The above response is very

different from the one obtained with CDPM1 with only one damage parameter, which is

also shown in Fig. 6 by a dashed line. With CDPM1, the compressive response after point

3 is characterised by both a reduced stiffness and strength which would depend on the

amount of damage accumulated in tension. For the case of damage equal to 1 in tension,

both the strength and stiffness in compression would be zero, which is not realistic for

the tension-compression transition in concrete.

3 Mesh adjusted softening modulus

If the constitutive model described in the previous sections is straightaway used within

the finite element method, the amount of dissipated energy might be strongly mesh-

dependent. This mesh-dependence is caused by deformations in mesh-size dependent

zones. The finer the mesh, the less energy would be dissipated. This is a well known

limitation of constitutive laws with strain softening. One way to overcome this mesh-
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Figure 6: Model response for cyclic loading with ft = 1 and fc = 3 for CDPM2 (solid
line) and CDPM2 (dashed line).

dependence is to adjust the softening modulus with respect to the element size. For the

present model, this approach is applied for the tensile damage variable by replacing in

the tensile damage law in (54) the strain thresholds εf1 and εf with wf1/h and wf/h,

respectively. Here, wf1 and wf are displacement thresholds and h is the finite element

size. Thus, with this approach the damage variables for bilinear softening are

ωt =



(Eκdt − ft)wf1 − (σ1 − ft)κdt1h

Eκdtwf1 + (σ1 − ft)κdt2h
if 0 < hεi ≤ wf1h

Eκdt (wf − wf1) + σ1 (κdt1h− wf)

Eκdt (wf − wf1)− σ1κdt2h
if wf1 < hεi ≤ wf

0 if wf < hεi

(58)

These expressions are used when the constitutive model is compared to experimental re-

sults in the next section. However, the evolution law for compressive damage is indepen-

dent of the element size, as compressive failure is often accompanied by mesh-independent
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zones of localised displacements.

4 Implementation

The present constitutive model has been implemented within the framework of the nonlin-

ear finite element method, where the continuous loading process is replaced by incremental

time steps. In each step the boundary value problem (global level) and the integration of

the constitutive laws (local level) are solved.

For the boundary value problem on the global level, the usual incremental-iterative solu-

tion strategy is used, in the form of a modified Newton-Raphson iteration method. For

the local problem, the updated values (·)(n+1) of the stress and the internal variables at

the end of the step are obtained by a fully implicit (backward Euler) integration of the

rate form of the constitutive equations, starting from their known values (·)(n) at the

beginning of the step and applying the given strain increment ∆ε = ε(n+1) − ε(n). The

integration scheme is divided into two sequential steps, corresponding to the plastic and

damage parts of the model. In the plastic part, the plastic strain εp and the effective

stress σ̄ at the end of the step are determined. In the damage part, the damage variables

ωt and ωc, and the nominal stress σ at the end of the step are obtained. The implemen-

tation strategy for the local problem, described in detail in Grassl and Jirásek (2006) for

CDPM1, applies to the present model as well. To improve the robustness of the model, a

subincrementation scheme is employed for the integration of the plasticity part.
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5 Comparison with experimental results

In this section, the model response is compared to five groups of experiments reported in

the literature. For each group of experiments, the physical constants Young’s modulus E,

Poisson’s ratio ν, tensile strength ft, compressive strength fc and tensile fracture energy

GFt are adjusted to obtain a fit for the different types of concrete used in the experiments.

The first four constants are model parameters. The last physical constant, GFt, is directly

related to model parameters. For the bilinear softening law in section 2.3.3, the tensile

fracture energy is

GFt = ftwf1/2 + σ1wf/2 (59)

For σ1/ft = 0.3 and wf1/wf = 0.15 (shown by Jirásek and Zimmermann (1998) to result

in a good fit for concrete failure), the expression for the fracture energy reduces to GFt =

ftwf/4.444. The compressive energy is GFc = fcεfclcAs, where lc is the length in which

the compressive displacement are assumed to localise and As is the ductility measure in

Sec. 2.3.4. If no experimental results are available, the five constants can be determined

using, for instance, the CEB-FIP Model Code (CEB, 1991).

The other model parameters are set to their default values for all groups. The eccentricity

constant e that controls the shape of the deviatoric section is evaluated using the formula

in Jirásek and Bažant (2002), p. 365:

e =
1 + ε

2− ε
, where ε =

ft

fbc

f 2
bc − f 2

c

f 2
c − f 2

t

(60)
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where fbc is the strength in equibiaxial compression, which is estimated as fbc = 1.16fc

according to the experimental results reported in Kupfer et al. (1969). Parameter qh0 is

the dimensionless ratio qh0 = f̄c0/fc, where fc0 is the compressive stress at which the initial

yield limit is reached in the plasticity model for uniaxial compression. Its default value

is qh0 = 0.3. For the hardening modulus the default value is Hp = 0.01. Furthermore,

the default value of the parameter of the flow rule is chosen as Df = 0.85, which yields

a good agreement with experimental results in uniaxial compression. The determination

of parameters Ah, Bh, Ch and Dh that influence the hardening ductility measure is more

difficult. The effective stress varies within the hardening regime, even for monotonic

loading, so that the ratio of axial and lateral plastic strain rate is not constant. Thus, an

exact relation of all four model parameters to measurable material properties cannot be

constructed. In Grassl and Jirásek (2006), it has been shown that a reasonable response

is obtained with parameters Ah = 0.08, Bh = 0.003, Ch = 2 and Dh = 1 × 10−6. These

values were also used in the present study. Furthermore, the element size h in the damage

laws in Section 3 was chosen as h = 0.1 m.

The first analysis is a uniaxial tensile setup with unloading. The model response is

compared to the experimental results reported in Gopalaratnam and Shah (1985) (Fig. 7).

The relevant model parameters for this experiment are E = 28 GPa, ν = 0.2, fc = 40 MPa,

ft = 3.5 MPa, GFt = 55 J/m2.

The next example is an uniaxial compression test with unloading, for which the model

response is compared to experimental results reported in Karsan and Jirsa (1969) (Fig. 8).

The model parameters are E = 30 GPa, ν = 0.2, fc = 28 MPa, ft = 2.8 MPa. Further-
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Figure 7: Uniaxial tension: Model response compared to experimental results in
Gopalaratnam and Shah (1985).

more, the model constants for compression are As = 5 and εfc = 0.0001. The value of

the tensile fracture energy GFt does not influence the model response in compression,

which also applies to all other compression tests considered in the following paragraphs.

Therefore, only the compressive fracture energy is stated.

Next, the model is compared to uniaxial and biaxial compression tests reported in Kupfer

et al. (1969). For these experiments, the model parameters are set to E = 32 GPa, ν = 0.2,

fc = 32.8 MPa, ft = 3.3 MPa. Furthermore, the model constants for compression are

As = 1.5 and εfc = 0.0001. The comparison with experimental results is shown in Fig. 9

for uniaxial, equibiaxial and biaxial compression. For the biaxial compression case, the

stress ratio of the two compressive stress components is σ1/σ2 = −1/− 0.5.

Furthermore, the performance of the model is evaluated for triaxial tests reported in

Caner and Bažant (2000). The material parameters for this test are E = 25 GPa, ν = 0.2,
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Figure 8: Uniaxial compression: Model response compared to experimental results re-
ported in Karsan and Jirsa (1969).
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Figure 9: Uniaxial and biaxial compression: Model response compared to experimental
results reported in Kupfer et al. (1969).

fc = 45.7 MPa, ft = 4.57 MPa. Furthermore, the model constants for compression are

As = 15 and εfc = 0.0001. The model response is compared to experimental results

presented in Figs. 10.
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Figure 10: Confined compression: Model response compared to experiments used in Caner
and Bažant (2000).

Next, the model response in triaxial compression is compared to the experimental results

reported in Imran and Pantazopoulou (1996). The material parameters for this test are

E = 30 GPa, ν = 0.2, fc = 47.4 MPa, ft = 4.74 MPa. Furthermore, the model constants

for compression are As = 15 and εfc = 0.0001.

Finally, the model response in hydrostatic compression is compared to the experimental

results reported in Caner and Bažant (2000). The material parameters are the same as

for the triaxial test shown in Fig. 10.

Overall, the agreement of the model response with the experimental results is very good.

The model is able to represent the strength of concrete in tension and multiaxial com-

pression. In addition, the strains at maximum stress in tension and compression agree

well with the experimental results. The bilinear stress-crack opening curve that was used

results in a good approximation of the softening curve in uniaxial tension and compres-
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Figure 11: Confined compression: Model response compared to experiments reported in
Imran and Pantazopoulou (1996).

-600

-500

-400

-300

-200

-100

 0

-70 -60 -50 -40 -30 -20 -10  0

s
tr

e
s
s
 [
M

P
a
]

strain [mm/m]

constitutive model
experiments

Figure 12: Hydrostatic compression: Model response compared to experiments reported
in Caner and Bažant (2000).

sion. With the above comparisons, it is demonstrated that CDPM2, provides, similar to

CDPM1, a very good agreement with experimental results.
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6 Structural analysis

The performance of the proposed constitutive model is further evaluated by structural

analysis of three fracture tests. The main objective of this part of the study is to demon-

strate that the structural response obtained with the model is mesh-independent. For

constitutive models with softening stress-strain laws, it is is known that mesh-dependent

load-displacement curves might be obtained. This mesh-dependence is expected especially

for tests in which tensile cracking is dominant. In these tests, the inelastic strains localise

in mesh-size dependent regions. One way to avoid this mesh-dependence is to adjust the

softening modulus to the mesh size. This technique is often called crack band approach

and is described for the present model in section 3.

6.1 Three point bending test

The first structural example is a three-point bending test of a single-edge notched beam

reported by Kormeling and Reinhardt (1982). The experiment is modelled by triangular

plane strain finite elements with three mesh sizes. The geometry and loading set up is

shown in Fig. 13. The input parameters are chosen as E = 20 GPa, ν = 0.2, ft = 2.4 MPa,

Gft = 100 N/m, fc = 24 MPa (Grassl and Jirásek, 2006). All other parameters are set

to their default values described in section 5. For this type of analysis, local stress-strain

relations with strain softening are known to result in mesh-dependent load-displacement

curves. The capability of the adjustment of the softening modulus approach presented in

section 3 to overcome this mesh-dependence is assessed with this test. The global response
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Figure 13: Three point bending test: Geometry and loading setup. The out-of-plane
thickness is 0.1 m. The notch thickness is 5 mm.

in the form of load-Crack Mouth Opening Displacement (CMOD) is shown in Fig. 14.

The local response in the form of tensile damage patterns at loading stages marked in
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Figure 14: Load-CMOD curves of analyses with three mesh sizes compared to the exper-
imental bounds reported in Kormeling and Reinhardt (1982).

Fig. 14 for the three meshes is shown in Fig. 15.

Overall, the load-CMOD curves in Fig. 14 are in good agreement with the experimental

results and almost mesh independent. On the other hand, the damage zones in Fig. 15

depend on the mesh size.
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Figure 15: Tensile damage patterns for the coarse, medium and fine mesh for the three
point bending test. Black indicates a tensile damage variable of 1.

6.2 Four point shear test

The second structural example is a four point shear test of a single-edge notched beam

reported in Arrea and Ingraffea (1982). Again, the experiment is modelled by triangular

plane strain finite elements with three different mesh sizes. The geometry and loading

setup are shown in Fig. 16. The input parameters are chosen as E = 30 GPa, ν = 0.18,

ft = 3.5 MPa, Gft = 140 N/m, fc = 35 MPa (Jirásek and Grassl, 2008). All other

parameters are set to their default values described in section 5. The global responses of

Figure 16: Four point shear test: Geometry and loading setup. The out-of-plane thickness
is 0.15 m. A zero notch thickness is assumed.

analyses and experimental results are compared in the form of load-Crack Mouth Sliding

Displacement (CMSD) curves in Fig. 17. Furthermore, the damage patterns for the
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Figure 17: Load-CMSD curves of analyses with three mesh sizes compared to the exper-
imental bounds reported in Arrea and Ingraffea (1982).

three meshes at loading stages marked in Fig. 17 are compared to the experimental crack

patterns in Fig. 18.

Figure 18: Four point shear test: Tensile damage patterns for the coarse, medium and
fine mesh compared to the experimental crack patterns reported in Arrea and Ingraffea
(1982). Black indicates a tensile damage variable of 1.

The load-CMSD curves obtained with the three meshes are in good agreement with the

experimental results. The coarse mesh overestimates the load levels obtained with the

medium and fine mesh. However, the two finer meshes are in good agreement. Again, the

width of the damaged zone depends on the element size. Furthermore, the damage zones
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are influenced by the mesh orientation. In particular, for the fine mesh the damage zone

follows the regular element arrangement, so that the crack is less curved than reported in

the experiments. This is a well known behaviour of models using the adjustement of the

softening modulus approach, which has been studied in more detail in Jirásek and Grassl

(2008); Grassl and Rempling (2007).

6.3 Eccentric compression test

The third structural example studies the failure of a concrete prism subjected to eccentric

compression, tested by Debernardi and Taliano (2001). The geometry and loading setup

are shown in Figure 19a. The specimen with a relatively great eccentricity of 36.8 mm is

modeled by a thin layer of linear 3D elements to reduce the computational time compared

to a full 3D analysis. Three different mesh sizes with element lengths of 7.5, 5 and 2.5

mm were chosen (see Figure 19b for the coarse mesh).

The model parameters were set to E = 30 GPa, ν = 0.2, ft = 4 MPa, fc = 46 MPa,

GFt = 100 N/m, As = 10 and εfc = 0.0001. The model response in terms of the overall

load versus the mean compressive strain of the compressed side obtained on the fine mesh

is compared to the experimental result in Figure 20. The load capacity and the strain at

peak are underestimated by the model. The overall behaviour, however, is captured well.

The comparison of the load-compressive strain relations for the analyses run on meshes

of different sizes indicates that the description of this type of compressive failure is nearly

mesh-independent. The evolution of the damage zone for the analysis on the coarse mesh
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Figure 19: a) Geometry and loading setup of the eccentric compression test. b) The
coarse finite element mesh.
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Figure 20: Comparison of the analysis of the eccentric compression test with the experi-
ment.
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(a) (b) (c)

Figure 21: Contour plots of the damage variable for the a) coarse, b) medium and c) fine
mesh of the eccentric compression test.

is depicted in Figure 21 for the final stage of the analyses in Figure 20). On the tensile

side several zones of localized damage form, whereas the failure on the compressive side

is described by a diffuse damage zone.

7 Conclusions

The present damage plasticity model CDPM2, which combines a stress-based plasticity

part with a strain based damage mechanics model, is based on an enhancement of an

already exisiting damage-plasticity model called CDPM1 (Grassl and Jirásek (2006)).

Based on the work presented in this manuscript, the following conclusions can be drawn

on the improvements that this constitutive model provides:
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1. The model is able to model realistically the transition from tensile to compressive

failure. This is achieved by the introduction of two separate isotropic damage vari-

ables for tension and compression.

2. The model is able to reproduce stress inelastic strain relations with varying ratios

of reversible and irreversible strain components. The ratio can be controlled by the

hardening modulus of the plasticity part.

3. The model reproduces meshindependent load-displacement curves for both tensile

and compressive failure.

In addition, the model response is in good agreement with experimental results for a wide

range of loading from uniaxial tension to confined compression.
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