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Abstract—A feature extraction technique called Successively
Orthogonal Discriminant Analysis (SODA) has been recently
proposed to overcome the limitation of Linear Discriminant
Analysis (LDA), whose objective is to find a projection vector
such that the projected values of data from both classes
have maximum class separability. However, in LDA, only one
such vector can be found due to the rank deficiency for
binary classification problems. On the other hand, as a feature
extraction technique, the proposed algorithm SODA attempts
to obtain a transformation matrix instead of a vector. In
this paper, the kernel version of SODA is presented in both
intrinsic space and empirical space. To obtain the solution
without sacrificing numerical efficiency, we propose a relaxed
formulation and data selection for large scale computations.
Simulations are conducted on 5 data sets from UCI database
to verify and evaluated the new approach.

Keywords-Feature extraction, SODA, Kernel, Discriminant
Analysis, big data

I. INTRODUCTION

As a solution to the curse of dimensionality, feature
reduction [1] for classification has been a popular topic
for decades. There are many reasons why we should care
about the dimensionality. 1) Overfitting is unevadable for
high dimensional feature space, which might ruin the gen-
eralization ability of the classifier. 2) When the number of
variables is too large, high storage capacity is required, and
computational complexity is yet another issue. 3) In many
cases, high dimensionality causes computational instability
and singularity [2] 4) Class separability is very likely to be
enhanced by eliminating redundant information.

There are two types feature reduction techniques: feature
selection and feature extraction. Feature selection [3] is
to select a subset of the variables with respect to some
criteria. On the other hand, feature extraction attempts to
find a function f(x) : Rm → Rk, which transforms
data from the original space Rm to a low dimensional
feature space Rk, where m > k. In this paper, we focus
on the development of a feature extraction technique for
classification. The proposed approach is the kernel extension
of a previously presented technique called Successively
Orthogonal Discriminant Analysis (SODA) [4]. The original
technique is closely related to Linear Discriminant Analysis
(LDA) [5] and Principal Component Analysis (PCA) [6].

The paper is organized as follows. Section II reviews the
relation between LDA, PCA and SODA. Section III presents
the formulations of Kernel SODA in both intrinsic space and
empirical space. For simple numerical implementations, a
relaxed KSODA algorithm is developed in Section IV. The
experimental results are shown in the last section to verify
the proposed technique.

II. RELATED WORK

A. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) has a very long
history. The underlying idea is based on Fisher criteria for
maximizing the class separability.

Given class label c ∈ {+,−} and training data Xc =
{xc

1, · · · ,xc
Nc
}, the class separability is measured using

the ‘between-class scatter matrix’ SB and the ‘within-class
scatter matrix’ SW , which are respectively defined as:

SW =
1

N+

N+∑
i=1

(x+
i − µ

+)(x+
i − µ

+)T

+
1

N−

N−∑
j=1

(x−j − µ
−)(x−j − µ

−)T

SB = (µ+ − µ−)(µ+ − µ−)T (1)

where µ+ and µ− are the mean vector estimated from the
corresponding class + and −. In LDA, we would like to
find a vector w that maximizes the following Fisher score:

J =
wTSBw

wTSWw
, (2)

and the solution vector is the generalized eigenvector cor-
responding to the largest generalized eigenvalue of the
problem SBw = SWwλ. However, problems occur when
the within matrix SW is singular. There are many ways of
tackling this problem [7], [8] and one way is to compute
the eigenvector of the Fisher matrix F = SW

+SB. We will
adopt this method in this paper.



B. Principal Component Analysis (PCA)

One of the most famous dimensionality reduction tech-
niques is the Principal Component Analysis (PCA), which
finds the subspace with the largest variation. PCA can be
formulated in an iterative fashion. Namely, we are trying to
find a matrix W =

[
w1, · · · ,wk

]
whose columns satisfy:

maximize
wi

wT
i Swi

subject to wi ⊥ w1,...,i−1

wT
i wi = 1

wi ∈ Span(S)

(3)

where S = XXT is the covariance matrix of the training
data and Span(S) denotes the range space of matrix S. When
the dimensionality of the data vector is high, PCA can be
implemented iteratively without computing the covariance
matrix S [9]. The solution of PCA provides a transformation
matrix that projects the data to a low dimensional subspace,
where the data representation is enhanced. The data vector
in the principal component space is thus represented as:

x→WTx. (4)

C. Successively Orthogonal Discriminant Analysis

Successively Orthogonal Discriminant Analysis (SODA)
integrates the ideas of LDA and PCA. Defined as a succes-
sive approach, SODA adopts the Fisher discriminant score as
its objective function for each iteration. The output of SODA
is a transformation matrix that projects the data onto a new
feature space with enhanced class separability. Similarities
and differences of LDA, PCA and SODA can be found in
Table I. The formulation of SODA is illustrated as follows.

SODA formulation. The matrix W =
[
w1 · · ·wk

]
defines

a map Rm → Rk, whose columns satisfy:

maximize
wi

wT
i SBwi

wT
i SWwi

subject to wi ⊥ w1,...,i−1

wT
i wi = 1

wi ∈ Span(SW )

(5)

where Span(SW ) denotes the range space of matrix SW .

Similarly, the resulting data vector is mapped to a reduced
feature space:

x→WTx. (6)

SODA and PCA share the same concept of optimal
subspace projection. PCA’s optimality enjoys the advantage
of having a global criterion, however it does not take into
account of teacher’s information. On the other hand, SODA
takes full account of teacher’s information, but its optimality
is formulated and executed step by step. Both PCA and LDA

have their kernelized variance called KPCA and KDA. This
motivates us to extend SODA to its kernel model.

The existing feature reduction techniques based on dis-
criminant analysis [11] mostly depend on the number of
classes C. For binary classification problem, ı.e. C = 2,
due to rank deficiency, a transformation matrix can not be
found. On the other hand, SODA overcomes this limitation
by modifying the searching space. More details can be found
in later sections.

III. THEORY OF KERNEL SODA

In kernel based analysis, we define a function ϕ(x) : x→
ϕ, which maps the data vector from the original space to
intrinsic space ϕ to obtain a better separation.

A. KSODA in Intrinsic Space

KSODA can be formulated in the intrinsic space with an
explicit expression of ϕ(x). The transformation matrix is
denoted by U =

[
u1, · · · ,uk

]
in the intrinsic space.

Let c ∈ {+,−} denote the class label and Nc the total
training size of class c, we can define the between-class
scatter matrix Sϕ

B and within-class scatter matrix Sϕ
W in the

intrinsic space as follows:

Sϕ
B = (mϕ

+ −mϕ
−)(mϕ

+ −mϕ
−)T (7)

Sϕ
W =

∑
c∈{+,−}

1

Nc

Nc∑
j=1

(ϕc
j −mϕ

c )(ϕc
j −mϕ

c )T, (8)

where

mϕ
c =

1

Nc

Nc∑
j=1

ϕ(xc
j). (9)

KSODA (intrinsic space). The matrix U =
[
u1 · · ·uk

]
defines a map RJ → Rk, whose columns satisfy:

maximize
ui

uT
i Sϕ

Bui

uT
i Sϕ

Wui

subject to ui ⊥ u1,...,i−1

uT
i ui = 1

ui ∈ Span(Sϕ
W )

(10)

where Span(Sϕ
W ) denotes the range space of matrix Sϕ

W .

In this case, the data vector is transformed in the following
way:

x→ ϕ(x)→ UTϕ(x). (11)

Note that after the transformation x → ϕ(x), the SODA
algorithm can be applied directly.



LDA PCA SODA
Type Classifier Feature Reduction Feature Reduction

Output wm×1 Wm×k Um×k
Purpose Enhance Class Separability Enhance Data Description Enhance Class Separability

Objective Function Direct Direct Successive
Implementation Direct Direct / Iterative Iterative

Table I
THE RELATION BETWEEN LDA, PCA AND SODA.

B. KSODA in Empirical Space

When the Gaussian RBF kernel is adopted, the dimension
of the intrinsic space is infinity and hence computations can
not be carried out directly. In this case, it is necessary to
resort to a kernel learning model proposed below.

From the theory of Reproducing Kernel Hilbert Space
(RKHS) [12], [13], [14], each vector ui ∈ H can be written
as a linear combination of all the training data ϕ1, · · · , ϕN

drawn from H, ı.e., we have

ui =

N∑
j

ϕjai,j = Φai (12)

where Φ =
[
ϕ1, · · · , ϕN

]
is the training data matrix, the

scalar ai,j is the jth element of vector ai. Similar to the
SODA formulation, vector ui is the ith column of the
transformation matrix U that can be written as

U = ΦA (13)

where A =
[
a1, · · · ,aN

]
As a result of plugging Equation (12) into Equation (10),

define matrices M and N [10]:

M = (M+ −M−)(M+ −M−)T . (14)

and
N =

∑
c∈{+,−}

Kc(I−
1

Nc
E)KT

c , (15)

where the row vectors of Mc are written as (Mc)j =
1
Nc

∑Nc

t=1 k(xj ,x
c
t). Matrix Kc denotes the kernel matrix

Kc = ΦTΦc and E is a matrix with all ones as its entries.
This leads to an equivalent Kernel SODA learning model in
the empirical space.

Denote k(x) = ΦTϕ(x), we formulate KSODA in the
empirical space as:

KSODA (empirical space). Find optimal vectors a1 · · ·ak,
such that:

maximize
ai

aT
i Mai

ai
TNai

subject to aT
i Kaj = 0, ∀i 6= j

aT
i Kai = 1

(16)

The optimal transformation matrix U can be written as:

U = Φ
[
a1 · · ·ak.

]

Therefore, in the empirical space, the transformation
follows:

x→ k(x)→ AT k(x). (17)

Equivalence: The empirical formulation is a direct result
of kernelization of the intrinsic formulation [15], whose
equivalence is straightforward ı.e. UTϕ(x) = AT k(x).

IV. IMPLEMENTATION AND APPROXIMATION

For user’s choice, we describe two variance of kernelized
SODA learning models.

A. KSODA implementation

There are two major steps involved in the algorithm:
• Initialization:

Q(0) = N+, D(0) = K+, ∆ = M+ −M− (18)

• Step 1: Computing ai and normalization

ai =
Q(i)∆√

∆TQ(i)TKQ(i)∆
(19)

• Step 2: Let D(i+1) = D(i) − aia
T
i , update Q(i+1)

according to

Q(i+1) = D(i+1)N+D(i+1) (20)

• Go to Step 1 until i = k.

B. Approximation

For numerical efficiency, we introduce two approximation
strategies:

- Relaxation on orthogonality condition.
- Data selection for big data scenario and the purpose of

numerical invertibility.
They are elaborated below.



1) Relaxation on orthogonality:: Due to the complexity
of the weighted orthogonality constraint ATKA = I, we
define a relaxed formulation called KSODA (II).

KSODA (II). Find optimal vectors a1 · · ·ak, such that:

maximize
ai

aT
i Mai

ai
TNai

subject to aT
i aj = 0, ∀i 6= j

aT
i ai = 1

ai ∈ Span(N)

(21)

where Span(N) denotes the range space of matrix N and
the transformed data vector is represented as:

x′ =
[
a1 · · ·ak

]T
k(x). (22)

The optimization problem stated in (21) can be solved by
Algorithm KSODA(II). Similar proof can be found in [4].

Algorithm KSODA(II)

- Construct the matrix X =
[
x1, · · · ,xN

]
. Define output

dimension k.

- Compute M and N from Eq. (14) and (15) respectively,

- Let N(0) = N

F(1) = (N(0))+M

- For i = 1 : k

- Solve for F(i)ai = λiai

where λi is the largest and only eigenvalue of F(i).

- Let D(i) = Im×m − aia
T
i be the deflation matrix

N(i) = D(i)N(i−1)D(i)

F(i+1) = (N(i))+M

- Form matrix: A =
[
a1 · · ·ak

]
- Transformation of the features: x′ = ATK(X,x)

C. Data selection and numerical invertibility

From the RKHS theories, the solution vectors ui can
be written as a linear combination of all the training data,
namely ui = Φai. That means the size of the kernel matrix
we have to compute is in the order of the training size N .
Furthermore, the solution of Formulation KSODA is based
on the pseudo-inverse of a N ×N matrix N, which results
in a N3 computational complexity.

To tackle this problem, we choose a subset G ⊂ Φ to
approximate the span of the whole training space. We call

such matrix G the basis matrix. Note that without ambiguity,
we use capital letter for the set of some training patterns (e.g.
Φ = {ϕ1, · · ·ϕN}) and boldface letter for the corresponding
matrix (e.g. Φ =

[
ϕ1, · · · , ϕN

]
).

Figure 1. An intuitive illustration of the basis selection. If two vectors
ϕi and ϕj are very ’similar’ to each other, we assume that the spaces they
span are collinear and there is no point to include both of them into the
basis matrix G. The similarity measure is naturally defined by normalizing
the kernel function k(xi,xj)√

k(xi,xi)
√

k(xj ,xj)
. By excluding similar vectors,

we could reduce the number of vectors in the basis matrix.

The idea is described as follows: In the intrinsic space,
given normalized vectors ϕt, t = 1, · · · , N , we would like
to find a basis matrix G =

[
ϕ1, · · ·ϕn

]
, such that for some

small number η, GTG = Γ, where Γ is a full rank matrix
and Γi,j

Γl,l
< η, ∀l, i, j with i 6= j.

An illustrative example can be found in Figure IV-C.
As we know that similarities between vectors always cause
singularity and hence numerical instability. Therefore, by
finding such basis matrix G, the robust invertibility of the
matrix N is enhanced.

Practically, the idea can be implemented as shown in
Algorithm Basis G.

V. EXPERIMENTAL RESULTS

Parameter setting: In this section, we conduct simula-
tions on 5 UCI [16] data sets to compare the classification
results using original space, PCA, Kernel PCA, SODA,
KSODA and KSODA (II). The classifier we used is Support
Vector Machine (SVM) [17] with rbf kernel (σ = 1).
We also compared the classification results with LDA and
Kernel LDA. The parameter σ for the kernel based methods
are set to be 0.5 for consistent and fair comparison. The
reduced dimensionality for the feature reduction techniques
under comparison is k = 4. This is chosen based on cross
validation on the data set arcene and then applied to the rest
of the data sets.



Data set Dimension Original PCA KPCA LDA KLDA SODA KSODA KSODAII

arcene 104(4)× 200 50% 21.67 % 18.75 % 37.48% 13.81% 31.99% 15.62 % 13.63 %

sonar 60(4)× 208 27.52% 33.89 % 35.83 % 27.83% 19.88% 25.42% 20.38 % 17.43 %

wdbc 30(4)× 259 9.17% 7.35 % 5.38 % 3.84% 7.18% 3.44% 2.44 % 2.36%

vehicle

van 18(4)× 199 3.27% 12.23 % 17.86 % 2.01% 8.42% 2.39% 1.83 % 1.51%

saab 18(4)× 219 17.38% 26.20 % 28.19% 13.55% 18.19% 13.97% 12.16 % 10.55%

bus 18(4)× 218 2.23% 11.78 % 10.40% 3.21% 2.39% 3.10% 1.92 % 1.21%

opel 18(4)× 212 17.28% 27.53 % 27.48 % 13.04% 14.43% 12.99% 11.67 % 10.34%

segment

brickface 19(4)× 330 0.87% 6.91% 5.96% 0.67% 1.05% 0.62% 0.59 % 0.53%

sky 19(4)× 330 0.25% 0.47% 0.26% 0.21% 1.78% 0% 0 % 0.01%

foliage 19(4)× 330 2.94% 7.69% 9.68% 4.03% 4.91% 3.28% 2.08 % 2.05 %

cement 19(4)× 330 1.74% 8.09% 7.46% 3.65% 4.89% 1.83% 1.45 % 1.45%

window 19(4)× 330 3.83% 10.20% 9.83% 4.34% 6.77% 3.66% 3.12 % 2.46%

path 19(4)× 330 0.42% 3.31% 5.73% 0.60% 1.01% 0.56% 0.33 % 0.32%

grass 19(4)× 330 0.58% 0.37% 0.42% 0.42% 0.21% 0.39% 0.21 % 0.19%

Table II
CLASSIFICATION ERROR COMPARISON BETWEEN DIFFERENT FEATURE REDUCTION TECHNIQUES. NOTE THAT THE KSODA IS ALREADY

SUBSTANTIAL BETTER THAN SODA. HOWEVER, KSODA (II) OFFERS NOTICEABLE FURTHER IMPROVEMENT OVER KSODA.

There are another two parameters to choose for Kernel
SODA algorithms, which are the size of the basis matrix
G and the tolerant ratio η. These selections depend on the
capacity of the computational device, the kernel parameters
and the data properties. Here, we choose NG = 100 and
η ∈ [0.5, 1) is selected for each data set by cross-validation.

Data description: The data sets we used are arcene,
sonar, wdbc, vehicle and segment. The basic properties of
the data sets are summarized in Table II.

Vehicle and segment have more than two classes. Since
we focus on the study of binary classification in this paper,
the results shown are based on the averaged error rate of
one-versus-one scheme for all classes from the data sets.

Testing method: We divide each data set randomly into
training set (80%) and testing set (20%). This procedure is
repeated for 10 times. Furthermore, at the first time of the
tests, 20% of the training set is left out for cross validation.
The classification results in terms of error probabilities
shown in Table II are based on the average error of the

two classes:

Perr =
1

2

∑
c

# of misclassified testing data in class c
# of testing data in class c ∈ {+,−}

(25)
Testing results: On 13 out of 14 data sets, KSODA(II)

has achieved the best classification results in terms of the
averaged classification error defined in Equation (25). First,
the original space of data set arcene has 10000 variables. It
is obvious that it suffers from overfitting using SVM with
rbf kernel, which results in a 50% error probability. In such
scenarios, PCA/KPCA with extremely low dimensionality
will do an even better job than the original space. However,
when the number of original variables is reasonably small
compared to the number of samples, PCA/KPCA do not
achieve a better performance in general. LDA outperforms
SVM on original space for roughly 50% cases. Since the
parameter selection of kernel SVM is a key for high perfor-
mance, LDA enjoys the advantage of simplicity.

On average, SODA/Kernel SODA algorithms give the



Algorithm Basis G

- Let X =
[
x1, · · · ,xN

]
, construct an empty m×NG

matrix XG. Choose a small number η as the threshold.
Choose a kernel function K and the size of the basis

NG.
Set counter k = 1.

- for i = 1 : NG

Let XG(:, i) := X(:, k) (?)
- for j = k + 1 : N

For given kernel function K, compute:

K = K(XG,xk) (23)

Normalization:

K′ij =
Kij

‖ϕ(xi)‖2‖ϕ(xj)‖2
, ∀i, j (24)

where ‖ϕ(xt)‖2 =
√
K(xt,xt) is the norm of

vector ϕt (t < i) on intrinsic space.
- if: K′ij

min(Ktt)
< η, ∀i 6= j, t < i,

let k = j and return to (?).
else: let k = k + 1.

- end
- end
- Replace the matrix X in Algorithm KSODA(II) by XG.

best classification accuracy. The reason is that they do not
only take into consideration of the class separability on
the best one dimensional subspace, but also extend the
development on k dimensions, which allow high flexibility
that LDA does not provide. Kernel SODA, on the other hand,
uses the kernel trick to further explore the intrinsic non-
linear structure in the data and therefore results in an even
lower classification error rate. Examples of visualization for
these feature reduction techniques on data sets sonar, wdbc,
vehicle and segment can be found in Figure 1 and 2.
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Figure 2. Visualization of the first two components of data set sonar and
wdbc using different feature reduction techniques.
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Figure 3. Visualization of the first two components of one example from
data set vehicle and segment using different feature reduction techniques.


