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RF characterization of InAs self-switching diodes (SSDs) is reported. On-wafer measurements

revealed no roll-off in responsivity in the range of 2–315 GHz. At 50 GHz, a responsivity of

17 V/W and a noise-equivalent power (NEP) of 150 pW/Hz
1=2 was observed for the SSD when

driven by a 50 X source. With a conjugately matched source, a responsivity of 34 V/W and an NEP

of 65 pW/Hz
1=2 were estimated. An antenna-coupled SSD demonstrated a responsivity of 0.7 V/W

at 600 GHz. The results demonstrate the feasibility of zero-bias terahertz detection with

high-electron mobility InAs SSDs up to and beyond 100 GHz. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821949]

Development of zero-bias terahertz (THz) detectors for

imaging applications is driven by a search for higher band-

width and sensitivity, the latter manifested through improved

responsivity and noise performance. Compared to biased

detectors, zero-bias detectors offer lower 1/f-noise and

reduced dc power consumption. Room temperature zero-bias

detection at frequencies above 100 GHz is today realized

with Schottky diodes1,2 or Sb-heterostructure backward

diodes.3 An emerging device for zero-bias detection is the

self-switching diode (SSD).4 The SSD is a field-effect device

where a nanometer-sized constriction acts as a channel for

the charge carriers. Similar to the Schottky diode or Sb-

heterostructure backward diode, the SSD detection principle

is based on a current-voltage nonlinearity. First demonstrated

in InGaAs,4 the SSD has since then been reported as a room-

temperature detector up to 1.5 THz in GaAs.5 SSD detection

has also been published for indium-tin oxide,6 ZnO,7 and

recently GaN,8 among other materials. Since InAs exhibits

an electron mobility superior to all materials reported so far,

higher operation frequency may be expected in an InAs-

based SSD. Indeed, Monte Carlo (MC) simulations of InAs

SSDs suggest a constant responsivity from DC to at least 2

THz.9 In this work, RF detection experiments for InAs SSDs

are presented. On-wafer measurements up to 315 GHz are

presented, followed by detection at 600 GHz in a free-space

set-up with an antenna-coupled SSD. Responsivity and de-

tector noise properties are reported.

SSDs are defined by a two-dimensional geometry in a

semiconductor. In this work, the SSD was defined in an

InAs/AlGaSb heterostructure containing a 2DEG. The lateral

SSD design is shown in Figure 1. The channels, marked A in

Figure 1, connect source to drain. The channels are separated

by flanges, marked B, which are connected to the drain con-

tact. The SSD can be understood as a transistor where the

flanges are gates, short-circuited to the drain.10 When a nega-

tive voltage is applied to the drain, the biased flanges reduce

the carrier concentration in the channel thus increasing the

(channel) resistance. A non-linear current-voltage relation

arises, well-known for InAs SSDs.11 The modulation of the

channel resistance is enhanced by reducing the channel

width W.4 The effective channel width may be smaller than

the physical channel width, due to depletion by surface

charges.8

The epitaxial heterostructure used for InAs SSD fabrica-

tion was grown by molecular beam epitaxy (MBE).12

Similar structures are used for InAs/AlSb HEMT fabrica-

tion,13 which simplifies possible future MMIC integration. A

300 nm GaAs buffer and a 1 lm metamorphic AlSb buffer

were grown on a semi-insulating GaAs substrate. The AlSb

layer was covered by a 100 nm Al80Ga20Sb buffer, a 15 nm

InAs channel and a 13 nm Al80Ga20Sb barrier, forming the

non-intentionally doped quantum well. AlSb is known to be

prone to oxidation.14 By choosing Al80Ga20Sb over AlSb in

the top layers, chemical stability was enhanced.15 On top of

the quantum well, a 4 nm In52Al48As protection layer and a

5 nm Te-doped InAs contact layer were deposited. In fabrica-

tion of the SSD, the contact layer in the active part of the de-

vice was removed by wet etching, after which the protection

FIG. 1. Schematic view of the geometry of the InAs SSD. Trenches, pic-

tured in white, were etched through the 2DEG of an InAs/Al80Ga20Sb

quantum well. The inset shows a scanning electron microscopy of 100 nm

wide etched trenches covered by 25 nm silicon nitride.
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layer prevented oxidation of the Al80Ga20Sb barrier.

Trenches were patterned with e-beam lithography and etched

with a Cl:Ar reactive ion etch (RIE), reaching through the

InAs channel and forming the geometry of the 2DEG

depicted in Figure 1.12 Without breaking the vacuum, 25 nm

silicon nitride was grown in a plasma-enhanced chemical

vapor deposition process to protect the Al80Ga20Sb barrier

against oxidation and provide electrical passivation. The

inset of Figure 1 shows the etched trench at this stage. Later,

the etched trenches were completely filled with silicon

nitride for enhanced encapsulation and increased field cou-

pling between the flanges and channels. Room-temperature

Hall measurements of the passivated heterostructure with

removed cap layer yielded an electron concentration of

1.5� 1012 cm�2 and an electron mobility of 26 000 cm2/Vs,

which are representative numbers for similar heterostruc-

tures.16 All SSDs were designed with channel length

L¼ 1100 nm, separation S¼ 350 nm, vertical trench width

Wv¼ 100 nm, and horizontal trench width Wh¼ 100 nm.

Channel width W and number of channels N were varied.

The non-linearity of the I-V characteristics is the basis

for RF detection in SSDs. The asymmetric current defined as

I(V)þ I(�V)is plotted in Figure 2 for a device with

W¼ 35 nm and N¼ 43. The inset shows the I-V characteris-

tics, which appears to be linear. While the asymmetric cur-

rent is of the same magnitude as for other non-linear

detectors such as Sb-heterostructure backward diodes,17 it

constitutes only around 3% of the total current in the InAs

SSD. However, it is this small asymmetry that makes the

InAs SSD a detector.

An RF detection experiment was carried out on-wafer

using a vector network analyzer as the signal source. To

reduce the resistance of the device and improve the match to

50 X, designs with N¼ 43 were used. W was varied from 35

to 120 nm. Three different setups were used for the fre-

quency bands 2–50 GHz, 140–220 GHz, and 240–315 GHz,

all following the same principle: The power from the source

was measured with a calorimetric power meter for each fre-

quency setting. By subtracting the loss of the RF probes, the

available power at the probe tip was found. The power inci-

dent to the device was 1.7–8.5 lW, delivered by a 50 X
source. Resulting DC detection voltage was measured

through a bias-tee with a high-resistance load. The

unmatched responsivity bv was found as the ratio of incident

power and measured voltage.

Figure 3 shows bv versus frequency for three different

W. No significant roll-off was observed in the measured fre-

quency bands. A bv> 10 V/W at 2–315 GHz was achieved

for W¼ 35 nm. For larger W, bv was lower, but showed simi-

lar frequency dependence. A more detailed study of the W-

dependence of bv is shown in Figure 4, performed at 50 GHz

with an incident power of 3.2 lW. The highest bv¼ 17 V/W

was achieved for W¼ 35 nm, the smallest W investigated.

Using a matching network between the source and the

detector would increase the responsivity. Figure 4 shows

the responsivity with a conjugately matched source, bopt,

versus W. Using the measured S11 and bv, bopt was found as

bopt ¼ bv=ð1� jS11j2Þ. Comparing bopt to bv, it is seen that

for W¼ 120 nm, bopt� bv whereas for W¼ 35 nm,

bopt� 2bv. This is due to the increased diode impedance for

small W and thus an increased mismatch to 50 X. Moreover,

Figure 4 suggests that both bv and bopt would improve if W
was decreased further.

Also shown in Figure 4 is bopt as predicted from I-V

characterizations. Predictions matched the measured bopt

closely, both in absolute values and in W-dependence. The

prediction of bopt was done by fitting a fifth-order polyno-

mial to the measured I-V characteristics for

V 2 ½�0:2; 0:2�V. Then bopt was found as

bopt ¼
1

2
R0c; (1)

FIG. 2. The asymmetric component IðVÞ þ Ið�VÞof the I-V characteristics

of an InAs SSD with W¼ 35 nm and N¼ 43. The insert shows the I-V char-

acteristics of the InAs SSD.

FIG. 3. Measured bv versus frequency for three different W.

FIG. 4. Measured bv (squares) and bopt (crosses) at 50 GHz versus W, and

predictions of bopt based on I-V analysis (circles).
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where R0 ¼ 1=ðdI=dVÞjV¼0 is the zero-bias resistance and

c ¼ ðd2I=dV2Þ=ðdI=dVÞjV¼0 is the curvature.18 From

W¼ 120 to 35 nm, bopt increased from 6.1 to 34 V/W, corre-

sponding to a factor 5.6 increase. By studying R0 and c, as

shown in Figure 5, it is seen that the improvement in bopt

was due to an increase in both R0 and c. The increase in R0

was a factor 2.8 (from 126 to 350 X) and in c a factor 2.1

(from 0.10 to 0.21 V�1). The increase in c is important since

it shows that the increase in bopt is partly due to an increased

modulation of the current through each channel, and not

merely to an increased R0. An increased R0 increases bopt,

but makes matching increasingly difficult and has a less

straight-forward effect on the detectors noise properties.

For zero-bias detectors, the dominating noise process at

low incident power is Johnson-Nyquist noise, which has

been shown for SSDs specifically.19 Hence, the rms voltage

spectral density across the terminals is Vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4KTR
p

0, where

k is Boltzmann’s constant and T the physical temperature. A

central figure of merit for a detector is the noise equivalent

power (NEP), representing the input power for which the

output equals the noise floor. The NEP of the SSD when

driven by a conjugately matched source was defined as

NEPopt and found as

NEPopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KTR0

p
=bopt; (2)

where T¼ 295 K. Similarly, the NEP for a diode driven by a

50 X source was found as NEPv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KTR0

p
=bv. NEPv and

NEPopt versus W is plotted in Figure 6, where T¼ 295 K.

Both NEPv and NEPopt decreased when W was lowered,

despite the increase in R0. The lowest values were achieved

for W¼ 35 nm, for which NEPv¼ 150 pW/Hz
1=2 and

NEPopt¼ 65 pW/Hz
1=2. It can be seen from Figure 6 that by

further reducing W a reduction of both NEPv and NEPopt can

be expected.

To investigate if InAs SSDs can function as detectors at

higher frequencies, an antenna-coupled SSD was used with

the free-space setup shown in Figure 7. A detector system

was built with an InAs SSD fabricated with a circularly

polarized spiral substrate antenna,20 for which the simulated

impedance was 90 X. The SSD was designed with N¼ 11

and W¼ 65 nm. From I-V characterization, bopt¼ 53 V/W

was expected. A silicon lens was placed firmly against the

backside of the substrate with the SSDs. The output voltage

was measured with a lock-in amplifier, thus presenting a

high DC-load. On the transmitter side, the vertically polar-

ized beam was radiated through a conical horn antenna. By

replacing the receiver with an Erickson PM4 power meter

with a horn antenna, the incident average power was meas-

ured to 1.15 mW and 7 lW, at 200 GHz and 600 GHz,

respectively. The responsivities of the detector were 2.1 V/W

and 0.70 V/W, respectively. Compensating for polarization

mismatch (50%) and antenna mismatch (�50%), bopt was

calculated to 8.4 V/W and 2.8 V/W at 200 GHz and 600 GHz,

respectively. This shows that InAs SSDs can function as

detectors at at least 600 GHz.

InAs self-switching diodes were fabricated and charac-

terized as detectors in the range 2–315 GHz, in which no

roll-off of responsivity was observed. At 50 GHz, the highest

responsivity and lowest NEP observed were 17 V/W and 150

pW/Hz
1=2, measured with a 50 X source and no matching net-

work. With a conjugately matched source, 34 V/W and 65

pW/Hz
1=2 are expected. Finally, detection was confirmed at

600 GHz using an antenna-coupled SSD in a free-space

setup. These results demonstrate the feasibility of InAs SSDs

in zero-bias detection up to and beyond 100 GHz.
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