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Göteborg, Sweden 2013



Abstract

Yttrium doped barium zirconate is a promising candidate as a proton conducting fuel cell
electrolyte. Even if the mechanism behind proton conductivity is generally understood,
the effects of dopants is a question that requires clarification. Recent studies suggests
that dopants might act as traps for protons. An increased understanding of the behavior
of protons in the vicinity of dopant atoms might contribute to the performance of future
electrolytes.

The aim of this thesis is to investigate the possibilities of studying proton diffusion
with the means of molecular dynamics simulations, using the ReaxFF potential as the
model for the inter atomic interactions. The work includes a study of the thermal
expansion of yttrium doped barium zirconate, the diffusion of protons and how to obtain
the self intermediate scattering function, which can be measured with neutron scattering
experiments.

The ReaxFF potential seems to provide a good model for studying proton diffusion in
barium zirconate and it reproduces experimental results quite accurately. It is possible
to obtain the self intermediate scattering function and study the motion of protons at
different time and length scales. An exponential function, containing three parameters,
where fitted to the obtained data. More investigations are required to interpret the data
accurately, but some indication of the trapping effects of dopants can be seen.
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Nomenclature

Abbreviations

DFT Density Functional Theory

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator

MD Molecular Dynamics

MSD Mean Square Displacement

PCSO Proton Conducting Solid Oxide

PEM Polymer Electrolyte Membrane

s-CF Self Correlation Function

s-ISF Self Intermediate Scattering Function

SOFC Solid Oxide Fuel Cell

Elements

Ba Barium

H Hydrogen

O Oxygen

Y Yttrium

Zr Zirconium

Symbols

r̈i Acceleration of particle i

∆G Change in Gibbs free energy
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∆H Change in enthalpy

∆S Change in entropy

∆t Time step

ν Frequency

Ω Simulation volume

ω Angular frequency

Fi Force acting on particle i

k Momentum

ri Position of particle i

ri(t) Position of particle i at time t

vi(t) Velocity of particle i at time t

BOij Bond order between atom i and j

D Self diffusion constant

d Effective lattice parameter

D0 Prefactor

E0 Activation energy

F (k,t) Intermediate scattering function

Fs(k,t) Self Intermediate Scattering Function

G(r,t) Correlation function

Gs(r,t) Self correlation function

h Planck’s constant, 4.1356675 · 10−5 eVs

K Equilibrium constant

k Absolute value of momentum

kB Boltzmann’s constant, 8.6173324 · 10−5 eVK−1

L Side length of the simulation volume

mi Mass of particle i

N Number of particles

ii



NA Avogadro’s number, 6.022 · 1023mol−1

pH2O Partial pressure of water

R Gas constant, 8.3144621 Jmol−1K−1

r Absolute value of distance

rc Cutoff distance

rij Distance between particle i and j

S(k,ω) Scattering function

Ss(k,ω) Self scattering function

t Time

V Inter atomic potential

T Temperature
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1

Introduction

C
lean energy alternatives have become more and more important during
the last decades. One of these clean energy alternatives is the fuel cell. A fuel
cell is a device that converts chemically stored energy into electrical energy[1].
There are several types of fuel cells and they are each suited for different tasks.

Some of the main differences between various types of fuel cells are the fuels used,
operating temperatures and the conducting ions.

The solid oxide fuel cell (SOFC) or ceramic fuel cell is a high temperature fuel cell
that operates at temperatures of about 750− 1000 oC. The name Solid Oxide Fuel Cell
originates from the fact that the electrolyte is a solid oxide, generally yttria-stabilized
zirconia that conducts oxygen vacancies. The fuel can be a mixture of hydrogen and
carbon monoxide or methane. Due to these high operating temperatures many require-
ments need to be fulfilled by the materials used for the SOFC. Other problems related to
the high operating temperature are long start up times and casing/storage issues[2],[3].

The polymer electrolyte membrane (PEM) fuel cell is a low temperature fuel cell
that has typical operating temperature around 80 oC. The electrolyte of a PEM fuel
cell is a proton conducting polymer and requires hydrogen as fuel. The PEM fuel cell
needs platinum catalysts to work and is subjected to CO-poisoning, it therefor requires
expensive fuel converter to create pure hydrogen gas free from CO. There are a number
of other types of low temperature fuel cells with similar problems[2].

Because of these problems, with existing fuel cells, a lot of research has and is being
made to reduce the operating temperature of the SOFC. The aim of todays research
is to reach operating temperatures of about 500 − 700 oC, also called the intermediate
temperature range[3]. A reduction of the operating temperatures would decrease the
material requirements and cost of the fuel cell without introducing the need for expensive
catalysts. One way to reduce the operating temperatures is to change or modify the
electrolyte. A promising alternative is to use proton conducting solid oxides (PCSO) that
have a relatively high ionic conductivity of about 10−2 S/cm at the desired temperatures.
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CHAPTER 1. INTRODUCTION

There are however some problems connected to the PCSO. Some of the PCSO:s have a
tendency to react with the carbon dioxide in the atmosphere for the desired temperatures,
and decompose to form carbonates. Another problem is that some of the PCSO:s are
not protonated in the intermediate temperature range. Barium zirconate is one of the
PCSO:s that shows the highest proton conductivities. Yttrium doped barium zirconate
is stable and protonated for temperatures in the intermediate temperature range, it is
considered to be one of the most promising electrolytes for a future proton conducting
SOFC[4].

Even if yttrium doped barium zirconate is considered to be one of the best alterna-
tives as an electrolyte in the proton conducting SOFC, it can still be improved. The
basic mechanism for proton conductivity is relatively well known but the effects of grain
boundaries and dopants still require more investigation. An increased understanding of
these effects might contribute to the work on improving the properties of the PCSO:s.
Both experimental and computer based techniques are used to investigate the conduc-
tion mechanisms of the PCSO:s. Recent studies[5] suggests that dopant atoms acts as
traps for protons, which means that protons spends an extended amount of time around
the lattice sites of the dopant atoms compared to the time they spends at other sites in
the lattice.

The ability to use computational results instead of (or parallel to) experiments is
something that has developed more and more during the last centuries[6]. This of course
has to do with the increased computational power of newer computers and the desire
to understand physical mechanisms on the atomic scale. Molecular dynamics (MD)
simulations are, as the name suggests, a way to simulate the behavior and interaction of
particles on the atomistic scale, usually a few Ångströms, using computers.

The purpose of this thesis is to investigate the possibility to model proton diffusion in
yttrium doped barium zirconate at finite temperatures using MD. The aim is to obtain
the self intermediate scattering function, which can be measured experimentally with
neutron scattering. To perform MD simulations, the inter atomic interactions must be
known, for this purpose the ReaxFF potential[7], developed by van Duin et al, is used.
The MD simulations are done using Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)[8].

1.1 Thesis Outline

This report contains three main parts. First a theoretical background is given, where
the concept of fuel cells are described in chapter 2 and then a more detailed description
of barium zirconate follows in chapter 3. The second part describes molecular dynamics
simulations, chapter 4 explains the concept and chapter 5 describes how the results can
be analyzed. The third part contains the results, which are presented in chapter 6,
discussed in chapter 7 and finally some conclusions are given in chapter 8.
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2

Working Principles of a Fuel Cell

F
uel cells converts chemically stored energy into electrical energy. Fuel cells
only converts energy and this makes them different from batteries that both
stores and converts energy. As mentioned in the introduction there are many
types of fuel cells. This chapter will explain the working principles of a fuel cell

with protons as the conducting ions. For information about other types of fuel cells, see
references[1][9].

The working principle of a hydrogenic fuel cell are very straight forward. Hydrogenic
refers to that hydrogen gas is used as fuel. Se figure 2.1 for a sketch of a hydrogenic
fuel cell. Below follows a brief description of reactions that takes place in the anode and
cathode. The electrolyte will be addressed in chapter 3.
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Figure 2.1: A simple schematic of a fuel cell with a proton conducting electrolyte. The
hydrogen is dissociated at the anode, the protons diffuse through the electrolyte and the
electrons travels through the external circuit. Protons and electrons reacts with oxygen at
the cathode and forms water.
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CHAPTER 2. WORKING PRINCIPLES OF A FUEL CELL

2.1 Anode

Hydrogen gas (H2) is transported to the anode of the fuel cell where the molecules are
dissociated into protons (H+) and electrons (e−). The anode is made from a porous
material to allow for as much contact with the fuel and electrolyte as possible. The
dissociation is achieved in different ways depending on the type of fuel cell that is used.
In high temperature fuel cells the high temperature is an important contribution in the
dissociation of hydrogen. Low temperature fuel cells requires expensive catalysts like
platinum to lower the energy barrier for dissociation[9]. The reaction in the anode is
described by

H2 → 2H+ + 2e−. (2.1)

The electrons travel through the external circuit to the cathode while the protons diffuse
through the electrolyte.

2.2 Cathode

The cathode is in contact with air or more specifically oxygen gas (O2). The cathode,
like the anode, needs to be porous to enable as much contact as possible with the air and
electrolyte. The oxygen reacts with the protons from the electrolyte and the electrons
from the external circuit. The reaction produces water (H2O) and to remove it the
cathode need to have hydrophobic properties. The low temperature fuel cells also need
catalysts in the cathode to lower the energy barrier of the reaction[9]. The reaction in
the cathode is described by

2H+ +
1

2
O2 + 2e− → H2O. (2.2)

2.3 Over All Reaction

The over all reaction in the fuel cell is described by the simple expression

H2 +
1

2
O2 → H2O. (2.3)

The electrical power is extracted from the external circuit where the electrons produce
a current.

It is rather straight forward to calculate the voltage of the fuel cell by studying the
reaction in equation 2.3. The energy released in the reaction is ∆H = 286 kJ and the
entropy is ∆S = 163 J/K for room temperature[10]. By assuming that the enthalpy and
entropy are temperature independent, Gibbs free energy can be calculated using

∆G = ∆H − T∆S, (2.4)

for some temperature T in the intermediate temperature range.

4



2.3. OVER ALL REACTION

For T = 800K the change in Gibbs free energy is ∆G = 156 kJ/mol. There are
two electrons released for each reacting molecule of hydrogen H2, so by dividing with
Avogadro’s number NA, times two, and dividing by the electron charge, the energy per
electron becomes 0.81 eV, which is 0.81V per electron. This is the maximum voltage
that can be obtained per electron and this can be compared to the maximum voltage
1.23V per electron at room temperature. As seen from the above calculation, the max-
imum voltage decreases for higher temperatures and there are several other factors that
decreases it even further. As a result, the use of stacks of fuel cells, connected in series,
is a common way to increase the voltage to be able to use the fuel cell technology in
more energy consuming applications.
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3

Barium Zirconate

T
here are many mechanisms and issues related to the diffusion of protons in
barium zirconate but everything except for the bulk mechanisms are beyond
the scope of this thesis. This chapter describes the structure, the way in which
protons are integrated and the physical mechanisms behind the diffusion of

protons in the bulk of barium zirconate. In the end of the chapter a description of the
possible reasons behind the trapping of protons close to dopants is given.

3.1 Perovskite Structure

Barium zirconate has a so called perovskite structure which is defined by that the oxygen
atoms form an octahedral structure around the zirconium atoms. The lattice is cubic
and it is there for called a cubic perovskite structure. An image of a unit cell with lattice
partameter a in the barium zirconate crystal can be seen in figure 3.1. The cyan atoms
are barium, the yellow one is zirconium and the red ones are oxygen. The chemical
formula for barium zirconate is BaZrO3 and a general formula for perovskite oxides is
ABO3.

Another way to describe the perovskite structure is to picture it as a combination of
bcc and fcc lattices. In this case the barium atom sits at the (0,0,0) site known as the
A site in the unit cell, the zirconium atom sits at the ”bcc site” known as the B site and
the oxygen at the ”fcc” sites. The picture with bcc and fcc sites is however not entirely
correct because the octahedral structures are tilted in comparison to each other when
compared over multiple unit cells[11]

3.2 Protonation

To be able to use barium zirconate as an electrolyte it needs to be protonated, which
means that protons need to be integrated into the structure[12][13]. The reason for

7



CHAPTER 3. BARIUM ZIRCONATE

Figure 3.1: The perovskite structure in a unit cell of barium zirconate with lattice pa-
rameter a. The cyan atoms are barium, the yellow one is zirconium and the red ones are
oxygen

protonating the material is to increase the number of charge carriers while still keeping
the material neutrally charged. If barium zirconate without integrated protons where
to be used as electrolyte, no protons would enter the electrolyte due to the fact that
it would increase it’s energy. By protonating the material the reactions at the anode
and cathode will add and remove protons at the same rate and there by sustaining the
process of proton conduction.

3.2.1 Dopant Atoms and Protonic Defects

Barium (Ba) has a formal ionic charge of 2+, zirconium (Zr) has 4+ and oxygen (O)
has 2−. By replacing some of the zirconium atoms with atoms that has an ionic charge
of 3+, in this case yttrium (Y), the system becomes charged. To equilibrate for this
charge the system creates oxygen vacancies (V ••

O ), so for every two dopant atoms one
oxygen atom is removed. The system is now yttrium doped barium zirconate which has
the formula BaZr1−αYαO3−α

2
, where α is the concentration of yttrium[4][11].

If the system is in a humid atmosphere, water molecules will dissociate into protons
(H+) and hydroxide ions (OH−). The hydroxide ion fills an oxygen vacancy and the
proton forms a covalent bond with one of the neighboring oxygen atoms in the lattice.
These pairs of an oxygen atom and a proton are positively charged and are called protonic
defects (OH•

O)[4]. The chemical reaction for formation of protonic defects is described
by

H2O+V••
O +Ox

O 
 2OH•
O. (3.1)

The notation is called Kröger–Vink notation[13], a • denotes a positive charge, a x
denotes a neutral charge, a ′ denotes a negative charge and the subindex, O in this case,
denotes which lattice position the species occupies.

8



3.2. PROTONATION

Figure 3.2: The protonation process. barium ziconate is doped with yttrium that replaces
some of the zirconium atoms. The yttrium charge is less than the zirconium charge and this
creates oxygen vacancies that can absorb water and introduce protons into the structure.

The system is now in what is called a hydrated state, it is still neutrally charged
but has protons integrated in the structure. A schematic over the protonation process
is shown in figure 3.2.

3.2.2 Chemical Equilibrium and Protonic Defect Concentration

The reaction in equation 3.1 goes in both directions. Chemical equilibrium refers to
when the concentration of reactants (left hand side) and products (right hand side) are
constant. An equilibrium constant can be defined by

K = exp

(

∆G

RT

)

= exp

(

∆S

R

)

exp

(

−∆H

RT

)

=
[OH•

O]
2

[V••
O ][Ox

O]pH2O
, (3.2)

where the brackets in the third equality denotes the concentration of each species and
pH2O is the partial pressure of water. The equilibrium constant can also be described
with thermodynamical quantities by using the first and second equalities, where R is the
gas constant[4][13].

The neutral charge or electroneutrality condition can be described by

2[V••
O ] + [OH•

O] = [Y′
Zr] = constant, (3.3)

where [Y′
Zr] denotes the concentration of negatively charged yttrium dopants at zirco-

nium sites.

9



CHAPTER 3. BARIUM ZIRCONATE

By assuming that

[Ox
O] + [OH•

O] + [V••
O ] = [O] = constant, (3.4)

in molar concentration [O] = 3, and using the electroneutrality condition in equation
3.3, the concentration of protonic defects can be described by

[OH•
O] =

[O]KpH2O

(

−1 +

√

1−
2[Y′

Zr
]

[O] +
[Y′

Zr
]2

[O]2
+

8[Y′

Zr
]

KpH2O
[O] −

4[Y′

Zr
]2

KpH2O
[O]2

)

4−KpH2O
(3.5)

[13].

3.3 Proton Diffusion

Protonic defects are hydroxide ions and the oxygen and the proton are bound together
via a strong covalent bond, but due to that the proton is positively charged, it can form
weaker hydrogen bonds with neighboring oxygen atoms[13]. Barium zirconate is one of
the perovskites with the largest lattice parameter, 4.19 Å at room temperature[14][15],
so the proton will be attracted by the nearest neighboring oxygen ions and the covalent
bond will be parallel with the octahedral edges, which are shown as black lines in figure
3.1. For perovskites with small lattice parameters the proton is more attracted to the
second nearest neighbors due to the repulsion from the strongly positive zirconium ions
at the B sites. Because of the attraction between the proton and it’s oxygen neighbors
a contraction of the oxygen lattice occurs around the proton[13].

In order for the proton to diffuse it must break the bonds to the surrounding oxygen
atoms. The hydrogen bonds are weak and easily broken so the proton will move around
between the neighboring oxygen atoms, forming and braking hydrogen bonds while keep-
ing the covalent bond intact. This will result in a rotational motion in a ”donut shaped”
pattern with the covalently bonded oxygen atom at the center. The reason that the
hydrogen bond is so easily broken is because of that the free energy gained by forming
the bond is counteracted by the loss of free energy due to the lattice distortion when the
oxygens are pulled towards the proton[13].

For long range proton diffusion to occur, the covalent bond must be broken. This
happen relatively easy for a straight line bond configurations of O − H · · ·O, where
− denotes a covalent bond and · · · a hydrogen bond, but the hydrogen bond is bent
because of the repulsion from the positive ions. This has the effect that in order for the
proton to ”jump” it must go through both an energy and momentum transfer. When the
breaking and formation of covalent bond actually occurs, the configuration O −H · · ·O
is almost linear but for this to happen the bond between the oxygen and the B site ion,
B−O, has to be elongated, reducing the repulsion between the hydrogen and the B site
ion. When this happen a contribution to the system energy arises from the stretching
of the B − O bond. The resulting activation energy for long range proton diffusion has
contributions from both the B − O stretching and the proton transfer barrier, and for
cubic perovskite-type oxides it is of the order of 0.4− 0.6 eV[13].

10



3.3. PROTON DIFFUSION

The diffusion of protons in barium zirconate can be characterized by two diffusion
rates[16], the rate at with which the proton forms new hydrogen bonds with the neigh-
boring oxygen ions and the rate at with which the proton forms new covalent bonds or
jumps to another oxygen ion. These events occurs at different rates, the formation of new
hydrogen bonds being faster than the formation of new covalent bonds. The diffusion of
protons in barium zirconate can be seen as a random walk, with the rate of formation
of new covalent bonds being the determining factor in the total rate of diffusion.

Long range proton diffusion can be described by

D = Doexp

(

−
E0

kBT

)

(3.6)

[13] when considering long distances, which means that the distance the proton has
moved from it’s starting position approaches infinity. The self diffusion constant D
describes the quadratic displacement of the proton per unit time, common units are
cm2/s. D0 is a prefactor that depends on geometry, number of neighboring oxygen
atoms the proton can jump to, O−O distance and the frequency with which the proton
tries to jump to another oxygen. E0 is the activation energy discussed above, kB is
Boltzmann’s constant. The diffusion constant increases with increasing temperature,
this is because of the increased energy in the system which has the result that the
energy barriers are more easy to overcome.

3.3.1 Effects of Dopants and Octahedral Tilting

As mentioned earlier the octahedral structures of oxygen in barium zirconate are a bit
tilted, creating differences in the distance to the nearest neighbor oxygens, making some
of the proton jumps easier, or more difficult, than others. This is illustrated in two
dimensions in figure 3.3, where the red dots are oxygen atoms in two tilted octahedrals.
If a proton has a covalent bond with oxygen 1, it is harder to jump to oxygen 2 than
oxygen 3, since distance A is longer than distance B.

�

��

�

�

Figure 3.3: Two dimensional illustration of two tilted octahedrals, the red dots are oxygen
atoms. If a proton has a covalent bond with oxygen 1, it is harder to jump to oxygen 2 than
oxygen 3, since distance A is longer than distance B.
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Figure 3.4: The traps near the yttrium dopant’s can be seen as dips in the potential
landscape.

In some perovskites the tilting can lead to a chain of shorter jump distances after
each other creating a path along which the proton diffuses more easily, making the
diffusion anisotropic[13]. In undoped barium zirconate the tilting averages out over
longer distances making the long rage diffusion isotropic.

The yttrium ions has a considerably larger ionic radius than the zirconium ions. This
leads to that when barium zirconate is doped with yttrium at the B sites, the larger
ionic radius will create a distortion in the oxygen structure surrounding the yttrium
atoms[11][13]. Earlier studies shows that these distortions have no effects on the diffusion
of protons[13], but more resent studies suggests that the yttrium dopants might act as
traps for the protons[5],[17], [18] and [19], and there by decreasing the diffusion. These
traps can be seen as dips in the potential landscape, illustrated in figure 3.4.

When a proton has formed a covalent bond with one of the oxygens that is a trap,
it will linger there for a longer time than it would at any ”normal” oxygen because it is
harder to overcome the energy barrier to the neighboring oxygen atoms. The reasons
behind these traps are different for different dopants. In the case of yttrium there are
mainly two reasons, one electrostatic related and one structure related[19].

The electrostatic attraction arises from that the yttrium dopants has a weaker posi-
tive ionic charge (3+) that the zirconium ions (4+). Due to this weaker ionic charge the
repulsion between the dopants and the protons are weaker than the repulsion between
the protons and the zirconium ions[19].

The structure related reason for trapping involves the oxygen sub lattice. Due to
the large ionic radius of yttrium, the oxygen ions in the surrounding octahedron (O1) is
pushed away from the yttrium ion towards the next nearest oxygen ions (O2), decreasing
the distance between them. Because of this decreased distance, if a proton forms a
covalent bond with one of the O2 ions it will be much easier for the proton to form a
strong hydrogen bond with the O1 ion than any of the other surrounding oxygen ions,
making it linger longer at the O2 site[19].

12



4

Molecular Dynamics Simulations

M
olecular dynamics simulations can be used to investigate physical quan-
tities that are difficult to measure in experiments. For example, it is rela-
tively easy to track the movement of an individual atom, which otherwise
requires advanced experimental set ups. It is of course important to compare

the results between molecular dynamics (MD) simulations and experiments to check the
validity of the models used[6]. This chapter explains some of the basic principles behind
MD simulations and the most important steps in a MD simulation program. At the end
of the chapter a brief description of the ReaxFF potential is given.

4.1 Basic Molecular Dynamics Theory

MD simulations are used to study the time evolution of classical systems. The word
classical here refers to that the particles in the system are assumed to obey the laws of
classical mechanics. This classical approximation is valid in most cases but for materials
with lighter elements such as hydrogen or helium, quantum effects may need to be taken
into account for lower temperatures or if the vibrational motion satisfies hν > kBT ,
where h is Planks constant and ν is the frequency of the motion[6].

4.1.1 The MD Method

MD simulations can in short be described as time integration of Newton’s equations of
motion for the particles in the system[6]. To solve Newton’s equation of motion the force
Fi acting on each particle needs to be known. To be able to calculate the forces it is
necessary to have a description of the particle interactions in the system. The particle
interactions are described by an interatomic potential V from which the force is obtained
through

Fi = −∇iV, (4.1)
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[20] where the index i denotes which particle the force acts upon. The potential is
dependent on the position of the particles,

V = V (r1,r2,...,rN ), (4.2)

where N is the number of particles and r1...rN their respective positions. Newton’s
equation of motion

Fi = mir̈i, (4.3)

where mi is the particle mass and r̈i the acceleration of the particle[20], can then be set
up for each particle in the system i = 1,...,N , giving a set of coupled ordinary differential
equations. Given a set of initial conditions for the positions ri(t) and velocities vi(t),

(r1(0)...rN (0),v1(0)...vN (0)), (4.4)

at time t = 0, it is possible to iterate numerically in time and create a trajectory

(r1(t)...rN (t),v1(t)...vN (t)) (4.5)

in time. With this information it is possible to calculate other observables. For example
can the temperature for a classical system be calculated from the average kinetic energy
of the particles[6].

4.1.2 Inter Atomic Potentials

There are many different types of potentials and the potential for a system can be
produced in different ways. First a theoretical model is often used to determine the
structure of the potential, which energy contributions that are taken into account and
how they should be described. The energy contributions are parameterized and the
parameters are fitted to data to obtain the actual values of the potential. The parameters
can be fitted to either theoretical data like the one obtained from density functional
theory (DFT), which will be shortly explained in section 4.2.1, or to experimental data.

The simplest type of potential is a so called pair potential, meaning that the interac-
tion energy is pairwise additive. The energy for one particle can then be calculated by
adding together the contributions from the interaction with the other particles and the
total energy by doing this for all the particles in the system. If the interaction energy
between two particles are given by v(rij), where rij = |ri − rj | is the distance between
them, the total potential energy will be given by

V (r1,r2,...,rN ) =
1

2

N
∑

i=1

∑

j 6=i

v(rij). (4.6)

If the potential is more complicated more terms need to be added that are not
pairwise additive and takes more particles and their relative positions into account.
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4.1.3 System Size and Boundary Conditions

An important part in a MD simulation is the simulation volume in which the simulation
takes place. The simulation volume plays an important part in defining the system.
This is done via the boundaries and how they treat the volume outside of the simulation
volume. The outside can be viewed as an empty space, in which case the particles inside
of the simulation volume just interact with each other. This can be used when the
system of interest is a cluster, a nanoparticle or another system that is small enough so
that it can be contained within the simulation volume without making the computation
too heavy. When simulating bulk materials there are no boundaries, which makes it
impossible to fit the whole system into the simulation volume. If the simulation should
treat a bulk system, a solution is to use periodic boundary conditions.

Periodic boundary conditions

Periodic boundary conditions means that the particles interact over the boundaries of
the simulation volume. This will create a repetition of the simulation volume in all
directions, which gives the illusion of an infinite system without boundaries. Using
periodic boundary conditions just requires the computer to keep track of the particles
inside of the simulation volume. Any particle position in one of the replicas can be
calculated by using the information about the real particle position. A particle position
rreplica in one of the replicas can easily be calculated by

rreplica = rreal + nL, (4.7)

where rreal is the particle position in the simulation volume, L the length of the side
of the simulation volume, which for simplicity is assumed to be cubic, and n is a three
dimensional vector with integer components corresponding to in which replica of the
simulation volume that rreplica is in.

A general form of periodic boundary conditions would be that each particle in the
simulation volume interacts with all the other particles in the simulation volume and all
the particles in the replicas, including the particle’s own replica. This general case is
not possible in practice. A summation of all particle interactions would be an infinite
sum, making the above approach impossible to implement. Also, the fact that particles
interact with their own replicas will give rise to correlations.

In MD simulations, most of the interactions are short ranged, meaning that most
of the interaction energy arises from interactions with neighboring particles inside of a
cutoff distance rc. A special case of interest is when rc < L/2, leading to that particles
just interact with the nearest replica of the other particles and never with it’s own replica.
This is illustrated in figure 4.1. Long range interactions need special treatment and how
this is done depends on the system. Another important fact about periodic boundary
conditions is that the simulation volume can be defined to be anywhere in the system of
replicas, without the result of the simulation being changed, but it must have the same
shape and orientation. This is an effect of that the infinite system is periodic over the
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Figure 4.1: A two dimensional visualization of periodic boundary conditions. The darkest
filled box in the middle is the simulation volume. The particles in the simulation volume
interact with the nearest replicas of the other particles, creating the illusion of an infinite
lattice. The simulation volume can be defined to be anywhere (black square) without the
result of the simulation being changed, but it needs to have the same shape and orientation.

distance L in the direction of the boundaries. This is illustrated by the black square in
figure 4.1.

4.1.4 Thermostats and Barostats

Newton’s equation of motion conserves the system energy. The temperature of a system
can be calculated from the velocities of the particles in it. It is also possible to do the
opposite, controlling the the temperature by modifying the equation of motion. This
is done technically using a thermostat, which is a modification of Newton’s equation of
motion that rescales the velocities to obtain some given temperature. There are many
different algorithms for how this can be done in practice. LAMMPS uses the Nose-
Hoover thermostat, which is based on an extended Lagrangian method of formulating
the equation of motion in classical mechanics and will not be discussed in more detail
in this thesis. For the interested reader see references [6], [8] and [22] for a detailed
explanation of the Nose-Hoover thermostat.

It is also possible to control the pressure during a MD simulation. The boundaries can
be fixed if the system should be a specific size through out the whole simulation or they
can be allowed to fluctuate, changing the size of the system. The later is used to to study
the system under constant pressure, this is done using a barostat, which is a modification
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4.1. BASIC MOLECULAR DYNAMICS THEORY

of Newton’s equation of motion that applies forces to the system boundaries and rescales
the distances in the system. As with the thermostats there are many different algorithms
for this purpose. The Nose-Hoover thermostat is also a barostat[8].

4.1.5 A MD Simulation Program

There are some basic steps that need to be included in a MD simulation program. These
steps can be summarized as follows:

1. Reading initial parameters

2. Initiation of the system

3. Calculation of the force on each particle

4. Time integration of the equation of motion

5. Write relevant data to output files

6. Repeat from step 3

Reading initial parameters

This is the step where the program takes input. Some input is always required regardless
of the purpose of the simulation. Such input is the number of particles, particle posi-
tions, size of the system, boundary conditions, the potential and the time step ∆t that
determines the accuracy of the iterations forward in time. The user can add extra input
depending on what is going to be simulated. This input can be environmental data like
temperature or pressure.

Initiation of the system

The read input is now used to create atoms at the specified positions ri(0) in the simula-
tion volume and giving them initial velocities vi(0) based on temperature if one has been
specified. It is important to use realistic initial positions for the particles in the system.
If particles overlap the forces on them will be very non realistic, leading to unwanted
behavior. For example, very strong repulsive forces will cause the particles to accelerate
extremely fast and lead to non physical behavior.

Calculation of the force on each particle

Knowing the system setup, the forces can be calculated on each particle. This part is
often the most computationally heavy one depending on the potential. Often a particle
interacts with many of its neighbors, requiring a summation over a lot of particle inter-
actions for each particle. Some interactions are very long ranged, for example Coulomb
interactions. These interactions require special treatment.
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Time integration of the equation of motion

When the forces are known they can be applied to the particles in the system, and new
positions are obtained by moving forward in time. As with all numerical algorithms it
is important to know that it is stable, that is the error does not increase over time. The
stability is strongly related to the time step ∆t. The time step should be kept small
enough so that the algorithm is stable even for steep potentials.

Write relevant data to output files

Relevant data can now be written to an output file that the user can later process
with some suitable program. The output can be positions, velocities, instantaneous
temperature or pressure and many other things. A file containing the particle coordinates
for each time step is often referred to as a trajectory file. To save memory the relevant
information should always be written to an output file so that the program does not
have to remember old information during the entire run.

Repeat from step 3

The procedure above is repeated for the number of time steps set by the user or until
a specific condition is fulfilled. The way in which the number of steps is determined
depends in the purpose of the simulation. When performing an energy minimization it
is better to let the simulation stop when the energy change for each time step is smaller
than some tolerance rather than running a certain amount of time steps, many enough
to be sure that the energy has been minimized. If the simulation concerns a study of
the dynamics a certain amount of time steps should be specified.

4.2 The ReaxFF Potential

The ReaxFF potential, developed by professor van Duin et al[7], is the potential used
for the MD simulations in this thesis. The ReaxFF potential is a very complicated
potential that includes a lot of parameters that has been fitted to data obtained from
DFT calculations[7].

The ReaxFF potential is a so called many body potential, which means that it goes
beyond the pair-potential description in section 4.1.2. One example of such a many body
effect is the three particle interaction described by the angle between the atomic bonds.

One of the most important variables in the ReaxFF potential is the bond order.
One of the notable assumptions in the ReaxFF potential is that the bond order BOij

between two atoms can be determined from the distance rij between them, like in a pair
potential. The different types of bonds the ReaxFF potential distinguishes between are
sigma-bonds, pi-bonds and double pi-bonds. The bond order is used in many of the
different energy terms.

Other notable energy contributions are the van der Waals and Coulomb interactions.
These are the long range interactions that are calculated between all the atom pairs,
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not just the bond sharing ones. These two energy terms also governs the repulsive Pauli
principle at short distances even if the physical origin of the interactions are completely
different.

4.2.1 Very Short Description of Density Functional Theory

DFT is a way to work with quantum mechanical effects. Where a MD calculation just
works with the atom - atom interactions a DFT calculation considers the electrons, their
interactions with each other and with the nuclei. DFT is basically an approximate way
to solve the Schrödinger equation for a many body system, but instead of working with
electronic wave functions the DFT calculation works with electron densities and there by
it’s name. The calculation begins with an initial guess of the electron density and then
an iterative procedure is performed during which the density is gradually changed until
the lowest energy state is found. The electron desnity is described by a superposition of
basis functions, which are often plane waves or Gaussian in shape. Electrons close to the
core are highly localized and therefore require many basis functions to describe them,
making the computation heavier. To avoid this, the electrons close to the core are often
integrated into the potential that describes the core, creating a pseudopotential that is
used instead[21].

DFT calculations are more accurate than interatomic potential descriptions but are
much more computationally heavy, so it is only possible to treat systems several orders
of magnitude smaller than those that can be treated with MD using an interatomic
potential.
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5

Analyzing Proton Diffusion

T
he aim of this thesis is to study proton diffusion by the means of MD simula-
tions. To investigate the diffusive motion, two different correlation functions
were used, the mean square displacement (MSD) and the self Intermediate
Scattering Function (s-ISF). This chapter describes the correlation functions

that where used and some of the programs that where written during the thesis.

5.1 Correlation Functions

Here the two correlation functions are described and how they can be obtained from a
MD trajectory.

5.1.1 Mean Square Displacement

The MSD is the average squared displacement of particle i from an initial position ri(t1)
at time t1, after a time t = t2 − t1, where the particle is at position ri(t2) at time t2.
The MSD as a function of t is given by

MSD(t) = 〈|ri(t2)− ri(t1)|
2〉 = 〈r(t)2〉, t = t2 − t1, (5.1)

where 〈...〉 denotes the time average over all t = t2 − t1 and r is the absolute value of
the displacement distance. To get even better statistics the average should also be taken
over all identical particles N in the system, according to

MSD(t) =
1

N

N
∑

i=1

〈|ri(t2)− ri(t1)|
2〉, t = t2 − t1. (5.2)

For large times, the MSD approaches a linear function of time with the proportion-
ality constant being related to the self diffusion constant according to

MSD(t) → 6Dt, for large t, (5.3)
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Figure 5.1: To get good statistics the MSD should be calculated for many different start
positions t1, but the time window t2 − t1 should be kept constant.

where the factor 6 arises from the three dimensional geometry. For a detailed derivation
of 5.3 see reference[23].

The MSD can easily be calculated from a trajectory. The squared displacement can
be obtained form a trajectory file by starting at some position r(t1) at some time t1 and
then calculate the squared change in coordinates from that position for each time step
∆t to some later time t2. To get the MSD the squared displacement should be averaged
over many different start positions, but the time window t2− t1 should be kept constant.
The concept of time windows is illustrated in figure 5.1 and denoted by the time average
〈...〉 in equation 5.1. The diffusion constant can then be obtained from the slope of the
curve MSD(t).

5.1.2 Intermediate Scattering Function

More detailed information about the diffusive motion can be obtained by studying cor-
relation functions in space and time.

The self correlation function (s-CF) Gs(r,t) is the probability of finding a specific
particle at position r(t2) at time t2 if that specific particle was at some position r(t1) at
time t1. The s-CF Gs(r,t) can be written

Gs(r,t) = 〈δ(r− (r(t2)− r(t1)))〉, (5.4)
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where the 〈...〉 denotes the time average over all t = t2 − t1. Averaging over all identical
particles gives

Gs(r,t) =
1

N

N
∑

i=1

〈δ(r− (ri(t2)− ri(t1)))〉. (5.5)

The s-CF will have sharp peaks due to the delta functions at the starting positions
of the particles at t = 0, but the peaks will broaden and decrease in hight as time
increases. This behavior is similar to that of the MSD but more detailed, because the
self correlation function treats the positions in three dimensions.

In this thesis, the s-ISF is studied. The s-ISF Fs(k,t) is the fourier transform

Fs(k,t) =

∫

Gs(r,t)e
−ik·rdr (5.6)

in space of the s-CF Gs(r,t), where k is the momentum. By using the fourier transform
in equation 5.6, the s-ISF becomes

Fs(k,t) =
1

N

N
∑

i=1

〈eik·(ri(t2)−ri(t1))〉, (5.7)

which can be calculated from a trajectory file by sampling the k-vectors and then putting
in the coordinate differences obtained from the file.

When considering small k-values and large times t, the fourier transform in equation
5.6 approaches an exponential form according to

Fs(k,t) → e−Dk2t, for large k and t. (5.8)

For a derivation of equation 5.8 see reference [23].

Having obtained the s-ISF, it is possible to do a fourier transform in time to obtain
the self scattering function Ss(k,ω), where ω is the angular frequency. Ss(k,ω) can be
used to directly measure the diffusion constant for small ω and k[23], but this is not
done in this thesis.

Another correlation function G(r,t) can also be studied. G(r,t) is the probability of
finding any particle at position r(t2) at time t2 if there was any particle at position r(t1)
at time t1[23]. It is also possible to make fourier transforms of G(r,t) in space and time,
obtaining F (k,t) and S(k,ω).

The scattering function S(k,ω), also called the structure factor, is often used to de-
termine the structure of crystals via two fourier transforms to the correlation function
G(r,t). The scattering function is often referred to as the coherent scattering func-
tion S(k,ω) = SCoh(k,ω) while the self scattering function is the incoherent scattering
function Ss(k,ω) = SInc(k,ω) and they can be measured with coherent and incoherent
neutron scattering[23].

The reason that the s-ISF is of interest is that it can be measured directly via neutron
scattering experiments using the spin-echo technique[5].
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5.2 Analysis Software

The output files from LAMMPS are, in this thesis, either trajectory files containing the
positions of all the protons for each time step or, in the case of thermal expansion, text
files containing the size of the simulation volume for each time frame.

To analyze the trajectory files produced by LAMMPS, two different softwares where
used, Matlab[24] and dynsf[25]. Matlab requires no further explanation but dynsf
is less famous. dynsf is a program that can be used to calculate the s-ISF directly
from a MD simulation trajectory. dynsf can calculate other observables as well, like
the intermediate scattering function F (k,t), scattering function S(k,ω) or correlation
function G(r,t), but this was not done in this thesis.

One of the problems encountered when analyzing the data in the trajectory files
is that the positions are ”wrapped”, this is an effect of periodic boundary conditions.
”wrapped” refers to that if a particle leaves the simulation volume at one boundary it
will, at the same time, be entered into simulation volume at the opposite boundary.
This results in a jump in the particle’s trajectory. To remedy this, an unwrap function
was written in Matlab. The unwrap function reads the original trajectory file, then
calculates the positions that the particles would have if they had not been wrapped back
into the simulation volume and then writes the new positions to a new trajectory file.

To calculate the diffusion constant from MSD, a Matlab program was written that
used the time window approach, mentioned in section 5.1.1, and also averaged over all
the protons in the system.

To calculate the self ISF, both dynsf and Matlab where used. dynsf was used to
calculate the actual self ISF but some problems had to be addressed. First, the three
dimensional k-space is normally sampled with several thousand k-points and the s-ISF is
calculated for |k| = k, this leads to a rather poor resolution for small k-values. To solve
this the k-space was uniformly sampled along the x,y and z-axis separately and then the
average was taken between the three. This produces an evenly sampled k-space for |k|.
This approach is possible because of that the diffusion of protons in barium zirconate
is isotropic. Secondly, 5 · 106 time steps, which was the length of the longest run, takes
a very long time to process. This was solved using a logarithmic time scale, by first
processing the first ten time frames, then each tenth time frame up to one hundred, then
each hundredth up to one thousand time frames and so on. Each order of magnitude had
to be treated separately. Matlab was used to put together all of the different s-ISF:s
created during the above mentioned approach.
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6

Results

T
his chapter contains the results from the simulations and calculations per-
formed during this thesis work. The three topics that were studied are the
comparison of the ReaxFF potential that was used in all of the MD simu-
lations to DFT calculations, the thermal expansion of yttrium doped barium

zirconate and last the results of the main topic of interest, the proton diffusion in yttrium
doped barium zirconate. All MD simulations where performed with LAMMPS[8].

6.1 Comparison Between the ReaxFF Potential and DFT

First a test was performed to investigate the reliability of the ReaxFF potential and how
well it describes atomic configuration energies. The test was made through a comparison
between the ReaxFF potential and DFT calculations.

The comparison was made by calculating the energy for seven different periodic
structures, all with unit formula Ba2ZrYO6H. These structures are the same as the ones
used in Ref. [7] by van Duin et al. It is not possible to compare the actual energies
because they do not need to be the same. The force is calculated from the gradient of
the potential so it is the energy difference between structures that is of importance. In
order to be able to compare the energies, the energy of the first structure was subtracted
from the other six, creating an energy difference that could easily be compared. The
result can be seen in figure 6.1. The result shows that the ReaxFF potential differs from
DFT calculated values with about 1 − 10 kJ/mol except for configuration 7 where the
difference is around 40 kJ/mol.
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Figure 6.1: A comparison between the ReaxFF potential and DFT. Energy difference of
six configurations of Ba2ZrYO6H, calculated using the ReaxFF potential, and DFT.

6.2 Expansion of Yttrium Doped Barium Zirconate

The expansion of yttrium doped barium zirconate was studied as a function of dopant
concentration and temperature. The simulation volume contained 6x6x6 = 216 unit cells
of BaZrO3. Three yttrium dopant concentrations where studied, 24/216 parts yttrium
≈ 11%, 12/216 parts yttrium ≈ 6% and no doping at all = 0%. The concentration
where determined as [Y ]+[Zr] = 1 = 100%. The system was neutrally charged and fully
protonated, including as many protons as yttrium dopants and no oxygen vacancies.
Yttrium dopants and protons where randomly distributed in the simulation volume,
yttrium dopants replacing some of the existing zirconium atoms and the protons where
placed at any random coordinates. A relaxation of the lattice was then made to move
the protons to physically possible locations and there by avoiding atomic overlap.

The MD simulations where performed at constant temperature and constant pres-
sure, always 1 atm, with a time step ∆t = 1 fs. Simulations were performed at 200K,
400K, 600K, 800K, 1000K, 1200K and 1400K. For undoped barium zirconate, the
temperature 1600K was also studied.

6.2.1 Lattice Parameter

During the MD simulations the simulation volume was allowed to expand and contract
under constant pressure and after a sufficient time, around 10 ps, an equilibrium was
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Figure 6.2: The lattice parameter as a function of time for constant pressure 1 atmosphere,
at constant temperature 1000K.

found. The simulation volume oscillates around the equilibrium, so the average was
taken from t = 1.5 · 104 fs to the end of the simulation, giving an average simulation
volume over the last 1/4 of the simulation. The effective lattice parameter d for one unit
cell was then calculated from the simulation volume Ω according to

d =

(

Ω

63

)
1

3

. (6.1)

The effective lattice parameter is calculated under the assumption of a cubic lattice,
meaning that if the lattice is not cubic the effective lattice parameter will give the value
of a cubic lattice with the same volume.

An example of a plot with effective lattice parameter as a function of time for constant
temperature and pressure can be seen in figure 6.2. Figure 6.2 is the simulation performed
at 1000K with 11% yttrium dopants, the lattice parameter starts at 4.25 Å and then
starts to oscillates and between 4 ps and 6 ps the equilibrium of the oscillation changes
to about 4.29 Å.

A MD simulation was carried out for each dopant concentration and temperature
and the results are shown in figure 6.3.

From the results in figure 6.3 it is clear that the effective lattice parameter increases
with temperature, as for most materials. The relation between the effective lattice
parameter and temperature is almost linear for temperatures up to 1200K, but a slight
uppward curvature can be seen. For the doped lattices the effective lattice parameter
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Figure 6.3: The lattice parameter as a function of temperature, plotted for three yttrium
dopant concentrations, 11%, 6% and no doping at all.

shows a large increas from 1200K to 1400K and a similar increase is also seen for the
undoped lattice from 1400K to 1600K.

To study the behavior for temperatures up to 1200K a second order polynomial fit
was made for each of the three curves at the temperatures 200K to 1200K and the
resulting effective lattice parameters as functions of temperature are

d11Y = 2.55 · 10−8T 2 + 1.12 · 10−5T + 4.25, (6.2)

d6Y = 2.36 · 10−8T 2 + 1.55 · 10−5T + 4.24, (6.3)

d0Y = 1.22 · 10−8T 2 + 3.30 · 10−5T + 4.22, (6.4)

where the index denotes the yttrium dopant concentration, the temperature T is in
Kelvin and the effective lattice parameter d is in Ångstöm.

A plot containing the data points and the second order polynomial fit is shown
in figure 6.4. The constant term increases with dopant concentration, highlighting an
increase of the lattice parameter as a function of dopant concentration. The second order
fit seem to be a good match to the data points. Further, by studying equation 6.2-6.4
it is clear that the second order temperature dependence increases with doping and the
linear dependence decreases.

28



6.2. EXPANSION OF YTTRIUM DOPED BARIUM ZIRCONATE

� � � � � � � � � � � � � � � � � � � � � h � � � � � � � � � � � � � �� Y � �� Y � �� Y � �� Y � �� Y � �� Y � �� Y � �� Y � h� Y �� Y � �

* & Z [ & � � � � � & \ ] ^
��� ��_� �̀a b__� ��c b�b!�_ ���d $ e � � � f ge � � f g� 
 g(  � � 
 � � f g(  � � 
 � f g(  � � 
 � 
 g

Figure 6.4: The lattice parameter as a function of temperature, plotted for three yttrium
dopant concentrations, 11%, 6% and no doping at all. Included in the graph is a also the
second order polynomial fit to each curve.

A second order thermal expansion was found for undoped barium zirconate in ex-
periments performed by Zhao et al[15], the results in equation 6.4 shows a second order
term that is a factor 1.1 larger and a first order terms that is a factor 1.5 larger than
their results.
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Figure 6.5: The lattice expansion in the x, y and z-directions for 6% yttrium doped
barium zircionate. The graph shows a slight tetragonal distortion, except for 1400K where
the lattice becomes strongly orthorhombic.

6.2.2 Distortions From the Cubic Lattice Structure

The simulation volume was allowed to change shape during the MD simulations, meaning
that the axes, x, y and z, were allowed to change length separately. Figure 6.5 and
6.6 shows the lattice parameter in the x, y and z-directions for 6% and 11% yttrium
dopants as a function of temperature. The graphs are rather similar but there are
some differences worth pointing out. For 6% yttrium doped barium zirconate a slight
tetragonal distortion can be seen, where the z-direction lattice parameter is a little bit
smaller than the other two which are very similar. A tetragonal distortion for 6% yttrium
doped lattices has been found experimentally by Giannici et al [11], where two sides
are slightly longer than the third. For 11% yttrium dopants there is an orthorhombic
distortion instead of tetragonal one, with all sides being of different length. In both of
the doped cases the distortion from a cubic lattice is very small for temperatures below
1400K.

Figure 6.3 shows a large increase in the effective lattice parameter from 1200K and
1400K. Figure 6.5 and 6.6 shows that not only does the simulation volume become larger,
but the lattices does also become clearly orthographically distorted. The experimental
data found does not cover these temperatures so it is difficult to say weather this is a
real physical phenomena or an artifact from the potential.
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Figure 6.6: The lattice expansion in the x, y and z-directions for 11% yttrium doped
barium zircionate. The graph shows a slight orthorhombic distortion, except for 1400K
where the lattice becomes strongly orthorhombic.

6.3 Proton Diffusion in Yttrium Doped Barium Zirconate

The study of proton diffusion was made in systems of 6x6x6 = 216 unit cells with
periodic boundary conditions. The systems contained 11% yttrium dopants, were neu-
trally charged and fully protonated, meaning the systems contained 24 yttrium atoms,
24 protons and no oxygen vacancies. As in the case of the lattice expansion study in
the previous section, the dopants and protons were distributed by randomly replacing
zirconium atoms with yttrium and randomly selecting the starting positions for the pro-
tons. In all simulations the simulation volume was kept constant and cubic with a fixed
lattice parameter with the temperature dependence obtained in the lattice expansion
simulations. The systems was relaxed before the MD simulations were started and the
time step was ∆t = 1 fs.

6.3.1 Mean Square Displacement

The temperature dependence of the diffusion constant was investigated. A simulation
was made for seven different temperatures 800−1400K with a temperature step of 100K.
Due to the uncertainty of the behavior at higher temperatures, the lower temperature
behavior of the lattice parameter was extrapolated when performing MD simulations at
1300 and 1400K. The simulations each contained 5 · 105 time steps, corresponding to
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Figure 6.7: The mean square displacement for a proton diffusing in 11% yttrium doped
barium zircionate, at the seven temperatures 800K to 1400K.

0.5 ns. The diffusion constant was calculated for each simulation, following the MSD
procedure in section 5.1.1. The number of time windows used for averaging in the MSD
calculations are close to 4000 and the average has also been taken over the 24 protons.

The averaged MSD plots are shown in figure 6.7. The resulting temperature depen-
dence of the diffusion constant is shown in figure 6.8.

Figure 6.7 clearly shows how the MSD becomes linear after about 5 ps and allows
for a determination of the diffusion constant by fitting of a first order polynomial to the
second half of the curve.

Using equation 3.6 in section 3.3 it is possible to determine the activation energy
E0 and the prefactor D0. By taking the logarithm of both sides of equation 3.6 and
extracting the factor 1000/T , the result becomes the first order polynomial

lnD = −
1000

T

E0

1000kB
+ lnD0, (6.5)

where lnD is a function of 1000/T .
By making a first order polynomial fit to the data points from 800K to 1400K,

E0 = 0.44 eV can be extracted from the slope of the curve and D0 = 5.3 · 10−4 cm2/s
from the constant term. The activation energy is well in agreement with experiments
performed by Kreuer et al[4], but the prefactor is about a factor five too small. The
experimental data is shown as a fully drawn line in figure 6.8. The prefactor is however
about a factor two larger than the one van Duin et. al. obtained in their study of the
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Figure 6.8: The diffusion constant for protons in 11% yttrium doped barium zircionate,
as a function of temperature. The dashed line is a fit to the data obtained from the MD
simulations and the fully drawn line corresponds to the result from experiments performed
by Kreuer et al[4].

diffusion in barium zirconate[7].
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Figure 6.9: The s-ISF as a function of k2t for some k-values between k = 0.1 Å
−1

and

k = 1 Å
−1

. The doted line is the exponential function from equation 5.8, with D = 7.3 ·
10−6 cm2/s.

6.3.2 Self Intermediate Scattering Function

The s-ISF was obtained for a system simulated at 1200K, where the self diffusion con-
stant was calculated to be D = 7.3 · 10−6 cm2/s, or log10D = −5.14, with the MSD
method. The simulation contained 5 · 106 time steps, corresponding to 5 ns. The s-ISF
was calculated using the procedure in section 5.1.2. 1200K is above the intermediate
temperature range but the elevated temperature is necessary to increase the speed of the
dynamics, otherwise it would take a very long time to perform a simulation long enough
to capture the behavior of interest.

The calculated s-ISF as a function of k2t is shown in figure 6.9. For some k-values

between k = 0.1 Å
−1

and k = 1 Å
−1

. The s-ISF for small k-values, equation 5.8 in
section 5.1.2, is also included in figure 6.9, with D = 7.3 · 10−6 cm2/s.

The curves in figure 6.9 approaches the exponential behavior in equation 5.8 for small

k but even the smallest value k = 0.1 Å
−1

does not seem to reproduce the exponential
behavior completely. For larger k-values the graph drops rapidly before it becomes more

exponential in appearance. This behavior is expected because k = 1 Å
−1

corresponds to
the distance r = 2π/k ≈ 6.3 Å, which is close to the size of the unit cell, and therefore are
the small vibrational movements of the protons captured. To extract more information
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Figure 6.10: The part of the self ISF as a function of k2t that where fitted to the expression

in equation 6.6. The plot shows some k-values between k = 0.1 Å
−1

and k = 1 Å
−1

but the

fit where made for 600 k-values between k = 0.1 Å
−1

and k = 1 Å
−1

. The doted line is the
exponential function from equation 5.8, with D = 7.3 · 10−6 cm2/s.

about the k-dependence of the s-ISF a fit was made to the expression

Fs(k,t) = F0e
−( t

τ )
β

, (6.6)

where the parameters are k-dependent, F0 = F0(k), τ = τ(k) and β = β(k). Equation
6.6 is a so called stretched exponential in t and has a rather complex k-dependence.

The x-axis in figure 6.9 is in k2t Å
−2

fs so the parameter that was actually fitted was
D′(k) = 1/(τ(k)k2) instead of τ .

The fit was made to the part of the data where the behavior could be replicated
by the expression in equation 6.6, meaning that the fit does not include the drop that
occurs for larger k-values. The part of the s-ISF that was used to fit the data is shown
in figure 6.10.

To reproduce the simple exponential behavior in equation 5.8, the expressions

F0(k) → 1,when k → 0, (6.7)

log10D
′(k) → log10D = −5.14,when k → 0 and (6.8)

β(k) → 1,when k → 0 (6.9)

should hold.
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Figure 6.11: The parameters β, F0 and log10D
′ as a function of k, where k goes from

0.1 Å
−1

to 1 Å
−1

.

The parameters β, F0 and log10D
′ are plotted as a function of k in figure 6.11.

It is difficult to interpret the results in figure 6.11 because there are no known theo-
retical predictions for this behavior.

The fit seem to reproduce the flattening of the curves for larger k, which corresponds
to a decrease in the β-parameter in figure 6.11(a). Due to the drop in the s-ISF for larger
k the fitted curve is shifted downwards which is shown as a decrease in the prefactor F0 in
figure 6.11(b) for larger k. From figure 6.11(c) it is possible to see that the D′-parameter
clearly decreases with increasing k.
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Discussion

T
he accuracy of the parametrization of the ReaxFF potential was investigated
by using it to calculate the energy difference between seven different structures
and comparing the difference to DFT calculations for the same structures.
The difference between the ReaxFF calculated values and the DFT calculated

ones are about 1 − 10 kJ/mol, except for one structure where the difference is around
40 kJ/mol. The energy values calculated with the ReaxFF potential seem to follow the
trend of the values calculated with DFT and the agreement in energy is adequate. The
same structures were compared in reference [7], but the DFT calculated values differs
somewhat. The difference is most likely due to that the DFT calculations performed in
reference [7] used Gaussian basis functions and the calculations performed during this
thesis used a plane wave basis, another difference is the pseudopotentials used.

The results of the thermal expansion investigation of undoped barium zirconate agree
rather well with experimental data for temperatures up to 1200K. The expansion of the
lattice as a function of temperature is slightly overestimated, the second order being a
factor 1.1 larger and the first order a factor 1.5 larger than experiments performed by
Zhao et al[15]. The overestimated expansion is consistent with observations made by
Raiteri et al[27], that the ReaxFF potential that models barium zirconate is too soft.
The doped lattices investigated in this thesis show a slight distortion from the cubic
structure. For 6% yttrium dopants the distortion is tetragonal which is in agreement
with experiments performed by Giannici et al[11]. For 11% yttrium dopants the dis-
tortion is orthorhombic and this has not been observed experimentally so it can be an
artifact from the potential.

At higher temperatures a much larger increase in the lattice parameter is observed
and the distortion of the doped lattices becomes highly orthorhombic, this has not been
observed experimentally. The distortion is most likely due to an inaccuracy of the
ReaxFF potential. Raiteri et al[27] observed that the ReaxFF potential has instabilities
and predicts an unphysical distortion for undoped barium zirconate, perhaps this flaw
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becomes more evident at higher temperatures.
Proton diffusion in barium zirconate seems to be well modeled by the ReaxFF po-

tential and it seems like it is possible to model proton diffusion at higher temperatures
if the system size is kept fixed with a lattice parameter extrapolated from the lower
temperature behavior. The activation energy E0 = 0.44 eV is in very good agreement
with reported experimental results and the prefactor D0 = 5.3 · 10−4 cm2/s is about a
factor 5 too small. It is difficult to state the reason for the deviation in D0. D0 depends
on several factors and a deviation of a factor of 5 can still be considered to be a good
result. It is worth mentioning that no quantum mechanical effects for the motion of the
atoms are taken into account during a MD simulation, which may affect the result. Also,
there may be errors to be considered in the experimental data as well.

The main topic of this thesis has been Fs(k,t), the self intermediate scattering func-
tion (s-ISF), and in particular has the k-dependence of the s-ISF been investigated. The
behavior of the s-ISF can be well replicated by a stretched exponential function in time
but with three k-dependent parameters. The s-ISF approaches an exponential function
for small values of k, which is predicted by theory. However, even for k-values as small

as 0.1 Å
−1

, the s-ISF deviates from the exponential time dependence. k = 0.1 Å
−1

corre-
sponds roughly to distances of the order of r = 2π/k ≈ 60 Å and the observed deviation
may indicate that the diffusive motion is affected by the dopants.

The s-ISF describes ”diffusion” at different length scales and might give information
about trapping in the vicinity of the dopants. To investigate this further it would be
necessary to investigate the trajectory files more closely and map the motion of the
protons through out the lattice in space and time.

It would be advantageous to do simulations over longer time intervals but the compu-
tational power of computers and the MD method puts an upper limit to how long time
intervals that can be studied in practice. Due to the fact that the MD simulation time

is finite the maximal value of k2t becomes smaller as k decreases. When k = 0.1 Å
−1

the (k2t)max = 50 Å
−2

ps for a time interval of 5 ns, which is just a small part of the
exponential curve. Also, for lower temperatures, the kinetics are slower and therefor are
longer simulation times required to study lower temperatures.
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Conclusions

T
he diffusion of protons seems to be well modeled by the ReaxFF potential
and the results are close to the ones obtained from experiments. The self
intermediate scattering function can be obtained for both large and small values
of the momentum |k| and could prove to be a useful tool in the investigation

of the effects of dopants.
There are a lot more to be done on this topic. The next step would be to look

at trajectory files and investigate the motion of protons in space and time. More MD
simulations could be performed at lower temperatures to investigate the behavior in
the intermediate temperature range and longer simulations in time could be useful to
increase the amount of data that can be used to fit parameters to. It would be useful to
obtain more experimental data for the s-ISF and compare these to the results obtained
for different k-values in this thesis.

The ReaxFF potential can be improved. Improving the potential is however a difficult
task due to the complexity of it. The potential can be used with good results if high
temperatures are avoided. However, it seems that higher temperatures can be studied if
the size is kept fixed and the lattice parameter is extrapolated from the lower temperature
behavior.
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