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Abstract
Information-flow control mechanisms are difficult to design and
labor intensive to prove correct. To reduce the time wasted on
proof attempts doomed to fail due to broken definitions, we ad-
vocate modern random testing techniques for finding counterexam-
ples during the design process. We show how to use QuickCheck,
a property-based random-testing tool, to guide the design of a sim-
ple information-flow abstract machine. We find that both sophis-
ticated strategies for generating well-distributed random programs
and readily falsifiable formulations of noninterference properties
are critically important. We propose several approaches and eval-
uate their effectiveness on a collection of injected bugs of varying
subtlety. We also present an effective technique for shrinking large
counterexamples to minimal, easily comprehensible ones. Taken
together, our best methods enable us to quickly and automatically
generate simple counterexamples for all these bugs.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing tools (e.g., data generators, coverage testing); D.4.6
[Security and Protection]: Information flow controls

General Terms Security, Languages, Design

Keywords random testing; security; design; dynamic information-
flow control; noninterference; abstract machine; QuickCheck

1. Introduction
Secure information-flow control (IFC) is nearly impossible to
achieve by careful design alone. The mechanisms involved are
intricate and easy to get wrong: static type systems must impose
numerous constraints that interact with other typing rules in subtle
ways, while dynamic mechanisms must appropriately propagate
taints and raise security exceptions when necessary. This intricacy
makes it hard to be confident in the correctness of such mechanisms
without detailed proofs; however, carrying out these proofs while
designing the mechanisms can be an exercise in frustration, with
a great deal of time spent attempting to verify broken definitions!
The question we address in this paper is: Can we use modern test-
ing techniques to discover bugs in IFC enforcement mechanisms
quickly and effectively? If so, then we can use testing to catch most
errors during the design phase, postponing proof attempts until we
are reasonably confident that the design is correct.
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To answer this question, we take as a case study the task of
extending a simple abstract stack-and-pointer machine to track dy-
namic information flow and enforce termination-insensitive nonin-
terference [23]. Although our machine is simple, this exercise is
both nontrivial and novel. While simpler notions of dynamic taint
tracking are well studied for both high- and low-level languages,
it has only recently been shown [1, 24] that dynamic checks are
capable of soundly enforcing strong security properties. Moreover,
sound dynamic IFC has been studied only in the context of lambda-
calculi [1, 16, 25] and While programs [24]; the unstructured con-
trol flow of a low-level machine poses additional challenges. (Test-
ing of static IFC mechanisms is left as future work.)

We show how QuickCheck [9], a popular property-based testing
tool, can be used to formulate and test noninterference properties
of our abstract machine, quickly find a variety of missing-taint and
missing-exception bugs, and incrementally guide the design of a
correct version of the machine. One significant challenge is that
both the strategy for generating random programs and the precise
formulation of the noninterference property have a dramatic im-
pact on the time required to discover bugs; we benchmark several
variations of each to identify the most effective choices. In particu-
lar, we observe that checking the unwinding conditions [14] of our
noninterference property can be much more effective than directly
testing the original property.

Our results should be of interest both to researchers in language-
based security, who can now add random testing to their tools for
debugging subtle enforcement mechanisms; and to the random-
testing community, where our techniques for generating and shrink-
ing random programs may be useful for checking other properties
of abstract machines. Our primary contributions are: (1) a demon-
stration of the effectiveness of random testing for discovering coun-
terexamples to noninterference in a low-level information-flow ma-
chine; (2) a range of program generation strategies for finding such
counterexamples; (3) an empirical comparison of how effective
combinations of these strategies and formulations of noninterfer-
ence are in finding counterexamples; and (4) an effective methodol-
ogy for shrinking large counterexamples to smaller, more readable
ones. Our information-flow abstract machine, while simple, is also
novel, and may be a useful artifact for further research.

2. Basic IFC
We begin by introducing the core of our abstract machine. In §5 we
will extend this simple core with control flow (jumps and procedure
calls), but the presence of pointers already raises opportunities for
some subtle mistakes in information-flow control.

We write [ ] for the empty list and x : s for the list whose first
element is x and whose tail is s; we also write [x0, x1, . . . , xn] for
the list x0 : x1 : · · · : xn : [ ]. If l is a list and 0 ≤ j < |l|, then
l(j) selects the j th element of l and l{j 7→ x} produces the list that
is like l except that the j th element is replaced by x.
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Bare machine Our basic machine (without information-flow la-
bels) has seven instructions:

Instr ::= Push x | Pop | Load | Store | Add | Noop | Halt

The x argument to Push is an integer (an immediate constant).
A machine state S is a 4-tuple consisting of a program counter

pc (an integer), a stack s (a list of integers), a memory m (another
list of integers), and an instruction memory i (a list of instructions),
written pc s m i . Often, i will be fixed in some context and we

will write just pc s m for the varying parts of the machine state.
The single-step reduction relation on machine states, written

S ⇒ S′, is straightforward to define; we elide it here, for brevity.
(It is included in a longer version of the paper, available from
http://www.crash-safe.org/node/24.) This relation is a par-
tial function: it is deterministic, but some machine states don’t step
to anything. Such a stuck machine state is said to be halted if
i(pc) = Halt and failed in all other cases (e.g., if the machine
is trying to execute an Add with an empty stack, or if the pc points
outside the bounds of the instruction memory). We write ⇒∗ for
the reflexive, transitive closure of⇒. When S ⇒∗ S′ and S′ is a
halted state, we write S ⇓ S′.

Machine with labeled data In a (fine-grained) dynamic IFC sys-
tem [1, 16, 24, 25] security levels (called labels) are attached to
runtime values and propagated during execution, enforcing the con-
straint that information derived from secret data does not leak to
untrusted processes or to the public network. Each value is pro-
tected by an individual IFC label representing a security level (e.g.,
secret or public). We now add labeled data to our simple stack ma-
chine. Instead of bare integers, the basic data items in the instruc-
tion and data memories and the stack are now values of the form
x@L, where x is an integer and L is either⊥ (public) or> (secret).
We order labels by⊥ v >and write L1 ∨L2 for the join (least up-
per bound) of L1 and L2. When v is a value, we write Lv for v’s
label part and v@L for the value obtained by joining L to Lv—i.e.,
(x@L1)@L2 = x@(L1∨L2).

The instructions are exactly the same except that the immediate
argument to Push becomes a value. Machine states have the same
shape as the basic machine, with the stack and memory now being
lists of values. The set of initial states of this machine, Init, contains
states of the form 0 [ ] m0 i , where m0 can be of any length and
contains only 0@⊥. We use Halted to denote the set of halted states
of the machine.

Noninterference (EENI) We define what it means for this basic
IFC machine to be “secure” using a standard notion of termination-
insensitive noninterference [1, 16, 23]; we call it end-to-end nonin-
terference (or EENI) to distinguish it from the stronger notions we
will introduce in §6. The main idea of EENI is to directly encode
the intuition that secret inputs should not influence public outputs.
By secret inputs we mean values labeled > in the initial state; be-
cause of the form of our initial states, such values can appear only
in instruction memories. By secret outputs we mean values labeled
> in a halted state. More precisely, EENI states that for any two
executions starting from initial states that are indistinguishable to a
low observer (or just indistinguishable) and ending in halted states
H1 and H2, the final states H1 and H2 are also indistinguishable.
Intuitively, two states are indistinguishable if they differ only in
values labeled >. To make this formal, we define an equivalence
relation on states compositionally from equivalence relations over
their components.

2.1 Definition: Two values x1@L1 and x2@L2 are said to be
indistinguishable, written x1@L1 ≈ x2@L2, if either L1 = L2 =
> or else x1 = x2 and L1 = L2 = ⊥. Two instructions i1 and

i2 are indistinguishable if they are the same instruction, or if i1 =
Push v1, and i2 = Push v2, and v1 ≈ v2. Two lists (memories,
stacks, or instruction memories) l1 and l2 are indistinguishable if
they have the same length and l1(x) ≈ l2(x) for all x such that
0 ≤ x < |l1|.

For machine states we have a choice as to how much of the state
we want to consider observable; we choose (somewhat arbitrarily)
that the observer can only see the data and instruction memories,
but not the stack or the pc. (Other choices would give the observer
either somewhat more power—e.g., we could make the stack and
pc observable—or somewhat less—e.g., we could restrict the ob-
server to some designated region of “I/O memory,” or extend the
architecture with I/O instructions and only observe the traces of
inputs and outputs.)

2.2 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 =

pc2 s2 m2 i2 are indistinguishable with respect to memories,
written S1 ≈mem S2, if m1 ≈ m2 and i1 ≈ i2.

2.3 Definition: A machine semantics is end-to-end noninterfering
with respect to some sets of states Start and End and an indistin-
guishability relation ≈, written EENIStart,End,≈, if for any S1, S2 ∈
Start and H1, H2 ∈ End such that S1 ≈ S2 and such that S1 ⇓ H1

and S2 ⇓ H2, we have H1 ≈ H2.

We take EENIInit,Halted,≈mem as our baseline security property;
i.e., we only consider executions starting in initial states and ending
in halted states, and we use indistinguishability with respect to
memories. The EENI definition above is, however, more general,
and we will consider other instantiations of it later.

Information-flow rules Our next task is to enrich the rules for the
step function to take information-flow labels into account. For most
of the rules, there are multiple plausible ways to do this, and some
opportunities for subtle mistakes even with these few instructions.
To illustrate the design methodology we hope to support, we first
propose a naive set of rules and then use QuickCheck-generated
counterexamples to identify and help repair mistakes until no more
can be found.

i(pc) = Noop

pc s m ⇒ pc+1 s m
(NOOP)

i(pc) = Push v

pc s m ⇒ pc+1 v : s m
(PUSH)

i(pc) = Pop

pc v : s m ⇒ pc+1 s m
(POP)

i(pc) = Load

pc x@Lx : s m ⇒ pc+1 m(x) : s m
(LOAD*)

i(pc) = Store

pc x@Lx : v : s m ⇒ pc+1 s m{x 7→ v}
(STORE*AB)

i(pc) = Add

pc x@Lx : y@Ly : s m ⇒
pc+1 (x+y)@⊥ : s m

(ADD*)

The NOOP rule is the same as in the unlabeled machine. In the
PUSH and POP rules, we simply change the relevant integers to
be labeled values; luckily, this obvious adaptation happens to be
correct. But now our luck runs out: the simple changes that we’ve
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made in the other rules will all turn out to be wrong. (We include
a star in the names of incorrect rules to indicate this. The rule
STORE*AB actually contains two bugs, which we refer to as A and
B; we will discuss them separately later.) Fortunately, QuickCheck
can rapidly pinpoint the problems, as we will see.

Figure 1 shows the first counterexample that QuickCheck gives
us when we present it with the step function defined by the six
rules above and ask it to try to invalidate the EENI property. (The
LATEX source for all the figures was generated automatically by
our QuickCheck testing infrastructure.) The first line of the figure
is the counterexample itself: a pair of four-instruction programs,
differing only in the constant argument of the second Push. The first
program pushes 0@>, while the second pushes 1@>, and these
two values are indistinguishable. We display the two programs, and
the other parts of the two machine states, in a “merged” format.
Pieces of data that are the same between the two machines are
written just once; at any place where the two machines differ, the
value of the first machine is written above the value of the second
machine, separated by a horizontal line. The rest of the figure shows
what happens when we run this program. On the first step, the pc
starts out at 0; the memory, which has two locations, starts out as
[0@⊥, 0@⊥]; the stack starts out empty; and the next instruction
to be executed (i(pc)) is Push 1@⊥. On the next step, this value
has been pushed on the stack and the next instruction is either
Push 0@> or Push 1@>; one or the other of these values is pushed
on the stack. On the next, we Store the second stack element (1@⊥)
into the location pointed to by the first (either 0@> or 1@>), so
that now the memory contains 1@⊥ in either location 0 or location
1 (the other location remains unchanged, and contains 0@⊥). At
this point, both machines halt. This pair of execution sequences
shows that EENI fails: in the initial state, the two programs are
indistinguishable to a low observer (their only difference is labeled
>), but in the final states the memories contain different values at
the same location, both of which are labeled ⊥.

Thinking about this counterexample, it soon becomes apparent
what went wrong with the Store instruction: since pointers labeled
> are allowed to vary between the two runs, it is not safe to store
a low value through a high pointer. One simple but draconian fix
is simply to stop the machine if it tries to perform such a store
(i.e., we could add the side-condition Lx = ⊥ to the rule). A more
permissive option is to allow the store to take place, but require it
to taint the stored value with the label on the pointer:

i(pc) = Store

pc x@Lx : y@Ly : s m ⇒
pc+1 s m{x 7→ y@(Lx∨Ly)}

(STORE*B)

Unfortunately, QuickCheck’s next counterexample (Figure 2)
shows that this rule is still not quite good enough. This counterex-
ample is quite similar to the first one, but it illustrates a more sub-
tle point: our definition of noninterference allows the observer to
distinguish between final memory states that differ only in their la-
bels.1 Since the STORE*B rule taints the label of the stored value
with the label of the pointer, the fact that the Store changes differ-
ent locations is visible in the fact that a label changes from ⊥ to >
on a different memory location in each run. To avoid this issue, we
adopt the “no sensitive upgrades” rule [1, 28], which demands that
the label on the current contents of a memory location being stored
into are above the label of the pointer used for the store —i.e., it is
illegal to overwrite a low value via a high pointer (and trying to do

1 See the first clause of Definition 2.1. One might imagine that this could be
fixed easily by changing the definition so that labels are not observable—
i.e., x@⊥ ≈ x@> for any x. Sadly, this is known not to work [22].
(QuickCheck can also find a counterexample; see §A).

i =
[

Push 1@⊥,Push 0
1@>, Store,Halt

]
pc m s i(pc)

0 [0@⊥, 0@⊥] [ ] Push 1@⊥
1 [0@⊥, 0@⊥] [1@⊥] Push 0

1@>
2 [0@⊥, 0@⊥]

[
0
1@>, 1@⊥

]
Store

3
[
1
0@⊥, 01@⊥

]
[ ] Halt

Figure 1. Counterexample to STORE*AB

i =
[

Push 0@⊥,Push 0
1@>, Store,Halt

]
pc m s i(pc)

0 [0@⊥, 0@⊥] [ ] Push 0@⊥
1 [0@⊥, 0@⊥] [0@⊥] Push 0

1@>
2 [0@⊥, 0@⊥]

[
0
1@>, 0@⊥

]
Store

3
[
0@>⊥ , 0@⊥>

]
[ ] Halt

Figure 2. Counterexample to STORE*B

i =

[
Push 0

1@>,Push 0@⊥,Add,Push 0@⊥, Store,
Halt

]
Figure 3. Counterexample to ADD*

i =

[
Push 0@⊥,Push 1@⊥,Push 0@⊥, Store,Push 0

1@>,
Load, Store,Halt

]
Figure 4. Counterexample to LOAD*

so terminates the machine). Adding this side condition brings us to
a correct version of the STORE rule.

i(pc) = Store Lx v Lm(x)

pc x@Lx : y@Ly : s m ⇒
pc+1 s m{x 7→ y@(Lx∨Ly)}

(STORE)

The next counterexample found by QuickCheck (Figure 3)
points out a straightforward problem in the ADD* rule: adding
0@⊥ to 0@> yields 0@⊥. (We elide the detailed execution trace
for this example and most of the ones that we will see later, for
brevity. They can be found in the long version.) The problem is
that the taints on the arguments to Add are not propagated to its
result. The Store is needed in order to make the difference observ-
able. The easy (and standard) fix is to use the join of the argument
labels as the label of the result:

i(pc) = Add

pc x@Lx : y@Ly : s m ⇒
pc+1 (x+y)@(Lx∨Ly) : s m

(ADD)

The final counterexample (Figure 4) alerts us to the fact that the
LOAD* rule contains a similar mistake to the original STORE*AB
rule: loading a low value through a high pointer should taint the
loaded value. The program in Figure 4 is a little longer than the
one in Figure 1 because it needs to do a little work at the beginning
to set up a memory state containing two different low values. It
then pushes a high address pointing to one or the other of those
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cells onto the stack; loads (different, low addresses) through that
pointer; and finally stores 0@⊥ to the resulting address in memory
and halts. In this case, we can make the same change to LOAD*
as we did to STORE*AB: we taint the loaded value with the join
of its label and the address’s label. This time (unlike the case of
Store, where the fact that we were changing the memory gave us
additional opportunities for bugs), this change gives us the correct
rule for Load,

i(pc) = Load

pc x@Lx : s m ⇒ pc+1 m(x)@Lx : s m
(LOAD)

and QuickCheck is unable to find any further counterexamples.

More bugs The original IFC version of the step rules illustrate
one set of mistakes that we might plausibly have made, but there
are more possible mistakes:

i(pc) = Push x@L

pc s m ⇒ pc+1 x@⊥ : s m
(PUSH*)

i(pc) = Store

pc x@Lx : y@Ly : s m ⇒
pc+1 s m{x 7→ y@⊥}

(STORE*C)

Although it is unlikely that we’d write these rather silly rules by
accident, it is worth including them in our experiments because
they can be invalidated by short counterexamples and thus provide
useful data points for less effective testing strategies.

We will also gather statistics for a partially fixed but still wrong
rule for Store, in which the no-sensitive-upgrades check is per-
formed but the result is not properly tainted:

i(pc) = Store Lx v Lm(x)

pc x@Lx : v : s m ⇒ pc+1 s m{x 7→ v}
(STORE*A)

3. QuickCheck
We test noninterference using QuickCheck [9], a tool that tests
properties expressed in Haskell. Often, QuickCheck is used to test
properties that should hold for all inhabitants of a certain type.
QuickCheck repeatedly generates random values of the desired
type, instantiates the property with them, and checks it directly
by evaluating it to a boolean. This process continues until either a
counterexample is found or a specified timeout is reached. Quick-
Check supplies default test data generators for many standard types.
Additionally, the user can supply custom generators for their own
types. In order to test EENI, for example, we needed to define cus-
tom generators for values, instructions, and machine states (each of
which depends on the previous generator: machine states contain
instructions, some of which contain values). The effectiveness of
testing (i.e., mean time to discover bugs) depends on the sophisti-
cation of these generators, a topic we explore in detail in §4.

QuickCheck properties may also be guarded by preconditions;
EENI is an example of why this is necessary, as it only applies to
pairs of indistinguishable initial machine states that both success-
fully execute to halted states. Testing a property with a precondi-
tion proceeds similarly: a sequence of random values are generated
and tested, up to a user-specified maximum. The difference is that
if there is a precondition, it is instantiated with the random value
first. If the precondition does not hold, this random value is sum-
marily discarded. If the precondition does hold, then the rest of the
property is checked just as before. Although preconditions are very
useful, too high a proportion of discards can lead to slow testing or
a badly skewed distribution of test cases (since some kinds of test

case may be discarded much more often than others). To help di-
agnose such problems, QuickCheck can collect statistics about the
tests it tried.

When a test fails, the failing test case is often large, containing
many irrelevant details. QuickCheck then tries to shrink the test
case, by searching for a similar but smaller test case that also fails.
To do this, it greedily explores a number of “shrinking candidates”:
modifications of the original failing test case that are “smaller” in
some sense. The property is tested for each of these, and as soon
as a failure is found, that candidate becomes the starting point for
a new shrinking search (and the other candidates are discarded).
Eventually this process terminates in a failing test case that is
locally minimal: none of its shrinking candidates fails. This failing
case is then reported to the user. It is often very much smaller than
the original randomly generated test case, and it is thus easy to use it
to diagnose the failure because it (hopefully) contains no irrelevant
details. Just like generation strategies, shrinking strategies are type
dependent; they are defined by QuickCheck for standard types,
and by the user for other types. We discuss the custom shrinking
strategies we use for machine states in §7.

4. Test Generation Strategies
We are ready now to begin exploring ways to generate potential
counterexamples. At the outset, we need to address one fundamen-
tal issue. Noninterference properties quantify over a pair of indis-
tinguishable starting states: ∀S1, S2 ∈ Start. S1 ≈ S2 =⇒ . . . .
This is a very strong precondition, which is unlikely to be satisfied
for independently generated states. Instead, we generate indistin-
guishable pairs of states together. The first state is generated ran-
domly using one of the techniques described later in this section.
The second is obtained by randomly varying the “high parts” of the
first. We refer to the second state as the variation of the first. The re-
sulting pair thus satisfies indistinguishability by construction. Note
that we have not compromised completeness: by generating a ran-
dom state and randomly varying we still guarantee that it is pos-
sible to generate all pairs of indistinguishable states. Naturally, the
resulting distributions will depend on the specifics of the generation
and variation methods used, as we shall see.

Since EENI considers only executions that start at initial states,
we only need to randomly generate the contents of the instruction
memory (the program that the machine executes) together with
the size of the data memory (in initial states, the contents of the
memory are fixed and the stack is guaranteed to be empty).

Figure 5 offers an empirical comparison of all the generation
strategies described in this section. For a given test-generation
strategy, we inject bugs one at a time into the machine definition
and measure the time spent on average until that bug is found (mean
time to failure, or MTTF). Tests were run one at a time on seven
identical machines, each with 4× 2.4 GHz Intel processors and
11.7 GB of RAM; they were running Fedora 16 and GHC 7.4.2,
and using QuickCheck 2.5.1.1. We run each test for 5 minutes
(300 seconds) or until 4000 counterexamples are found, whichever
comes first.

Naive instruction generation The simplest way to generate pro-
grams is by choosing a sequence of instructions independently and
uniformly. We generate individual instructions by selecting an in-
struction type uniformly (i.e., Noop, Push, etc.) and then filling in
its fields using QuickCheck’s built-in generators. Labels are also
chosen uniformly. We then build the instruction memory by sam-
pling a number (currently a random number between 20 and 50) of
instructions from this generator.

The first column of Figure 5 shows how this strategy performs
on the bugs from §2. Disappointingly, but perhaps not too surpris-
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Generation strategy NAIVE WEIGHTED SEQUENCE SEQUENCE BYEXEC
Smart integers? NO NO NO YES YES

ADD* 83247.01 5344.26 561.58 30.05 0.87
PUSH* 3552.54 309.20 0.21 0.07 0.01
LOAD* — — 73115.63 2258.93 4.03
STORE*A — — 38036.22 32227.10 1233.51
STORE*B 47365.97 1713.72 0.85 0.12 0.25
STORE*C 7660.07 426.11 0.41 0.31 0.02

MTTF arithmetic mean — — 18619.15 5752.76 206.45
MTTF geometric mean — — 69.73 13.33 0.77

Average tests / second 24129 11466 8541 7915 3284
Average discard rate 79% 62% 65% 59% 4%

Figure 5. Comparison of generation strategies for the basic machine. The first part of the table shows the mean time to find a failing test
case (MTTF) in milliseconds for each bug. The second part lists the arithmetic and geometric mean for the MTTF over all bugs. The third
part shows the number of tests per second and the proportion of test cases that were discarded because they did not satisfy some precondition.

Average number of execution steps: 0.47.
74% stack underflow, 21% halt, and 4% load or store out of range.

Figure 6. Execution statistics for naive instruction generation. Ex-
ecutions fail early, and the main reason for failure is stack under-
flow.

Average number of execution steps: 2.69.
38% halt, 35% stack underflow, and 25% load or store out of range.

Figure 7. Execution statistics when generating instructions with
a weighted distribution. The main reason for failure is now Halt,
followed by stack underflow.

ingly, naive instruction generation can only find four of the six bugs
within 5 minutes. How can we do better?

One obvious weakness is that the discard rate is quite high,
indicating that one or both machines often fail to reach a halted
state. By asking QuickCheck to collect statistics on the execution
traces of test cases (Figure 6), we can also see a second problem:
the average execution length is only 0.46 steps! Such short runs are
not useful for finding counterexamples to EENI (at a minimum,
any counterexample must include a Store instruction to put bad
values into the memory and a Halt so that the run terminates, plus
whatever other instructions are needed to produce the bad values).
So our next step is to vary the distribution of instructions so as to
generate programs that run for longer and thus have a chance to get
into more interesting states.

Weighted distribution on instructions Figure 6 shows that by far
the most common reason for early termination is a stack underflow.
After a bit of thought, this makes perfect sense: the stack is initially
empty, so if the first instruction that we generate is anything but a
Push, Halt, or Noop, we will fail immediately. Instead of a uniform
distribution on instructions, we can do better by increasing the
weights of Push and Halt—Push to reduce the number of stack
underflows, and Halt because each execution must reach a halted
state to satisfy EENI’s precondition. The results after this change
shown in the second column of Figure 5. Although this strategy
still performs badly for the LOAD* and STORE*A bugs, there is
a significant improvement on both discard rates and the MTTF.
Run length is also better, averaging 2.71 steps. As Figure 7 shows,
executing Halt is now the main reason for termination, with stack
underflows and out-of-range accesses close behind.

Average number of execution steps: 3.86.
37% halt, 28% load or store out of range, 20% stack underflow, and
13% sensitive upgrade.

Figure 8. Execution statistics when generating sequences of in-
structions. Out-of-range addresses are now the biggest reason for
termination.

Average number of execution steps: 4.22.
41% halt, 21% stack underflow, 21% load or store out of range, and
15% sensitive upgrade.

Figure 9. Execution statistics when using smart integers with
sequences of instructions. The percentage of address out of range
errors has halved.

Generating useful instruction sequences more often To further
reduce stack underflows we can generate sequences of instructions
that make sense together. For instance, instead of generating single
Store instructions, we can additionally generate sequences of the
form [Push a, Store] (where a is a valid address), and similarly for
other instructions that use stack elements. The results are shown in
the third column of Figure 5. With sequence generation we can now
find all bugs, faster than before. Programs run for slightly longer
(3.87). As expected, stack underflows are less common than before
(Figure 8) and out-of-range addresses are now the second biggest
reason for termination.

Smart integers: generating addresses more often To reduce the
number of errors caused by out-of-range addresses, we can give
preference to valid memory addresses, i.e., integers within memory
bounds, when generating values. We do this not only when gener-
ating the state of the first machine, but also when varying it, since
both machines need to halt successfully in order to satisfy the pre-
condition of EENI. Column four of Figure 5 shows the results after
making this improvement to the previous generator. We see an im-
provement on the MTTF. The average run length is now 4.23 steps,
and the percentage of address-out-of-range errors is decreased.

Generation by execution We can go even further. In addition to
weighted distributions, sequences, and smart integers, we try to
generate instructions that do not cause a crash. In general (for more
interesting machines) deciding whether an arbitrary instruction se-
quence causes a crash is undecidable. In particular we cannot know
in advance all possible states in which an instruction will be ex-
ecuted. We can only make a guess—a very accurate one for this
simple machine. This leads us to the following generation by execu-
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Average execution steps: 11.60 (generated) / 11.26 (variation).
95% halt / halt, 3% halt / load or store out of range, and
1% halt / sensitive upgrade.

Figure 10. Execution statistics for generation by execution, bro-
ken down for the variations.

i =

[
Push 2

5@>, Jump,Push 1@⊥,Push 0@⊥, Store,
Halt

]
Figure 11. Counterexample to JUMP*AB: A textbook example of
an implicit flow

tion strategy: We generate a single instruction or a small sequence
of instructions, as before, except that now we restrict generation to
instructions that do not cause the machine to crash in the current
state. When we find one, we execute it to reach a new state and
then repeat the process to generate further instructions. We con-
tinue until we have generated a reasonably sized instruction stream
(currently, randomly chosen between 20–50 instructions). We dis-
cuss how this idea generalizes to machines with nontrivial control
flow in §5.

As we generate more instructions, we make sure to increase the
probability of generating a Halt instruction, to reduce the chances
of the machine running off the end of the instruction stream. As
a result, (i) we maintain low discard ratios for EENI since we in-
crease the probability that executions finish with a Halt instruction,
and (ii) we avoid extremely long executions whose long time to
generate and run could be more fruitfully used for other test cases.

The MTTF (last column of Figure 5) is now significantly lower
than in any previous generation method, although this strategy runs
fewer tests per second than the previous ones (because both test
case generation and execution take longer). Figure 10 shows that
94% of the pairs both successfully halt, which is in line with the
very low discard rate of Figure 5, and that programs run for much
longer. Happily, varying a machine that successfully halts has a
high probability of generating a machine that also halts.

5. Control Flow
Up to this point, we’ve seen how varying the program genera-
tion strategy can make orders-of-magnitude difference in the speed
at which counterexamples are found for a very simple—almost
trivial—information-flow machine. Now we are ready to make the
machine more interesting and see how these techniques perform on
the new bugs that arise, as well as how their performance changes
on the bugs we’ve already seen. In this section, we add Jump, Call,
and Return instructions—and, with them, the possibility that infor-
mation can leak via the program’s control flow.

Jumps, implicit flows, and the pc label We first add a new Jump
instruction that takes the first element from the stack and sets the
pc to that address:

i(pc) = Jump

pc x@Lx : s m ⇒ x s m
(JUMP*AB)

(The jump target may be an invalid address. In this case, the ma-
chine will be stuck on the next instruction.)

Note that this rule simply ignores the label on the jump target on
the stack. This is unsound, and QuickCheck easily finds the coun-
terexample in Figure 11—a textbook case of an implicit flow [23].
A secret is used as the target of a jump, which causes the instruc-
tions that are executed afterwards to differ between the two ma-
chines; one of the machines halts immediately, whereas the other

i =

[
Push 1@⊥,Push 4

6@>, Jump,Halt,Push 0@⊥,
Store,Push 3@⊥, Jump

]
pc m s i(pc)

0@⊥ [0@⊥] [ ] Push 1@⊥
1@⊥ [0@⊥] [1@⊥] Push 4

6@>
2@⊥ [0@⊥]

[
4
6@>, 1@⊥

]
Jump

Machine 1 continues. . .
4@> [0@⊥] [1@⊥] Push 0@⊥
5@> [0@⊥] [0@⊥, 1@⊥] Store
6@> [1@⊥] [ ] Push 3@⊥
7@> [1@⊥] [3@⊥] Jump
3@⊥ [1@⊥] [ ] Halt

Machine 2 continues. . .
6@> [0@⊥] [1@⊥] Push 3@⊥
7@> [0@⊥] [3@⊥, 1@⊥] Jump
3@⊥ [0@⊥] [1@⊥] Halt

Figure 12. Counterexample to JUMP*B: Jump should not lower
the pc label

one does a Store to a low location and only then halts, causing the
final memories to be distinguishable.

The standard way to prevent implicit flows is to label the pc—
i.e., to make it a value, not a bare integer. Initial states have pc =
0@⊥, and after a jump to a secret address the label of the pc
becomes >:

i(pc) = Jump

pc x@Lx : s m ⇒ x@Lx s m
(JUMP*B)

While the pc is high, the two machines may be executing different
instructions, and so we cannot expect the machine states to corre-
spond. We therefore extend the definition of ≈mem so that all high
machine states are deemed equivalent. (We call a state “high” if the
pc is labeled >, and “low” otherwise.)

5.1 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 =

pc2 s2 m2 i2 are indistinguishable with respect to memories,
written S1 ≈mem S2, if either Lpc1 = Lpc2 = > or else
Lpc1 = Lpc2 = ⊥ and m1 ≈ m2 and i1 ≈ i2.

The JUMP*B rule is still wrong, however, since it not only raises
the pc label when jumping to a high address but also lowers it
when jumping to a low address. The counterexample in Figure 12
illustrates that the latter behavior is problematic. The fix is to label
the pc after a jump with the join of the current pc label and the label
of the target address.

i(pc) = Jump

pc x@Lx : s m ⇒ x@(Lx ∨ Lpc) s m
(JUMP)

With this rule for jumps QuickCheck no longer finds any coun-
terexamples. Some readers may find this odd: In order to fully
address implicit flows, it is usually necessary to modify the rules
for memory stores to handle the case where the pc is labeled
high [1, 22]. The current machine doesn’t require this, but the rea-
son is subtle: here, the pc can go from ⊥ to > when we jump to
a secret address, but it never goes from > to ⊥! It doesn’t matter
what the machine does when the pc is high, because none of its
actions will ever be observable—all high machine states are indis-
tinguishable.
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To make things more interesting, we need to enrich the machine
with some mechanism that allows the pc to safely return to ⊥ after
it has become>. One way to achieve this is to add Call and Return
instructions, a task we turn to next.

Restoring the pc label with calls and returns IFC systems (both
static and dynamic) generally rely on control flow merge points
(i.e., post-dominators of the branch point in the control flow graph
where the control was tainted by a secret) to detect when the
influence of secrets on control flow is no longer relevant and the
pc label can safely be restored. Control flow merge points are,
however, much more evident for structured control features such
as conditionals than they are for jumps. Moreover, since we are
doing purely dynamic IFC we cannot distinguish between safe uses
of jumps and unsafe ones (e.g., the one in Figure 12). So we keep
jumps as they are (only raising the pc label) and add support for
structured programming and restoring the pc label in the form of
Call and Return instructions, which are of course useful in their
own right.

To support these instructions, we need some way of represent-
ing stack frames. We choose a straightforward representation, in
which each stack element can now be either a value (as before)
or a return address, marked R, recording the pc (including its la-
bel!) from which the corresponding Call was made. We also ex-
tend the indistinguishability relation on stack elements so that re-
turn addresses are only equivalent to other return addresses and
R(x1@L1) ≈ R(x2@L2) if either L1 = L2 = > or else x1 = x2

and L1 = L2 = ⊥ (this is the same as for values).2

We also need a way to pass arguments to and return results from
a called procedure. For this, we annotate the Call and Return in-
structions with an integer indicating how many stack values should
be passed or returned (0 or 1 in the case of Return). Formally, Calln
expects an address x@Lx followed by n values on the stack. It sets
the pc to x, labels this new pc by the join of Lx and the current pc
label (as we did for Jump—we’re eliding the step of getting this bit
wrong at first and letting QuickCheck find a counterexample), and
adds the return address frame to the stack under the n arguments.

i(pc) = Call n L = Lx ∨ Lpc

xpc@Lpc x@Lx : v1 : . . . : vn : s m ⇒
x@L v1 : . . . : vn : R(xpc+1@Lpc) : s m

(CALL*B)

Returnn′ traverses the stack until it finds the first return address
and jumps to it. Moreover it restores the pc label to the label stored
in that R entry, and preserves the first n′ elements on the stack as
return values, discarding all other elements in this stack frame.

i(pc) = Return n′ n′ ∈ {0, 1} k ≥ n′

pc v1 : . . . : vk : R(x@Lx) : s m ⇒
x@Lx v1 : . . . : vn′ : s m

(RETURN*AB)

Finally, we observe that we cannot expect the current EENI
instantiation to hold for this changed machine, since now one
machine can halt in a high state while the other can continue, return
to a low state, and only then halt. Since we cannot equate high
and low states (see §A), we need to change the EENI instance we
use to EENIInit,Halted∩Low,≈mem , where Low denotes the set of states
with pc = ⊥. Thus, we only consider executions that end in a low
halting state.

After these changes, we can turn QuickCheck loose and start
finding more bugs. The first one, listed in Figure 13, is essentially

2 High return addresses and high values need to be distinguishable to a
low observer, as we discovered when QuickCheck generated an unexpected
counterexample (which we list in §A).

i =

[
Push 3

6@>,Call 0,Halt,Push 1@⊥,Push 0@⊥,
Store,Return 0

]
Figure 13. Counterexample to old STORE rule in the presence of
Call and Return: Raising pc label is not enough to prevent implicit
flows. Once we have a mechanism (like Return) for restoring the
pc label, we need to be more careful about stores in high contexts.

i =

[
Push 1@⊥,Push 7

6@>,Call 1,Push 0@⊥, Store,
Halt,Push 0@⊥,Return 1

]
Figure 14. Counterexample to RETURN*AB: Return needs to taint
the returned values.

i =

[
Push 0@⊥,Push 6

7@>,Call 0,Push 0@⊥, Store,
Halt,Return 0,Push 0@⊥,Return 1

]
Figure 15. Counterexample to CALL*B and RETURN*B: It is
unsound to choose how many results to return on Return.

another instance of the implicit flow bug, which is not surprising
given the discussion at the end of the previous subsection. We need
to change the rule for Store so that the new memory contents are
tainted with the current pc label. This eliminates the current coun-
terexample; QuickCheck then finds a very similar one in which the
labels of values in the memories differ between the two machines.
The usual way to prevent this problem is to extend the no-sensitive-
upgrades check so that low-labeled data cannot be overwritten in a
high context [1, 28]. This leads to the correct rule for stores:

i(pc) = Store Lpc ∨ Lx v Lm(x)

pc x@Lx : y@Ly : s m ⇒
pc+1 s m{x 7→ y@(Lx∨Ly∨Lpc)}

(STORE)

The next counterexample found by QuickCheck (Figure 14)
shows that returning values from a high context to a low one is
unsound if we do not label those values as secrets. To fix this, we
taint all the returned values with the pre-return pc label.

i(pc) = Return n′ n′ ∈ {0, 1} k ≥ n′

pc v1 : . . . : vk : R(x@Lx) : s m ⇒
x@Lx v1@Lpc : . . . : vn′@Lpc : s m

(RETURN*B)

The next counterexample, listed in Figure 15, shows (maybe
somewhat surprisingly) that it is unsound to specify the number of
results to return in the Return instruction, because then the number
of results returned may depend on secret flows of control. To
restore soundness, we need to pre-declare at each Call whether the
corresponding Return will return a value—i.e., the Call instruction
should be annotated with two integers, one for parameters and the
other for results; accordingly, each stack frame should include not
only a return address but also a number of return values. These
changes lead us to the correct rules:

i(pc) = Call n n′ n′ ∈ {0, 1} L = Lx ∨ Lpc

xpc@Lpc x@Lx : v1 : . . . : vn : s m ⇒
x@L v1 : . . . : vn : R(xpc+1, n′)@Lpc : s m

(CALL)

i(pc) = Return k ≥ n′

pc v1 : . . . : vk : R(x, n′)@Lx : s m ⇒
x@Lx v1@Lpc : . . . : vn′@Lpc : s m

(RETURN)
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i =

 Push 5@⊥,Call 0 1,Push 0@⊥, Store,Halt,
Push 0@⊥,Push 8

9@>,Call 0 0,Pop,Push 0@⊥,
Return


Figure 16. Counterexample to POP*: It is unsound not to protect
the call stack.

The final counterexample found by QuickCheck is quite a bit
longer (see Figure 16). It shows that we cannot allow instructions
like Pop to remove return addresses from the stack, as does the
following broken rule (we use e to denote an arbitrary stack entry):

i(pc) = Pop

pc e : s m ⇒ pc+1 s m
(POP*)

To protect the call frames on the stack, we change this rule to only
pop values (all the other rules can already only operate on values).

i(pc) = Pop

pc v : s m ⇒ pc+1 s m
(POP)

Generation by execution and control flow Generation by execu-
tion is still applicable in the presence of interesting control flow but
we have to make small modifications to the original algorithm. We
still generate a single instruction or sequence that does not crash,
as before, and we execute to compute a new state. However, un-
like before, while executing this newly generated sequence of in-
structions, it is possible to “land” in a position in the instruction
stream where we have already generated an instruction. (e.g. via
a backward jump): If this happens then we keep executing the al-
ready generated instructions. If the machine stops (or we reach a
loop-avoiding cutoff) then we stop the process and return the so-far
generated instruction stream. If there are no more instructions to
execute then we go on to generate more instructions. There is one
more possibility though: the machine may crashes while executing
an already generated instruction. To address this issue, we make
sure that we never generate an instruction that causes the machine
to crash in a number of steps. We refer to this number of steps as
the lookahead parameter and in our experiments we use a looka-
head of just 2 steps. If we cannot generate such an instruction, we
retry with a smaller lookahead, until we succeed.

Since it now becomes possible to generate instruction streams
that cause the machine to crash in some number of steps, one
might be worried about the discard ratio for EENI. However, the
ever increasing probability of generating a Halt (discussed in §4)
counterbalances this issue.

Finding the bugs We experimentally evaluated the effectiveness
of testing for this new version of the machine, by adding the bugs
discussed in this section to the ones applicable for the previous
machine. The results of generation by execution with lookahead
for this machine are shown in the first column of Figure 17. As we
can see, all old bugs are still found relatively fast. It takes slightly
longer to find them when compared to the previous machine, but
this is to be expected: when we extend the machine, we are also
increasing the state space to be explored. The new control-flow-
specific bugs are all found, with the exception of POP*. Discard
rates are much higher compared to generation by execution in
Figure 5, for two reasons. First, control flow can cause loops, so we
discard machines that run for more than 50 steps without halting.3

Second, as described previously, generation by execution in the
presence of control flow is much less accurate.

3 Detailed profiling revealed that 18% of the pairs of machines both loop,
and loopy machines push the average number of execution steps to 22.

Alternative generation strategies Generation by execution has
proved to be simple to implement and effective in finding bugs.
Even this method, however, required some tuning, driven by ex-
perimental evaluation. For instance, our first implementations did
not involve increasing probabilities of Halt instructions. We also
experimented with different lookahead values. Larger lookaheads
introduce significant overheads in generation as every generated
instruction costs many steps of execution, and the payoff of lower
discard rates was not worth the increased generation cost.

We have also explored (and dismissed) several other generation
strategies, and we outline two of these below:

• Generation by forward execution. Generation by execution fills
in the instruction stream in patches, due to generated jumps. It
is hence possible for the instruction stream to contain “holes”
with Noop instructions. An alternative strategy is to generate
instructions in a forward style only: if we generate a branch then
we save the current state along with the branch target, but keep
generating instructions as if the branch was not taken. If we
ever reach the target of the branch we may use the saved state
as a potentially more accurate state that we can use to generate
more instructions. This strategy delivered similar results as
generation by execution, but due to its more complicated nature
we dismissed it and used the basic design instead.
• Variational generation by execution. In this design, we first gen-

erate a machine with generation by execution. We then vary
the machine and run generation by execution for the resulting
machine, in the hope that we can fill in the holes in the origi-
nally generated instruction stream with instructions from a vari-
ational execution. As before, we did not find that the results jus-
tified the generation overheads and complexity of this strategy.

6. Strengthening the Tested Property
The last few counterexamples in §5 are fairly long and quite dif-
ficult for QuickCheck to find, even with the best test-generation
strategy. In this section we explore a different approach: strength-
ening the property we are testing so that counterexamples become
shorter and easier to find. Figure 17 summarizes the variants of non-
interference that we consider and how they affect test performance.

Making entire low states observable Every counterexample that
we’ve seen involves pushing an address, executing a Store instruc-
tion, and halting. These steps are all necessary because of the
choice we made in §2 to ignore the stack when defining indistin-
guishability on machine states. A counterexample that leaks a se-
cret onto the stack must continue by storing it into memory; simi-
larly, a counterexample that leaks a secret into the pc must execute
Store at least twice. This suggests that we can get shorter coun-
terexamples by redefining indistinguishability as follows:

6.1 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 =

pc2 s2 m2 i2 are indistinguishable with respect to entire low
states, written S1 ≈low S2, if either Lpc1 = Lpc2 = > or else
Lpc1 = Lpc2 = ⊥, m1 ≈ m2, i1 ≈ i2, s1 ≈ s2, and pc1 ≈ pc2.

We now strengthen EENIInit,Halted∩Low,≈mem , the property we
have been testing, to EENIInit,Halted∩Low,≈low ; this is stronger be-
cause≈mem and≈low agree on initial states, while for halted states
≈low ⊂ ≈mem . Indeed, for this stronger property, QuickCheck
finds bugs faster (compare the first two columns of Figure 17).

Quasi-initial states Many counterexamples begin by pushing val-
ues onto the stack and storing values into memory. This is nec-
essary because each test starts with an empty stack and low, ze-
roed memory. We can make counterexamples easier to find by al-
lowing the two machines to start with arbitrary (indistinguishable)
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Tested property EENI EENI EENI LLNI SSNI SSNI
Starting states Init Init QInit QInit All All
Equivalence relation ≈mem ≈low ≈low ≈low ≈full ≈full

Generation strategy BYEXEC2 BYEXEC2 BYEXEC2 BYEXEC2 NAIVE TINYSSNI

ADD* 37.07 2.38 1.38 0.36 0.24 0.11
PUSH* 0.22 0.02 0.02 0.01 1.06 0.06
LOAD* 155.07 37.50 5.73 1.14 3.25 0.61
STORE*A 20018.67 18658.56 124.78 84.08 289.63 16.32
STORE*B 13.02 12.87 16.10 5.25 31.11 0.33
STORE*C 0.35 0.34 0.33 0.08 0.73 0.03
JUMP*A 48.84 7.58 5.26 0.08 1.45 0.09
JUMP*B 2421.99 158.36 104.62 2.80 16.88 0.49
STORE*D 13289.39 12295.65 873.79 232.19 8.77 1.13
STORE*E 1047.56 1129.48 717.72 177.75 2.26 0.29
CALL*A 3919.08 174.66 115.15 5.97 31.71 0.62
RETURN*A 12804.51 4698.17 1490.80 337.74 1110.09 3.10
CALL*B+RETURN*B 69081.50 6940.67 1811.66 396.37 1194.30 4.56
POP* — 51753.13 16107.22 1828.56 30.68 0.42

MTTF arithmetic mean — 6847.81 1526.75 219.46 194.44 2.01
MTTF geometric mean — 135.76 46.48 7.69 12.87 0.47

Average tests / second 2795 2797 2391 1224 8490 18407
Average discard rate 65% 65% 69% 0% 40% 9%

Figure 17. Experiments for control flow machine. MTTF given in milliseconds.

stacks and memories; we call such states quasi-initial. Formally,
the set QInit of quasi-initial states contains all states of the form
0@⊥ s m i , for arbitrary s, m, and i.

The advantage of generating more varied start states is that parts
of the state space may be difficult to reach by running generated
code from an initial state; for example, to get two return addresses
on the stack, we must successfully execute two Call instructions.
Thus, bugs that are only manifested in these hard-to-reach states
may be discovered very slowly or not at all. Generating “interme-
diate” states directly gives us better control over their distribution,
which can help eliminate such blind spots in testing. The disadvan-
tage of this approach is that a quasi-initial state may not be reach-
able from any initial state, so in principle QuickCheck may report
spurious counterexamples that cannot actually arise in a real execu-
tion. For example, a quasi-initial state may have a non-zero value
in memory, even though the program contains no Store instruction
that could have written it. In general, we could address such prob-
lems by carefully formulating the important invariants of reachable
states and ensuring that we generate quasi-initial states satisfying
them. In practice, though, we have not encountered any spurious
counterexamples for our machine, even with quasi-initial states.

Instantiating EENI with QInit, we obtain a stronger property
EENIQInit,Halted∩Low,≈low (stronger because Init ⊂ QInit) that does
indeed find bugs faster, as column 3 of Figure 17 shows.

LLNI: Low-lockstep noninterference While making the full
state observable and starting from quasi-initial states significantly
improves EENI, we can get even better results by moving to a
yet stronger noninterference property. The intuition is that EENI
generates machines and runs them for a long time, but it only com-
pares the final states, and only when both machines successfully
halt; these preconditions lead to rather large discard rates. Why not
compare intermediate states as well, and report a bug as soon as in-
termediate states are distinguishable? While the pc is high, the two
machines may be executing different instructions, so their states
will naturally differ; we therefore ignore these states and require
only that low execution states are pointwise indistinguishable. We
call this new property low-lockstep noninterference (or LLNI).

The function trace S computes the (possibly infinite) list of
states obtained by executing our machine starting from state S. This
is a function because our machine is deterministic.

6.2 Definition: trace S =

{
[S] if S is stuck
S : trace S′ if S ⇒ S′

While, in practice, we test LLNI over finite prefixes of traces,
the definition below is also valid for potentially infinite traces.

6.3 Definition: A machine semantics is low-lockstep noninter-
fering with respect to the indistinguishability relation ≈ (written
LLNI≈) if, for any quasi-initial states S1 and S2 with S1 ≈ S2, we
have trace S1 ≈∗ trace S2, where ≈∗ is defined coinductively by
the following rules:

S1, S2 ∈ Low S1 ≈ S2 t1 ≈∗ t2
(S1 : t1) ≈∗ (S2 : t2)

(LOW LOCKSTEP)

S1 6∈ Low t1 ≈∗ t2
(S1 : t1) ≈∗ t2

(HIGH FILTER)

[ ] ≈∗ [ ] (LOCKSTEP END)

S1 6∈ Low
[S1] ≈∗ t2

(HIGH END)

S1 ∈ Low S1 6∈ Halted S1 ≈ S2

[S1] ≈∗ (S2 : t2)
(LOW ERROR END)

t1 ≈∗ t2
t2 ≈∗ t1

(SYMMETRY)

The rule LOW LOCKSTEP requires low states in the two traces to
be pointwise indistinguishable, while HIGH FILTER (together with
SYMMETRY) simply filters out high states from either trace. The re-
maining rules are about termination: because we are working with
termination-insensitive noninterference, we allow one of the traces
to continue (maybe forever) even if the other has terminated in a
state that is not low (HIGH END) or not halted (LOW ERROR END).
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Additionally, we allow the two traces to terminate simultaneously
(LOCKSTEP END). We implement these rules in Haskell as a recur-
sive predicate over lazy lists.

In general, LLNI implies EENI, but not vice versa. However, the
correct version of our machine does satisfy LLNI, and we have not
observed any cases where QuickChecking a buggy machine with
LLNI finds a bug that is not also a bug with regard to EENI. Test-
ing LLNI instead of EENI leads to significant improvement in the
bug detection rate for all bugs, as the results in the fourth column
Figure 17 show. In these experiments no generated machine states
are discarded, since LLNI applies to both successful (halting) exe-
cutions and failing or infinite executions. The generation strategies
described in §4 also apply to LLNI without much change; also, as
for EENI, generation by execution (with lookahead of 2 steps) per-
forms better than the more basic strategies, so we don’t consider
those for LLNI.

SSNI: Single-step noninterference Until now, we have focused
on using sophisticated (and potentially slow) techniques for gener-
ating long-running machine states, and then checking equivalence
for low halting states (EENI) or at every low step (LLNI). An alter-
native is to define a stronger property that talks about all possible
single steps of execution starting from two indistinguishable states.

Proofs of noninterference usually go by induction on a pair of
execution traces; to preserve the corresponding invariant, the proof
needs to consider how each execution step affects the indistin-
guishability relation. This gives rise to properties known as “un-
winding conditions” [14]; the corresponding conditions for our ma-
chine form a property we call single-step noninterference (SSNI).

We start by observing that LLNI implies that, if two low states
are indistinguishable and each takes a step to another low state, then
the resulting states are also indistinguishable. However, this alone
is not a strong enough invariant to guarantee the indistinguishability
of whole traces. In particular, if the two machines perform a Return
from a high state to a low state, we would need to conclude that the
two low states are equivalent without knowing anything about the
original high states. This indicates that, for SSNI, we can no longer
consider all high states indistinguishable. The indistinguishability
relation on high states needs to be strong enough to ensure that
when both machines return to low states, those low states are also
indistinguishable. Moreover, we need to ensure that if one of the
machines takes a step from a high state to another high state, then
the old and new high states are equivalent. The following definition
captures all these constraints formally; we write SL for a machine
state whose pc label is L.

6.4 Definition: A machine semantics is single-step noninterfering
with respect to the indistinguishability relation ≈ (written SSNI≈)
if the following four conditions are all satisfied:

1. For all low states S⊥1 and S⊥2 , if S⊥1 ≈ S⊥2 , S⊥1 ⇒ S1, and
S⊥2 ⇒ S2, then S1 ≈ S2;

2. For all high states S> with S> ⇒ S>? , we have S> ≈ S>? ;
3. For all high states S>1 and S>2 , if S>1 ≈ S>2 , S>1 ⇒ S⊥1 ,

S>2 ⇒ S⊥2 , and states S⊥1 and S⊥2 are low, then S⊥1 ≈ S⊥2 ;
4. For all low states S⊥1 and S⊥2 , if S⊥1 ≈ S⊥2 and S⊥1 is halted,

then S⊥2 is stuck.

Note that SSNI talks about completely arbitrary states, not just
(quasi-)initial ones.

The definition of SSNI is parametric in the indistinguishability
relation used, and it can take some work to find the right relation.
As discussed above, ≈low is too weak and QuickCheck can easily
find counterexamples to condition 3, e.g., by choosing two indis-
tinguishable machine states with i = [Return], pc = 0@>, and
s =

[
R(01 , 0)@⊥

]
; after a single step the two machines have dis-

tinguishable pcs 0@⊥ and 1@⊥, respectively. On the other hand,
treating high states exactly like low states in the indistinguishability
relation is too strong. In this case QuickCheck finds counterexam-
ples to condition 2, e.g., a single machine state with i =

[
Pop

]
,

pc = 0@>, and s = [0@⊥] steps to a state with s = [], which
would not be considered indistinguishable. These counterexamples
show that indistinguishable high states can have different pcs and
can have completely different stack frames at the top of the stack.
So all we can require for two high states to be equivalent is that
their memories and instruction memories agree and that the parts
of the stacks below the topmost low return address are equivalent.
This is strong enough to ensure condition 3.

6.5 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 =

pc2 s2 m2 i2 are indistinguishable with respect to whole ma-
chine states, written S1 ≈full S2, if m1 ≈ m2, i1 ≈ i2, Lpc1 =
Lpc2 , and additionally

• if Lpc1 = ⊥ then s1 ≈ s2 and pc1 ≈ pc2, and
• if Lpc1 = > then cropStack s1 ≈ cropStack s2.

The cropStack helper function takes a stack and removes elements
from the top until it reaches the first low return address (or until all
elements are removed).

The fifth column of Figure 17 shows that, even with arbitrary
starting states generated completely naively, SSNI≈full performs
very well. If we tweak the weights a bit and additionally observe
that since we only execute the generated machine for only one step,
we can begin with very small states (e.g., the instruction memory
can be of size 2), then we can find all bugs very quickly. As the
last column of Figure 17 illustrates, each bug is found in under 20
milliseconds. (This last optimization is a bit risky, since we need
to make sure that these very small states are still large enough to
exercise all bugs we might have—e.g., an instruction memory of
size 1 is not enough to exhibit the CALL*B+RETURN*B bug using
SSNI.) Compared to other properties, QuickCheck executes many
more tests per second with SSNI for both generation strategies.

Discussion In this section we have seen that strengthening the
noninterference property is a very effective way of improving the
effectiveness of random testing our IFC machine. It is not without
costs, though. Changing the security property required some exper-
tise and, in the case of LLNI and SSNI, manual proofs showing that
the new property implies EENI, the baseline security property. In
the case of SSNI we used additional invariants of our machine (cap-
tured by ≈full ) and finding these invariants would probably consti-
tute the most creative part of doing a full security proof. While we
could use the counterexamples provided by QuickCheck to guide
our search for the right invariants, we expect that for more realistic
machines the process of interpreting the counterexamples and man-
ually refining the invariants will be significantly harder than for our
very simple machine.

The potential users of our techniques will have to choose a point
in the continuum between testing and proving that best matches the
characteristics of their practical application. At one end, we present
ways of testing the original EENI property without changing it in
any way, by putting all the smarts in clever generation strategies.
At the other end, one can imagine using random testing just as the
first step towards a full proof of a stronger property such as SSNI.
For our simple machine, Azevedo de Amorim et al. [2] did in fact
prove recently in Coq that SSNI holds, and did not find any bugs
that had escaped our testing. Moreover, we proved in Coq that for
any deterministic machine and for any indistinguishability relation
that is an equivalence, SSNI implies LLNI and LLNI implies EENI.

464



7. Shrinking Strategies
The counterexamples presented in this paper are not the initial ran-
domly generated tests; they are the result of QuickCheck shrink-
ing these to minimal examples. For example, randomly generated
counterexamples to EENI for the PUSH* bug usually consist of
20–40 instructions; the minimal counterexample uses just four. In
this section we describe the shrinking strategies we used.

Shrinking labeled values, instructions, and stack elements By
default, QuickCheck already implements a shrinking strategy for
integers. For labels, we shrink > to ⊥, because we prefer to see
counterexamples in which labels are only > if this is essential to
the failure. Values are shrunk by shrinking either the label or the
contents. (If we need to shrink both the label and the contents, then
this is achieved in two separate shrinking steps.)

We allow any instruction to shrink to Noop, which preserves
a counterexample if the instruction was unnecessary; or to Halt,
which preserves a counterexample if the bug had already mani-
fested by the time that instruction was reached. To avoid an infi-
nite shrinking loop, we do not shrink Noop at all, while Halt can
shrink only to Noop. Instructions of the form Push a are also shrunk
by shrinking a. Finally, instructions of the form Call a r are also
shrunk by shrinking a or r, or by being replaced with Jump.

For quasi-initial or arbitrary states the stack contains a mixture
of values and return addresses, which are shrunk pointwise.

Machine states Machine states contain an instruction memory, a
data memory, a stack, and the initial pc, the first three of which can
be shrunk. We allow any element of the memories or the stack to be
shrunk by the methods above; additionally, shrinking may remove
elements from any of the three.

We allow shrinking to remove arbitrary elements of the data
memory or the stack, but in the case of the data memory we first try
to remove the last value. This is because removing other elements
changes all subsequent memory addresses, likely invalidating the
counterexample and thus rendering the shrinking step unsuccessful.

In the case of the instruction memory, we only try to remove
Noop instructions, since removing other instructions is likely to
change the stack or the control flow fairly drastically, and thus
risks invalidating a counterexample. Other instructions can still be
removed in two stages, by first shrinking them to a Noop.

Variations One difficulty that arises when shrinking noninterfer-
ence counterexamples is that the test cases must be pairs of indistin-
guishable machines. Shrinking each machine state independently
will most likely yield distinguishable pairs, which are invalid test
cases, since they fail to satisfy the precondition of the property we
are testing. In order to shrink effectively, we need to shrink both
states of a variation simultaneously, and in the same way.

For instance, if we shrink one machine state by deleting a Noop
in the middle of its instruction memory, then we must delete the
same instruction in the corresponding variation. Similarly, if a par-
ticular element gets shrunk in a memory location, then the same
location should be shrunk in the other state of the variation, and
only in ways that produce indistinguishable states. We have imple-
mented all of the shrinking strategies described above as operations
on pairs of indistinguishable states, and ensured that they generate
only shrinking candidates that are also indistinguishable.

When we use the full state equivalence ≈full , we can shrink
stacks slightly differently: we only need to synchronize shrinking
steps on the low parts of the stacks. Since the equivalence relation
ignores the high half of the stacks, we are free to shrink those parts
of the two states independently, provided that high return addresses
don’t get transformed into low ones.

Optimizing shrinking We applied a number of optimizations to
make the shrinking process faster and more effective. One way we

sped up shrinking was by turning on QuickCheck’s “smart shrink-
ing,” which optimizes the order in which shrinking candidates are
tried. If a counterexample a can be shrunk to any bi, but the first
k of these are not counterexamples, then it is likely that the first
k shrinking candidates for bk+1 will not be counterexamples ei-
ther, because a and bk+1 are likely to be similar in structure and so
to have similar lists of shrinking candidates. Smart shrinking just
changes the order in which these candidates are tried: it defers the
first k shrinking candidates for bk+1 until after more likely ones
have been tried. This sped up shrinking dramatically in our tests.

We also observed that many reported counterexamples con-
tained Noop instructions—in some cases many of them—even
though we implemented Noop removal as a shrinking step. On
examining these counterexamples, we discovered that they could
not be shrunk because removing a Noop changes the addresses of
subsequent instructions, at least one of which was the target of a
Jump or Call instruction. So to preserve the behavior of the coun-
terexample, we needed to remove the Noop instruction and adjust
the target of a control transfer in the same shrinking step. Since
control transfer targets are taken off the stack, and such values
can be generated during the test in many different ways, we sim-
ply allowed Noop removal to be combined with any other shrinking
step—which might, for example, decrement any value on the initial
stack, or any value stored in the initial memory, or any constant in
a Push instruction. This combined shrinking step was much more
effective in removing unnecessary Noops.

Occasionally, we observed shrunk counterexamples containing
two or more unnecessary Noops, but where removing just one Noop
led to a non-counterexample. We therefore used QuickCheck’s
double shrinking, which allows a counterexample to shrink in two
steps to another counterexample, even if the intermediate value
is not a counterexample. With this technique, QuickCheck could
remove all unnecessary Noops, albeit at a cost in shrinking time.

We also observed that some reported test cases contained unnec-
essary sequences of instructions, which could be elided together,
but not one by one. We added a shrinking step that can replace any
two instructions by Noops simultaneously (and thus, thanks to dou-
ble shrinking, up to four), which solved this problem.

With this combination of methods, almost all counterexamples
we found shrink to minimal examples, from which no instruction,
stack element, or memory element could be removed without in-
validating the counterexample.

8. Related Work
Generating random inputs for testing is a large research area, but
the particular sub-area of testing language implementations by gen-
erating random programs is less well studied. PLT Redex [18]
is a domain-specific language for defining operational semantics
within PLT Scheme, which includes a property-based random test-
ing framework inspired by QuickCheck. This framework uses a for-
malized language definition to automatically generate simple test-
cases. To generate better test cases, however, Klein et al. find that
the generation strategy needs to be tuned for the particular lan-
guage; this agrees with our observation that fine-tuned strategies
are required to obtain the best results. They argue that the effort
required to find bugs using PLT Redex is less than the effort re-
quired for a formal proof of correctness, and that random testing is
sometimes viable in cases where full proof seems infeasible.

CSmith [27] is a C compiler testing tool that generates random
C programs, avoiding ones whose behavior is undefined by the C99
standard. When generating programs, CSmith does not attempt to
model the current state of the machine; instead, it chooses program
fragments that are correct with respect to some static safety analy-
sis (including type-, pointer-, array-, and initializer-safety, etc.). We
found that modeling the actual state of our (much simpler) machine
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to check that generated programs were hopefully well-formed, as
in our generation by execution strategy, made our test-case genera-
tion far more effective at finding noninterference bugs. In order to
get smaller counterexamples, Regehr et al. present C-Reduce [21],
a tool for reducing test-case C programs such as those produced
by CSmith. They note that conventional shrinking methods usually
introduce test cases with undefined behavior; thus, they put a great
deal of effort and domain specific knowledge into shrinking well-
defined programs only to programs that remain well-defined. To do
this, they use a variety of search techniques to find better reduc-
tion steps and to couple smaller ones together. Our use of Quick-
Check’s double shrinking is similar to their simultaneous reduc-
tions, although we observed no need in our setting for more sophis-
ticated searching methods than the greedy one that is guaranteed
to produce a local minimum. Regehr et al.’s work on reduction is
partly based on Zeller and Hildebrandt’s formalization of the delta
debugging algorithm ddmin [29], a non-domain-specific algorithm
for simplifying and isolating failure-inducing program inputs with
an extension of binary search. In our work, as in Regehr et al.’s,
domain-specific knowledge is crucial for successful shrinking.

Another relevant example of testing programs by generating
random input is Randoop [19], which generates random sequences
of calls to Java APIs. Noting that many generated sequences crash
after only a few calls, before any interesting bugs are discovered,
Randoop performs feedback directed random testing, in which pre-
viously found sequences that did not crash are randomly extended.
This enables Randoop to generate tests that run much longer be-
fore crashing, which are much more effective at revealing bugs.
Our generation by execution strategy is similar in spirit, and like-
wise results in a substantial improvement in bug detection rates.

A state-machine modeling library for (an Erlang version of)
QuickCheck has been developed by Quviq [17]. It generates se-
quences of API calls to a stateful system satisfying preconditions
formulated in terms of a model of the system state, associating a
(model) state transition function with each API call. API call gen-
erators also use the model state to avoid generating calls whose pre-
conditions cannot be satisfied. Our generation-by-execution strat-
egy works in a similar way for straightline code.

A powerful and widely used approach to testing is symbolic
execution—in particular, concolic testing and related dynamic
symbolic execution techniques [8]. The idea is to mix symbolic
and concrete execution in order to achieve higher code coverage.
The choice of which concrete executions to generate is guided by
a constraint solver and path conditions obtained from the symbolic
executions. Originating with DART [13] and PathCrawler [26], a
variety of tools and methods have appeared. We wondered whether
dynamic symbolic execution could be used instead of random test-
ing for finding noninterference bugs. As a first step, we imple-
mented a simulator for a version of our abstract machine in C and
tested it with KLEE [7], a state-of-the-art symbolic execution tool.
Using KLEE out of the box and without any expert knowledge in
the area, we attempted to invalidate various assertions of noninter-
ference. Unfortunately, we were only able to find a counterexample
for PUSH*, the simplest possible bug, in addition to a few imple-
mentation errors (e.g., out-of-bound pointers for invalid machine
configurations). The main problem seems to be that the state space
we need to explore is too large, so we don’t cover enough of it to
reach the particular IFC-violating configurations.

In interactive theorem provers, automatically generating coun-
terexamples for false conjectures can prevent wasting time and
effort on proof attempts doomed to fail. Dybjer [10] propose a
QuickCheck-like tool for the Agda/Alfa proof assistant. Berghofer
and Nipkow [3] proposed a QuickCheck-like tool for Isabelle/HOL.
This was recently extended by Bulwahn [5] to also support exhaus-
tive and narrowing-based symbolic testing. Moreover, Bulwahn’s

tool uses Horn clause data flow analysis to automatically devise
generators that only produce data that satisfies the precondition of
the tested conjecture [6]. Eastlund [11] implemented DoubleCheck,
an adaption of QuickCheck for ACL2. Chamarthi et al. [20] later
proposed a more advanced counterexample finding tool for ACL2s,
which uses the full power of the theorem prover and libraries to
simplify conjectures so that they are easier to falsify. While all these
tools are general and only require the statement of the conjecture to
be in a special form (e.g., executable specification), so they could
in principle be applied to test noninterference, our experience with
QuickCheck suggests that for the best results one has to incorpo-
rate domain knowledge about the machine and the property being
tested. We hope to compare our work against these tools in the fu-
ture and provide experimental evidence for this intuition.

On the dynamic IFC side Birgisson et al. [4] have a good
overview of related work. Our correct rule for Store is called the no-
sensitive-upgrades policy in the literature and was first proposed by
Zdancewic [28] and later adapted to the purely dynamic IFC setting
by Austin and Flanagan [1]. Hedin and Sabelfeld [15] improve the
precision of the no-sensitive-upgrades policy by explicit upgrade
annotations, which raise the level of a location before branching on
secrets. They apply their technique to a core calculus of JavaScript
that includes objects, higher-order functions, exceptions, and dy-
namic code evaluation. Birgisson et al. [4] show that random test-
ing with QuickCheck can be used to infer upgrade instructions in
this setting. The main idea is that whenever a random test causes
the program to be stopped by the IFC monitor because it attempts a
sensitive upgrade, the program can be rewritten by introducing an
upgrade annotation that prevents the upgrade from being deemed
sensitive on the next run of the program.

9. Conclusions and Outlook
We have shown how random testing can be used to discover
counterexamples to noninterference in a simple information-flow
machine and how to shrink counterexamples discovered in this way
to simpler, more comprehensible ones. The techniques we present
bring many orders of magnitude improvement in the rate at which
bugs are found, and for the hardest-to-find bugs (to EENI) the min-
imal counterexamples are 10-15 instructions long – well beyond
the scope of naive exhaustive testing. Even if we ultimately care
about full security proofs [2], using random testing should greatly
speed the initial design process and allow us to concentrate more
of our energy on proving things that are correct or nearly correct.

What crucially remains to be seen is whether our results will
scale up to more realistic settings. We are actively pursuing this
question in the context of CRASH/SAFE, an ambitious hardware–
software co-design effort underway at Penn, Harvard, Northeast-
ern, and BAE Systems, with IFC as a key feature at all levels, from
hardware to application code. The design involves a number of ab-
stract machines, all much more complex than the stack machine we
have studied here. We hope to use random testing both for checking
noninterference properties of individual abstract machines and for
checking that the code running on lower-level abstract machines
correctly implements the higher-level abstractions.

Just how well do our methods need to perform to find bugs ef-
fectively in these machines? The true answer is anybody’s guess,
but for a very rough estimate we might guess there will be around
10× as many instructions on a real SAFE machine, that each in-
struction might be on average 3× more complex, and that several
cross-cutting features will induce additional complexity factors—
e.g., “public labels” [16] (?2×), dynamic memory allocation
(?2×), a “fat pointer” memory model (?2×), a more complex lattice
of labels (?2×), and dynamic principal generation (?2×). Combin-
ing these, we could be finding bugs more than 1000×more slowly.
If this calculation is in the right ballpark, then EENI is nowhere
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near fast enough: even for our stack machine, it can take several
minutes to find some bugs. Between LLNI and SSNI, on the other
hand, there is a tradeoff (discussed in §6) between the overhead of
finding good invariants for SSNI and the increased bug-finding rate
once this is done. Both approaches seem potentially useful (and
potentially fast enough), perhaps at different points in the design
process. In particular, checking SSNI may help find invariants that
will also be needed for a formal proof.

Preliminary experiments on testing a more complex register ma-
chine with some of the extra features enumerated above show that
most of our techniques scale directly to the new setting with only
minor modifications. For this more complex machine, EENI is (as
expected) impractical for finding non-trivial IFC bugs. LLNI vari-
ants, on the other hand, uncovered a plethora of (truly accidental)
bugs in our initial implementation, and also aided in the discov-
ery of increasingly strong invariants. So far we have been unable
to come up with a correct SSNI invariant; however, we have been
using the testing framework to hone in on a correct formulation.

We expect that our techniques are flexible enough to be applied
to checking other relational properties of programs (i.e., properties
of pairs of related runs)—in particular, the many variants and gen-
eralizations of noninterference. Beyond noninterference properties,
preliminary experiments with checking correspondence between
concrete and abstract versions of our current stack machine suggest
that many of our techniques can also be adapted for this purpose.
For example, the generate-by-execution strategy and many of the
shrinking tricks apply just as well to single programs as to pairs of
related programs. This gives us hope that they may be useful for
checking yet further properties of abstract machines.
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i =

[
Push 1@⊥,Push 0@>,Push 1@⊥, Store,Push 1@>

0@⊥ ,
Store,Halt

]
pc m s i(pc)

0@⊥ [0@⊥, 0@⊥] [ ] Push 1@⊥
1@⊥ [0@⊥, 0@⊥] [1@⊥] Push 0@>
2@⊥ [0@⊥, 0@⊥] [0@>, 1@⊥] Push 1@⊥
3@⊥ [0@⊥, 0@⊥] [1@⊥, 0@>, 1@⊥] Store
4@⊥ [0@⊥, 0@>] [1@⊥] Push 1@>

0@⊥
5@⊥ [0@⊥, 0@>]

[
1@>
0@⊥ , 1@⊥

]
Store

6@⊥
[
0
1@⊥, 10@>

]
[ ] Halt

Figure 18. A counterexample showing that it is wrong to make
high atoms be equivalent to all other atoms.

[29] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, 2002.

A. Varying the Indistinguishability Relation
Labels need to be observable As seen in §2, our definition of in-
distinguishability of values (Definition 2.1) allows the observer to
distinguish between final memory states that differ only in their la-
bels. One might imagine changing the definition of indistinguisha-
bility so that labels are not observable. There are at least two ways
one can imagine doing this; however, both are wrong. First, one
could try defining indistinguishability of atoms so that x@⊥ ≈
y@> for any x and y. QuickCheck easily finds a counterexample
to this (Figure 18). Second, one could try refining this so that only
x@⊥ ≈ x@>, i.e., a high atom is equivalent with a low one only
when the payloads are equal. QuickCheck also disproves this al-
ternative (Figure 19), and the counterexample produced by Quick-
Check illustrates how, even with the correct rules, a difference in
the labels of two atoms can be turned into a difference in the values
of two atoms. This counterexample is reminiscent of a well-known
“flow-sensitivity attack” (Figure 1 in [22]; attributed to [12]).

Weakening EENI when adding calls and returns The counterex-
ample in Figure 20 shows that once we have a way to restore the pc
label, we can no longer expect all pairs of halting states to be indis-
tinguishable in EENI. In particular, as the counterexample shows,
one machine can halt in a high state, while the other can return to
low, and only then halt. Since our indistinguishability relation only
equates states with the same pc label, these two halting states are
distinguishable. The solution we use in §5 is to weaken the EENI
instance, by considering only ending states that are both halting and
low (i.e., we change to EENIInit,Halted∩Low,≈mem ).

Indistinguishability for stack elements when adding calls and re-
turns In §5 we defined the indistinguishability relation on stack
elements so that return addresses are only equivalent to other re-
turn addresses and (as for values) R(x1@L1) ≈ R(x2@L2) if ei-
ther L1 = L2 = > or x1 = x2 and L1 = L2 = ⊥. If instead
we considered high return addresses and high values to be indistin-
guishable, QuickCheck would find a counterexample. This coun-
terexample requires quasi-initial states (and ≈low ) and is listed in
Figure 21. The first machine performs only one Return that throws
away two elements from the stack and then halts. The second ma-
chine returns twice: the first time to the same Return, unwinding
the stack and raising the pc; and the second time to the Halt in-
struction, labeling the return value high in the process. The final
states are distinguishable because the elements on the stack have

i =

[
Push 1@⊥,Push 0@>⊥ ,Push 0@⊥, Store,Push 7

9@>,
Call 1 0,Halt,Push 0@⊥, Store,Return

]
pc m s i(pc)

0@⊥ [0@⊥] [ ] Push 1@⊥
1@⊥ [0@⊥] [1@⊥] Push 0@>⊥
2@⊥ [0@⊥]

[
0@>⊥ , 1@⊥

]
Push 0@⊥

3@⊥ [0@⊥]
[
0@⊥, 0@>⊥ , 1@⊥

]
Store

4@⊥
[
0@>⊥

]
[1@⊥] Push 7

9@>

5@⊥
[
0@>⊥

] [
7
9@>, 1@⊥

]
Call 1 0

Machine 1 continues. . .
7@> [0@>] [1@⊥,R(6, 0)@⊥] Push 0@⊥
8@> [0@>] [0@⊥, 1@⊥,R(6, 0)@⊥] Store
9@> [1@>] [R(6, 0)@⊥] Return
6@⊥ [1@>] [ ] Halt

Machine 2 continues. . .
9@> [0@⊥] [1@⊥,R(6, 0)@⊥] Return
6@⊥ [0@⊥] [ ] Halt

Figure 19. A counterexample showing that it is also wrong to
make high atoms equivalent to low atoms with the same payload.

i =
[

Push 2
3@>,Call 0 0,Halt,Return

]
pc m s i(pc)

0@⊥ [ ] [ ] Push 2
3@>

1@⊥ [ ]
[
2
3@>

]
Call 0 0

Machine 1 continues. . .
2@> [ ] [R(2, 0)@⊥] Halt

Machine 2 continues. . .
3@> [ ] [R(2, 0)@⊥] Return
2@⊥ [ ] [ ] Halt

Figure 20. A counterexample justifying the change to
EENIInit,Halted∩Low,≈mem in §5.

different labels. As we saw earlier, such a counterexample can be
extended to one in which values also differ.

i =
[

Return,Halt
]

pc m s i(pc)

0@⊥ [ ]
[
0@⊥, 0@>

R(0,0)@> , 0@⊥,R(1, 1)@⊥
]

Return

Machine 1 continues. . .
1@⊥ [ ] [0@⊥] Halt

Machine 2 continues. . .
0@> [ ] [0@⊥,R(1, 1)@⊥] Return
1@⊥ [ ] [0@>] Halt

Figure 21. A counterexample that motivates the indistinguishabil-
ity of stack elements for the machine with calls and returns.
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