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A novel methodology to regain sensitivity of quick

clay in a geotechnical centrifuge

Gertjan Meijer and Jelke Dijkstra

Abstract: A novel reconstitution process is developed to reconstitute remoulded quick clay with comparable sensitivities

to the sampled undisturbed material. This laboratory method is based on scaling some of the main in-situ processes

involved in the development of sensitivity in a natural quick clay. It is shown that high sensitivity can be regained in a

sequence of scaled flocculated sedimentation stages followed by consolidation and leaching in a geotechnical centrifuge.

The suggested approach is a promising method for fast reconstitution of sensitive clay samples for element and physical

model testing in the geotechnical laboratory.
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1. Introduction

Sensitive marine clays cover a wide area of North Amer-

ica, Europe and Asia. Recent quick-clay landslides in Nor-

way and Sweden, which blocked major transportation links,

demonstrate the hazards that sensitive marine clays can pose

to the society. Systematic study of the failure mechanisms of

these slides on field scale would be prohibitively expensive

with large uncertainties in test conditions and test control. Hence,

the study on model scale in controlled conditions in the labora-

tory would offer many advantages. The latter requires the abil-

ity of the reconstitution of quick clay with similar properties in

the laboratory.

Quick clay is characterised by a high sensitivity St (ratio

between the undisturbed and remoulded shear strength). Using
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the Swedish definition, it is defined as material with a sensitiv-

ity exceeding 50 and a fully remoulded shear strength smaller

than 0.5 kPa (Rankka et al. 2004). These clays behave like a

liquid after remoulding, due to the loss of structure and the

high water content. This change of material structure during

remoulding is irreversible. Therefore, a special reconstitution

method is required if sensitivity is to be regained.

Only very few researchers have tried to reconstitute sensitive

clays. Bjerrum & Rosenqvist (1956) reconstituted remoulded

Norwegian quick clay by deposition in salt water (35 gl−1) for

two months, followed by 3 months of consolidation under a

load of to 240 kPa and finally leaching the sample under an ap-

plied vacuum during 18 months. This process obtained a clay

with a sensitivity of 70–180. Pusch & Arnold (1969) inves-

tigated the effect of leaching by reconstitution of illite pow-

der in sea water with a salinity of 35 gl−1. The illite was first

treated with peroxide to remove organic material and subse-

quently oven dried. However, after consolidation and leaching

in a geotechnical centrifuge the sensitivity was increased from

2.1 to only 3.7, hence not representing quick clay.

Despite of the limited success in the past, a reconstitution

method which obtains high sensitivity is still required, e.g. to
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obtain samples with high sensitivity for probing the constitu-

tive behaviour in element tests or validation of theoretical mod-

els for quick clay on the boundary element level in geotechni-

cal centrifuge tests. One advantage of such a method is the flex-

ibility it offers for creating reconstituted samples of any shape

without sample disturbance. Secondly, it reduces the need for

expensive sampling associated with large samplers with min-

imal sample disturbance. Thirdly, the ability to create undis-

turbed reconstituted samples of natural clay would allow to

systematically investigate sample disturbance effects and al-

low the (re-)use of poor quality samples for research.

In the present study a novel method is developed which im-

proves upon previous attempts, i.e. addressing the duration and

effectiveness of the method. This paper introduces the experi-

mental methodology and discusses the preliminary results.

2. Methodology

2.1. Natural development of sensitivity in quick clays

The natural development process of quick clays in the north-

ern hemisphere is taken as a starting point. The main clay min-

eral in the natural Scandinavian quick clays is generally il-

lite, while the amount of swelling clay minerals is very low

or non-existent. Furthermore, a large fraction (up to 50–60%)

of finely ground (e.g. by glacier movement) primary miner-

als (quartz, feldspar) is present (Bjerrum & Rosenqvist 1956,

Brenner et al. 1981, Rankka et al. 2004, Geertsema & Torrance

2005, Mitchell & Soga 2005). To overcome problems originat-

ing from the influence of mineralogy, in the present study a

natural Swedish quick clay sampled at a depth of 6–12 m in

the Gothenburg area, is used. Some characteristics of this ma-

terial are presented in Table 1.

During deposition of natural quick clays, individual clay

platelets stick together forming flocks in the presence of cations

(e.g. in saline sea water). Inter-particle attraction is enhanced

by decreasing the size of the diffuse double layer. These larger

and heavier flocks settle more rapidly than individual clay platelets,

resulting in random stacking of flocks with a high macro-porosity

(Van Olphen 1963, Hunter 1993, Sposito 1989). The ability to

reflocculate after remoulding will be reduced when the salin-

ity of the sediment is reduced after being consolidated, e.g. in a

low ionic concentration environment. The inability to refloccu-

late will result in very low disturbed strengths. In natural con-

ditions, this reduction of ions can result from leaching (either

by ground water flux or diffusion) once the sediment is lifted

above sea level by isostatic uplift following deglaciation, or

by binding of the ions by dispersing agents (Söderblom 1966,

Crawford 1968, Torrance 1974, Torrance 1979, Brenner et al.

1981, Rankka et al. 2004).

2.2. Simulating natural genesis in the laboratory

The proposed laboratory reconstitution consists of three steps:

sedimentation, consolidation and leaching. Each of these pro-

cesses is scaled in the laboratory, in order to reduce the time

scale and/or enhance its effect on the resulting sensitivity.

In the laboratory, flocculation can be readily enhanced by

1) increasing the cationic charge (by increasing the ionic con-

centration and/or cation valence), 2) decreasing the pH, or 3)

adding an optimal amount of flocculation enhancing polymers.

Increasing the salinity decreases the size of the diffuse dou-

ble layer, hence enhancing inter-particle attraction. Decreasing

the acidity changes the clay particle edge charge from a neg-

ative to a positive charge, enhancing flocculation by edge-to-

face attraction (Van Olphen 1963). Finally, addition of poly-

mers could link several clay platelets together to one polymer

chain, thus forming a larger ‘particle’ (Bergaya et al. 2006).

Consolidation of the sediment to a representative in-situ stress

level can either be imposed by application of an (an)isotropic

stress in an element test, or by increasing the gravitational ac-

celeration in a geotechnical centrifuge. The latter has the addi-

tional advantage that a slurry can be used from the start, which

is especially beneficial considering the liquid state of the re-

moulded quick clay.

Leaching might be performed by inducing a fresh water flux
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through the sample driven by an hydraulic head difference, by

diffusion, by application of electro-osmosis or by a combina-

tion of these.

In the presented experiments, flocculation is enhanced by

changing the salinity of the water. This method is preferred,

because the influence is known to be reversible during leach-

ing. Demineralized water and pure NaCl are used. Although

higher valence cations would be more effective, small amounts

of these ions adverse sensitivity development when not thor-

oughly leached. Therefore, sodium ions are preferred to sim-

plify the leaching process. Small scale sedimentation and con-

solidation experiments are performed in perspex tubes, with 14

mm inner diameter and a height of 150 mm, to study the influ-

ence of the initial water content of the slurry, salinity and the

order of mixing of clay, water and salt.

The high salinities (up to ≈250 gl−1) used affect both the

volume and density of the water. Therefore, expressing salin-

ity in common terms of grammes per litre water will induce

inaccuracies when the salinity of the salt water is to be mea-

sured. Hence, in the following the salinity s is calculated in

terms of mass rather than volume, and is defined as the ratio

of grammes of salt over grammes of pure water, expressed in

promille. As a rule of thumb, a salinity of 1‰ approximately

corresponds with 1 gl−1.

Initial small scale flocculation experiments showed that us-

ing oven-dried clay, which is subsequently ground with pestle

and mortar and pluviated in salt water, proved to be detrimental

for the development of high void ratios. Segregation by particle

size was clearly visible during sedimentation at 1-g. Therefore,

in all subsequent experiments a clay slurry created from ‘wet’

(non oven-dried) clay is used instead. The mixing sequence

of salt, water and clay has no significant impact on the void

ratio. Variation of the water content w of the slurry between

300% and 1600% (expressed as the ratio of pure water mass

and oven-dried clay mass) at a salinity of s = 350‰ shows that

the water content should be higher than approximately 500% to

prevent gelation in the slurry. Increasing the salinity from 0 to

250% at w = 500% shows increasing void ratios after 1-g sed-

imentation with increasing salinities (the used dried clay mass

is 1.35 g). The void ratio at s = 250‰ is almost double the

result of the s = 0‰ tests. In the small scale tests, the height

of the flocculated sediment is measured with a ruler with a 0.5

mm division and an estimated measurement accuracy of 0.1

mm. This results in accuracies in void ratio of approximately

±0.03.

The influence of salinity is further studied in the test tubes

during N-g consolidation (in a geotechnical centrifuge). Dur-

ing the centrifuge test, grayscale images (1260 x 972 px) are

acquired. Subsequently, sediment heights are determined from

these images using a customized edge-finding algorithm. This

procedure is estimated to yield accuracies in void ratios of 0.3

(corresponding with 1 mm / 10 px) when lighting was poor,

which was the case in some of the tests in Figure 1. In most

centrifuge tests however, lighting was much better, resulting in

more accurate void ratio results (±0.03, 0.1 mm / 1 px).

Centrifuge consolidation test results (Figure 1) show that,

as is the case at 1-g, increasing salinities increases the void

ratio. The highest consolidation rate occurs at s = 31‰. It

appears that at this concentration an optimum exists between

flocculation, which increases the rate by increasing flock mass,

and a decrease in settling velocity caused by both the increase

in fluid viscosity and the decreased effective particle weight

(higher fluid density) in more saline water.

The effect of the loading rate on the consolidation behaviour

is studied by varying the acceleration ramp up to a maximum

value corresponding with 87-g, see Figure 2. Although the dif-

ferences in the relative time versus void ratio plot suggest build-

up of excess pore water pressures, the loading rate does not

influence the final void ratio.

Tests with conditions resulting in reconstituted clay with the

highest void ratio (w > 500%, s = 250‰, using non-oven

dried clay, loading rate unimportant) are scaled up to 50 mm di-
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ameter samples. The clay slurry is first normally consolidated

in 160 mm high perspex tubes under self weight at 87-g, and

subsequently under an overburden load of ∆σ′v = 55 kPa, re-

sulting in 25 mm high samples with an average void ratio of

2.3±0.1. Subsequently, these samples are leached from top to

bottom using demineralized water, using a falling head with a

maximum water pressure of 28 kPa (∆H = 130 mm at 22-g).

In this stage the acceleration is reduced and the sand overbur-

den removed to ensure that the whole sample is only loaded in

recompression. Simultaneously, a second benchmark sample

is ‘leached’ with salt water (s = 250‰) under the same water

pressure gradient. The latter benchmark test accounts for the

possible strength changes from solely the water flux.

The development of water level and hydraulic conductivity

in time are presented in Figure 3 for one fresh and one salt wa-

ter leaching test. In saline samples, the hydraulic conductivity

is seen to decrease in time. This can be explained by the de-

crease in pore water salinity, increasing the double layer sizes

and therefore impeding water flow. The increase in permeabil-

ity in salt water leached samples might be explained by effec-

tive stress relief in the upper parts of the sample. The amount of

leached salt is determined by measuring the mass of the residue

after oven drying the salt leachate. Test results are presented in

Table 2. Leaching by diffusion, although the sample was al-

lowed to leach for 3 consecutive weeks and the demineralized

water refreshed every 2 or 3 days, did not decrease the salinities

to sufficiently low values (order of 2 gl−1) for the development

of sensitivity (Torrance 1974).

2.3. Strength and sensitivity results

Laboratory vane and fall cone tests are used to investigate

the strength and sensitivity of the undisturbed and the reconsti-

tuted natural quick clay samples. The results are presented in

Figure 4. The reconstituted samples have higher void ratios but

lower sensitivities, compared to the undisturbed natural mate-

rial. The results for reconstituted samples and samples leached

with salt water show that the water flow as applied in the cur-

rent tests does not influence the strength. In the current exper-

iments leaching however decreases both the undisturbed and

the disturbed strength significantly and increases the sensitiv-

ity up to a ratio exceeding 100. Pictures of the reconstituted

leached sample are presented in Figure 5. In these can be seen

that the material behaves liquid-like after remoulding, proving

that the characteristic remoulded quick clay behaviour is arti-

ficially recreated.

When salt is added to the remoulded material, the strength,

measured with a lab vane test, increases from ≈0 kPa to 0.9

kPa between s = 20 and 40‰. When the salinity is further

increased to 250‰ the strength slowly increases to 1.4 kPa.

3. Discussion and Conclusions

These preliminary experiments show that sensitivity can be

regained in a reconstituted quick clay using the presented method-

ology. Although very weak compared to the undisturbed natu-

ral material, the reconstituted material meets the Swedish defi-

nition of quick clay. However, the developed method still needs

to be optimized and validated for other quick clays. Although,

besides the influence of salinity, water content and consolida-

tion, no comprehensive testing programme is adopted to sys-

tematically find the optimal conditions, the results are promis-

ing for further research.

A major advantage of the concept is that it is a relatively fast

method. Reconstitution of 25 mm high samples took 2 days

to consolidate and 10 days to leach. Reconstitution of larger

samples with this method will still be a lot faster than prior

attempts, because of the favourable scaling conditions in the

geotechnical centrifuge. However, the reconstituted strengths

are still low and the void ratios are still rather high, compared

to the void ratios in the original material.

Further research will therefore focus on increasing the stress

level during consolidation in order to create a reconstituted ma-

terial which has strengths and void ratios which are more com-

parable to the natural clay. Additionally, the mechanical prop-
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erties of the material should be studied in more detail when

more sample material is reconstituted. Furthermore, other means

for enhancing consolidation and leaching such as e.g. electro-

osmosis should be investigated. Finally, approaching sensitiv-

ity from a colloid chemistry and thermodynamic perspective

will give more insight in sensitivity development and material

structure, which in turn gives enhanced possibilities for mod-

elling and selection of optimal reconstitution conditions.
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124–136.

Brenner, R. P., Nutalaya, P., Chilingarian, G. V., &

Robertson, J. O. (1981). Soft Clay Engineering,

Chapter 2, pp. 159–240. Elsevier.

Crawford, C. (1968). Quick clays of eastern Canada. En-

gineering Geology 5, 239–265.

Geertsema, M. & Torrance, J. K. (2005). Quick clay

from the Mink Creek landslide near terrace, British

Columbia: Geotechnical properties, mineralogy, and

geochemistry. Canadian Geotechnical Journal 42,

907–918.

Hunter, R. J. (1993). Introduction to modern colloid sci-

ence. Oxford: Oxford University Press.

Mitchell, J. K. & Soga, K. (2005). Fundamentals of soil

behavior, 3rd edition. Hoboken, New Jersey: John

Wiley & sons, inc.

Pusch, R. & Arnold, M. (1969). The sensitivity of artifi-

cially sedimented organic-free illitic clay. Engineer-

ing Geology 3, 135–148.
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Table 1. Material characteristics of the used natural quick clay.

Parameter Unit Sample

1 2 3

Sampling depth [m] 6 10 12

ρbulk [kgm−3] 1.54 · 103 1.58 · 103 1.69 · 103

ρgrain,pycnometer [kgm−3] 2697.5 2709.6

w [%] 75.1 71.9 49.5

wL [%] 57 48

wP [%] 28 27 20

su,fall cone [kPa] 19.4 30.6 32.8

sur,vane [kPa] 0.26 0.22 0.17

St [–] 75 139 240

Table 2. Void ratio and salinity results before, during and after the leaching experiments. The void ratios are calculated by measuring
the sediment volume and the measured amount of added clay particles and particle density ρ = 2700 kgm−3.

Leaching None Hydraulic head,

fresh water

Hydraulic head, salt

water

Diffusion

Before e0 [-] 2.42 2.31 2.26 2.45

msalt
2 [g] 6.20 7.57 7.53 5.74 4

w2 [%] 78.8 76.2 76.9 74.5

After phase 1 e [-] - 2.44 2.33

∆msalt
3 [g] - 6.81 ≈0

After phase 2 e [-] - 2.32 2.33 2.24

∆msalt
3 [g] - 0.60 ≈0 ?5

w [%] - 82.81 78.52 ?5

1 Calculated assuming that s = 0‰
2 Calculated assuming that s = 250‰
3 Determined by oven drying of the leachate (majority of the leached salt) and water still on top of the sample (salt leached out by diffusion)
4 Sample was trimmed to a height of 19.3 mm so it could be applied in an oedometer at a stress of σ′v = 2.5 kPa. Therefore the total mass of salt is lower

than in the other tubes
5 Amount unknown, varying results with different methods
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Fig. 5. Pictures of the sample leached with demineralized water. a) sample after extraction from tube, b) attempted strength measurement
with fall cone. Note the disturbance around the cone, c) and d) liquefaction of sample after disturbance.
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